Phytogeographic Survey of North America

A Consideration of the Phytogeography of the North American Continent, including Mexico, Central America and the West Indies, together with the Evolution of North American Plant Distribution

by

John W. Harshberger, A. B., B. S., Ph. D.
Assistant Professor of Botany, University of Pennsylvania; Fellow of the American Association for the Advancement of Science; Member of the Botanical Society of America; Academy of Natural Sciences of Philadelphia; Geographical Society of Philadelphia; American Philosophical Society; &c. &c.

1 Map, 18 Plates and 32 Figures in the text

Mit einer kurzgefaßten deutschen Inhaltsübersicht

Gedruckt mit Unterstützung der Königl. Preuß. Akademie der Wissenschaften

Leipzig
Wilhelm Engelmann

New York
G. E. Stechert & Co.
Mount Stephen

10520 feet (3207 m) in the Rocky Mountains of Canada from the Kicking Horse River with coniferous forest of spruce *Picea Engelmanni* (Parry).
Phytogeographic Survey of North America

A Consideration of the Phytogeography of the North American Continent, including Mexico, Central America and the West Indies, together with the Evolution of North American Plant Distribution

by

John W. Harshberger, A. B., B. S., Ph. D.
Assistant Professor of Botany, University of Pennsylvania; Fellow of the American Association for the Advancement of Science; Member of the Botanical Society of America; Academy of Natural Sciences of Philadelphia; Geographical Society of Philadelphia; American Philosophical Society; &c. &c.

Map of North America showing the phytogeographic regions, 18 Plates and 32 Figures in the text

German Extract by O. Drude

Leipzig
Wilhelm Engelmann

New York
G. E. Stechert & Co.

1911
Copyright 1911 by Wilhelm Engelmann, Leipzig

72362
Phytogeographic Survey of North America.

Preface.

The conservation movement in America had its origin a number of years ago in the agitation to preserve the forests of the nation from total destruction. During the administration of President Roosevelt, the movement was given national significance by a meeting in Washington of the governors of the different states, and other prominent men of affairs, to consider whether something could be done to conserve not only the forests, but other natural resources, as streams, mineral products and agricultural soil. This meeting was followed by several conservation congresses in which matters of national importance were given prominence. One of the results of these gatherings of public-spirited men was an inventory of our natural resources made by the scientific bureaus in Washington, aided by the National Academy of Sciences. As a result of this inventory, we know approximately the extent of our forests, the amount of coal which we have for future use, and the location of the oil and mineral deposits.

But with the settlement of the continent and the exploitation of its resources, such as the drainage of its swamps, the removal of the original forests and the construction of irrigation works in arid districts, the original condition of the land surface and its vegetation will be changed forever. It is important, therefore, for this generation of botanists and scientists to leave in printed form, in photographs, in maps and in other illustrations a record of the original appearance of the country before the march of civilization has destroyed primeval conditions. This from the standpoint of the botanist is an important matter, because all future botanic and forestry work must be based on considerations of what was the character of the native growth. Fully recognizing this fact, the writer at the suggestion of the editors of "Die Vegetation der Erde", undertook ten years ago to write a sketch of the Vegetation of North America, and this volume is the outcome of the study of American vegetation, begun over twenty years ago.

During this time trips have been made to all the more important phytogeographic regions of North America, excepting the Arctic tundra, and the itinerary of such collecting trips included the Bermudas, the Bahamas, the Greater Antilles, Mexico, the Pacific coast states, the Rocky Mountains, the prairie
plains, the Piedmont, the Atlantic coastal plain, as far, as extreme southern Florida and the Floridan keys, the Dismal Swamp, the White, Green, Adirondack, Catskill, northern and southern Appalachian mountains. With the object of leaving in permanent form a description of the native vegetation of North America, various herbaria in Philadelphia and elsewhere have been consulted and correspondence was begun with botanists in various parts of the continent, interested in a phytogeographic, or a systematic study of the flora. A large collection of books and pamphlets has been made, including articles taken from weekly and monthly magazines, and these have been classified for instant use during the prosecution of a work which the author has spared no pains to make as accurate, as the existing state of information and the unfortunate confusion in nomenclature would permit. Details of synonomy, omitted in the lists and in a discussion of the plant formations, are given in the index, while the more important typographic blunders are given proper place.

A collection of photographs, maps and printed illustrations pertinent to American phytogeography has been made during the last few years, and these will be arranged and bound in book form for the future reference of students of American vegetation, when its original state will then be a matter of historic record.

The author wishes to thank most cordially the botanists and scientific friends who have aided him in his work. Many of the societies and individuals, who have given assistance, are mentioned in the bibliography, in the text, and in the footnotes of the illustrations and printed pages throughout the book. Especially, he desires to mention the financial aid given in the printing of the book by the American Philosophical Society out of the Michaux Fund, which as a legacy left to the Society by the French botanist, François André Michaux, has done much to advance the study of arboriculture and for the purchase of botanic books for the library begun by Benjamin Franklin.

Finally the author wishes to acknowledge the encouragement and help received from the editors, Professors A. Engler and O. Drude, and the publishers who have allowed the book to exceed its original limits. He wishes especially to thank Professor Dr. Oscar Drude, who has given much of his time to the revision of the work, while in manuscript and in the press, ably assisted by his daughter Miss Hildegard Drude (now Mrs. Robert Hohlfeld) in the final proof reading of the English text.

University of Pennsylvania
Philadelphia, October 21, 1910.

John W. Harshberger.
Contents.

Preface of the author .. V—VI
German Extract by C. G. Oscar Drude XIII—LXIII

Part First.

History and Literature of the Botanic Works and Explorations of the North American Continent.

Chapter I. History.
1. Floristic Work.
 Canada (1—7); New England (7—11); Middle Atlantic States (11—17); Southeastern States (17—18); Prairies, Arid Plains and Rocky Mountains (18—24); Pacific Coast (24—29); Great Southwest (29—30); Mexico (30—33); Central America (33—35); West Indies (35—39) ... 1—39
2. Plant Geography.

Chapter II. Bibliography.
A. General Works on North American Botany and Plant Geography ... 46—51
B. Special Works on the Territories.
 Sect. I. Canada (51—56); Sect. II. Northeastern, Northern Central and Central United States (56—66); Sect. III. Southeastern and Southern States (66—71); Sect. IV. Rocky Mountains (71—74); Sect. V. Southwestern Arid States and Great Basin (75—78); Sect. VI. Pacific Coast States (78—82); Sect. VII. Mexico and Central America (82—87); Sect. VIII. West Indian Islands (87—92) .. 51—92

Part Second.

Geographic, Climatic and Floristic Survey.

Chapter I. Geographic Character of North America.
1. General Survey of the Continent .. 93—95
2. Northern Division. The Northern Plains; The Pacific Range; The Eastern Lakes and the St. Lawrence .. 95—102
3. Central Division. (a) Eastern Section and Appalachian System; (b) Western Section: Rocky Mountains; (c) Columbia Plateau; (d) Colorado Plateau; (e) Pacific Mountains; (f) The Great Valley .. 102—112
4. Southern Division. (a) Mexico; (b) Central America 113—121
5. West Indies in General. (a) Virgin Islands and St. Croix; (b) Puerto Rico; (c) Santo Domingo; (d) Cuba; (e) Jamaica; (f) The Bahamas; (g) The Bermudas 121—130

Chapter II. Climate of North America.
General Remarks (130—135); 1. Canada (135—138); 2. United States (138—148); 3. Mexico (148—153); 4. Central America: (a) Guatemala, (b) Nicaragua, (c) Costa Rica, (d) Panama (153—161); 5. West Indies: (a) Cuba, (b) Santo Domingo, (c) Jamaica, (d) Puerto Rico, (e) The Bahamas, (f) The Bermudas (161—165) ... 130—165

Chapter III. Statistics of North American Plants 166—169
Chapter I. Cretaceous and Tertiary Floras.
Beginning of the actual Flora; Evolutionary Principle; Evolution of the Forests;
The Relict Miocene Flora; Endemisms and Glacial Plants 170—182

Chapter II. History and Development of North American Flora during the
Glacial Periods.
1. The Extension of the old Glaciers; 2. The Pleistocene Flora; 3. The
Glacial Flora; 4. The Flora of the Rocky Mountains and of the Sierra Nevada;
5. The Vegetation Zones south of the Land Ice. 182—203

Chapter III. Postglacial and Recent History of the North American Flora.
1. Immediate Effects of Glacial Retreat (203—212); 2. Evolution of Coastal
and Southern Mountain Floras (212—226); 3. Southern Atlantic States and
Mississippi Valley (226—239); 4. The Western Mountainous Elements and the
Great Basin (240—261); 5. Flora of the Pacific Mountain Ranges (261—282);
6. Western Desert Ranges (282—300); 7. Non-Desert Floral Elements of Mexico
and Central America (300—311). ... 203—311

Chapter IV. Affinities of North American Flora.
1. Arctic America (311—314); 2. Plants common to Europe and northeast
America (315—316); 3. Eastern North America and Eastern Asia (316—317);
4. Tropic and Subtropic Affinities (317—320); 5. Relationship in Western
North American Flora (320—324); 6. Relationship of the Floras of Mexico,
Central America and West Indies (324—331); 7. Southern Extension of North
American Flora (331—341) ... 311—341

Chapter V. North American Phytogeographic Classifications.
GRISERACH; ENGLER; DRUDE; MERRIAM; CLEMENTS. 341—345

Part Four.
North American Phytogeographic Regions, Formations, Associations.

Chapter I. Arctic and Sub-Arctic Zones.
1. Arctic Regions of Labrador, northern Mackenzie and the Arctic Shore,
(a) Tundra Formations; (b) Marine Algal Formations; (c) Formations of the
Pribilof Islands ... 346—351
2. Sub-Arctic Forest Region of North Canada and Alaska: A. Labrador District;
B. Hudson Bay District; C. Mackenzie District; D. Alaska District. 351—360

Chapter II. North American Temperate Zone: Atlantic Section.
1. St. Lawrence — Great Lake Region.
A. Maritime District: (a) New Brunswick Area (361—378); (b) New England
Area (378—390); B. Lake District: (a) Interlacustrine Area (390—403),
(b) Adirondack Area (403—408) .. 360—408
2. Atlantic — Gulf Coastal Region.
A. Northern Pine Barren-Strand District (409—426); B. Carolinian Pine Barren-
Strand District (427—443); C. Gulf Pine Barren-Strand District (443—453);
D. Arkansas-Louisiana District (453—460). 409—460
Chapter III. North American Temperate Zone: Xerophytic Section of the Interior.

1. Prairie Region.
 A. Transition Prairie-Forest District.
 B. Prairie and Sand Hill District.
 C. Foothill District.

2. Rocky Mountain Region.
 A. Northern Dominion District.
 B. Southern Park Mountain District.
 C. Black Hills Area.

3. Great Basin Region.
 A. Oregon District.
 B. Nevada District.
 C. Arizona-New Mexico District.
 D. Mohave District.

Chapter IV. North American Temperate Zone: Pacific Section.

1. Sitka Region.
2. Columbian Region.
 A. Puget Sound-Cascade District.
 B. Olympic District.

3. Californian Region.
 A. Coast Range District: (a) Mendocino Area (603—609); (b) Santa Lucia Area (609—611).
 B. San Joaquin District.
 C. Sierra Nevadan District: (a) Shasta Area (613—616); (b) Sierra Area (616—621).
 D. San Bernardino District: (a) Insular Territories (621—623); (b) Mainland Area: 1. Coastal Territory (624—627), 2. San Jacinto Territory (627—633).

Chapter V. Mexican Subtropic Zone and Mountain Regions.

1. Sonoran Desert Region.
 A. Yuman District.
 B. Sinaloan District.
 C. Lower Californian District: 1. The Peninsular Territory; 2. The Insular Territories.

2. Western Sierra Madre Region.
3. Chihuahuan Desert Region.
4. Eastern Sierra Madre Region.
5. United Cordilleran Region. Orizaba (652—654); Popocatepetl (654); Ixtaccihuatl (654—655); Toluca (655); Colima (655—656).

Chapter VI. North American Tropic Zone: Section of Mexico and Central America.

1. Jaliscan Region.
2. Gulf Region.
3. Guatemalan Region.
4. Costa Rican Region.
Chapter VII. North American Tropic Zone: West Indian Section.

1. Antillean Region.
 A. Cuban District ... 673-677
 B. Jamaican District .. 677-680
 C. Santo Domingan District 680-683
 D. Puerto Rican District: (a) Puerto Rican Territory; (b) Virgin Islands Territory ... 683-688

2. Bahaman Region: (a) Insular Territory (689-695); (b) Floridan Territory (695-700) ... 689-700

3. Bermudan Region .. 701-704

Index ... 705-790
Corrections.

Page 16 line 21 from top for Grave read Grove.

> 17 > 25 > > > 1814 > 1841.
> 32 > 21 > > > D. J. > D. T.
> 34 > 3 » bottom for A. Pittier read H. Pittier.
> 50 > 15 » top for Russell read Russell.
> 55 > 29 » » Penshallow read Penhallow.
> 64 > 36 » » Feriger read Finger.
> 67 > 1 & 2 » bottom for Charlestown read Charleston.
> 69 > 24 » top for Tracey read Tracy.
> 85 > 4 » » Jost read José.
> 91 > 9 » bottom for Cerichona read Cinchona.
> 109 > 11 » » (3950 m) read (3810 m).
> 114 > 18 » top for The read These.
> 117 > 4 » » Cookscomb read Cockscomb.
> 217 > 9 » bottom for ovata read alba.
> 223 > 22 » top remove sentence beginning “The lower slopes of the Alleghanian”.
> 240 > 9 » bottom for macrophyllum read microphyllum.
> 246 > 21 » top for P. read S.
> 252 > 2 » » capsulii read capuli.
> 267 > 23 » » brevifolia read breviflorus.
> 268 > 23 » » transpose hirta and verna.
> 273 > 4 » bottom for Eastman read Eastwood.
> 274 > 9 » top for Loezia read Loeselia.
> 289 > 3 » bottom for Prathyrotes read Psathyrotes.
> 298 > 12 » » guatemalensis read autumnalis.
> 298 > 15 » » mines read ruins.
> 299 fig 10 for guatemalensis Rose read autumnalis (Eichlam) Rose.
> 333 line 9 from top for Arnithamnia read Arguthamnia.
> 337 > 15 » » longifolia read longiflora (Torr.) Don.
> 341 > 6 » bottom for where read were.
> 349 > 25 » top for Rhodomenia read Rhodymenia.
> 360 > 1 » » Bonz read Bong.
> 366 > 3 » » pickered read pickerel.
> 368 > 21 » » polygonum read polygamum.
> 370 > 26 » » alta read alata.
> 373 > 9 » » rudula read radula.
> 383 > 9 » bottom for Rhodymela read Rhodomela.
> 383 > 19 » top for siliquosus read siliculosus.
> 383 > 25 » » Chordia read Chordaria.
> 391 > 10 » bottom for retrofacta read retrofracta.
> 395 > 7 » » utriculatum read reticulatum.
> 416 > 3 » top for On read One.
> 424 > 18 » bottom for parviflora read parvifolia.
> 424 > 19 » top for polygonum read polygamum.
Page 427 line 22 from top for Paronichia read Paronychia.
> 427 > 12 > > denominate read dominated.
> 442 > 25 > > Compact read Compact.
> 452 > 14 > > obtusifolia read obtusiloba.
> 456 > 13 > > extend read extended.
> 465 > 31 > > a read as.
> 481 > 1 > > (,) and for Thelypteris read thelypteris.
> 485 > 33 > top for pauciflora read paucifolia.
> 490 > 13 > bottom transpose alba and tomentosa.
> 499 > 4 > top for natans read nutans.
> 501 > 4 > bottom transpose alba and tomentosa.
> 502 > 4 > > nudiflora read nudicaulis.
> 520 > 7 > > odorata and microcarpa.
> 524 > 13 > for ohionis read ohionis.
> 531 > 27 > > taxiflora read laxiflora.
> 531 > 28 > > virginiaca read americana.
> 545 > 7 > > trachysperma read trachypleura.
> 545 > 29 > > strictus read striatus.
> 549 > 13 > > erythocarpum read erythrocoecum.
> 550 > 30 > > > glandulifera read glanduliflora.
> 551 > 1 > bottom for Jock read Jack.
> 558 > 12 > top for Rugelli read Regelli.
> 560 > 14 > bottom for gysophila read gypsophila.
> 564 > 24 > > where read were.
> 573 > 23 > top for Robbinsii read Robbinisii.
> 574 > 13 > bottom for thorny read thorny.
> 576 > 32 > top for ciliosa read ciliaris.
> 580 > 18 > bottom for pinon read piñon.
> 581 > 2 > top remove and.
> 582 > 5 > top for that read the.
> 583 > 3 > > > mountains read maintains.
> 583 > 5 > > Calogania > Cologania.
> 583 > 18 > > stenophyllus read stenosepalus.
> 586 > 20 > > Fransera read Franseria.
> 590 > 16 > > lactiflorum read lactiflorum.
> 597 > 22 > > delete (= M. urceolaria Salisb.).
> 608 > 2 > < for Ceanothus read Cercocarpus.
> 608 > 27 > > There read They.
> 616 > 11 > bottom for Bay read Pass.
> 618 > 13 > top for so read to.
> 623 > 24 > > Hesperaeæa read Hesperelaæa.
> 625 > 6 > > A. read O.
> 654 > 20 > > (,) after pines place (,).
> 663 > 1 > bottom for Calvert read Calvert.
> 676 > 30 > top for member read number.
> 680 > 14 > > Blakea read Blakea.
> 694 > 23 > > Raponia read Rapania.
> 694 > 25 > > Phalanthus read Phalanthus.
> 695 > 4 > > humeliaefolia read bumeiliaefolia.
> 695 > 8 > > humelia read Bumelia.

Vor allem muß ich dabei dankbar der unbeschränkten Freiheit gedenken, welche Prof. HARSHBERGER uns Herausgebern über sein Manuskript einräumte, um es in den für das Buch vorgesehenen Grenzen von 40 Bogen englischem Text zu halten, welche — z. T. durch die wertvollen Abbildungen, z. T. durch unentbehrliche Zusätze noch während des Druckes von Abschnitt IV —

Sodann muß auch hier hervorgehoben werden, daß zur Beigabe einer großen Zahl trefflicher Illustrationen nicht nur kostbare Originale in großem Format zur Verfügung gestellt wurden, sondern daß in Philadelphia dem Verfasser zu den dadurch verursachten höheren Verlagskosten ein Beitrag übermittelt wurde (s. englisches Vorwort S. VI).

Prof. HARSHBERGER kennt sein Gebiet aus vielen Reisen, kreuz und quer und in vielen Jahren gemacht, von der Westküste bis zur Mündung des St. Lorenz, in den Alleghanies wie Felsenbergen, im mexikanischen Hochlande und auf den Antillen. Nur das weite Gebiet nördlich vom 50° NB. und die tropische Region von Zentralamerika hat er nicht bereist, und es sind demzufolge auch die betreffenden Kapitel im IV. Abschnitt (I. S. 346—360 und IV. S. 657—672) am kürzesten ausgefallen, da sie nur in dem groß ausgespannten Rahmen nicht zu fehlen hatten. Immer mehr stellt sich bei der Herausgabe dieser Einzelbände die Notwendigkeit heraus, daß die Bearbeiter größerer Ländergebiete auch ein zusammenfassendes Urteil über diejenigen Landschaften tragen, deren Natur und Pflanzenwelt sie nach der ihnen bekannten Umgebung besser verstehen können, als die meisten, welche bisher aus der darüber veröffentlichten Quellenliteratur sich ein eigenes Urteil zu bilden gezwungen waren. Es läßt aber überhaupt dieser «Survey» die Herausgabe späterer Bearbeitungen von hervorragenden Sektionen des wundervoll reichen, hier zusammengefaßten Ländergebietes frei.

Nomenklatur. Prof. HARSHBERGER schloß sich auf Wunsch der Herausgeber im allgemeinen an die in den «Natürlichen Pflanzenfamilien» zum Ausdruck gelangte Nomenklatur an und folgte also hinsichtlich der amerikanischen Species der von TORREY und Asa GRAY, Sereno Watson, Engelmann, Chapman u. a. durchgeführten Namensgebung, deren Hauptwerke meist unter den General Works in der Bibliography S. 46 ff. angeführt sind. Der Wunsch, auch der neueren Strömung in amerikanischer Nomenklatur gerecht zu werden — (Arbeiten von Britton, Greene, Mac Millan, Small, Sargent und vielen anderen, die bei allem inneren hohen Wert doch für die Namengebung das hervorgerufen haben, was die Freunde einer konservativen Nomenklaturrichtung Verwirrung und unnütze Erschwerung des Verständnisses älterer Quellenliteratur nennen) — führte den Verfasser zur Anwendung einer unausgesetzten Synonymik, welche dann aber doch in der Drucklegung nicht zum Ausdruck gelangte, außer wo es im Einzelfalle notwendig erschien; sie wurde vielmehr in das mit großer Sorgfalt von HARSHBERGER zusammengestellte Register verwiesen. Es würde tatsächlich für das Studium des Lesers höchst störend empfunden sein,
wenn derselbe immerfort die Synonyma in Parenthese gefunden hätte, wie z. B. bei Alsine=Arenaria=Ammadenia=Honkenya peploides; nur bei manchen wichtigen Arten, besonders bei den herrschenden Bäumen der Formationen, erschien die Doppelbezeichnung auch im laufenden Texte angebracht. Die Verwirrung, welche in manchen Fällen droht, ist tatsächlich sehr bedauerlich, wofür als Beispiel auf die beiden Tsuga-Arten des Westens, (S. 547 Anm. 2) hingewiesen werden mag.

Englische Maße, Temperaturgrade. Es war selbstverständlich, daß der englische Text zunächst die in den Vereinigten Staaten üblichen Maße, miles und square miles an Stelle von Kilometern und Quadratkilometern, anwenden mußte. An den wichtigen Stellen sind dieselben umgerechnet in Klamern bei- gefügt; wo dasselbe unterblieb, genügt für rasche Umrechnung folgende Verhältniszahl:

\[
\text{mile : km} = 16 : 10; \quad \text{squaremile : qkm} = 10 : 4; \\
\text{oder 1 mile} = 1,61 \text{ km}; \quad \text{1 squaremile} = 2,6 \text{ qkm.}
\]

Die Höhen sind in allen Fällen in englischen Fuß angegeben und da, wo es darauf ankommt, genau umgerechnet in Meterangaben daneben zu finden. Bei allgemeineren Angaben, also z. B. Höhenstufen abgerundet 1200—2000 Fuß, ist folgerichtig auch die Umrechnung nach Metern willkürlich abgerundet worden; meist aber bleibt sie in diesen Fällen dem Leser selbst überlassen, wofür ich folgende kleine Hilfstabelle hier einstelle, um dem Leser das Nachschlagen in anderen Büchern zu ersparen:

\[
\begin{array}{c|c|c}
1000 \text{ feet} & 305 \text{ m (ca. 300 m)} & 6000 \text{ feet} = 1829 \text{ m (ca. 1830 m)} \\
2000 & 610 & 7000 & 2134 & 2130 \\
3000 & 914 & 8000 & 2438 & 2440 \\
4000 & 1219 & 9000 & 2743 & 2740 \\
5000 & 1524 & 10000 & 3048 & 3050 \\
\end{array}
\]

Wenn sich auch im klimatischen Abschnitt (S. 130—165) viele Einzelangaben und sogar Tabellen (S. 156, 160) von Fahrenheit-Gradangaben in Celsius umgerechnet finden, so mußten doch die ausführlicheren Tabellen ohne solche Umrechnung in Satz kommen. Für diese mag hier die übliche Vergleichstabelle gleichfalls in kurzem Auszuge Platz finden, welcher vom Minimum — 13,1° F. (S. 136) bis zum Maximum 95° F. (S. 151) Auskunft gibt:

\[
\begin{array}{c|c|c|c}
-13^\circ \text{ F.} & -25^\circ \text{ C.} & 51,8^\circ \text{ F.} & 11^\circ \text{ C.} \\
-4 & = -20 & 53,6 & = 12 \\
-0,4 & = -18 & 55,4 & = 13 \\
+5 & = -15 & 57,2 & = 14 \\
14 & = -10 & 59,9 & = 15 \\
23 & = -5 & 60,8 & = 16 \\
32 & = 0 & 62,6 & = 17 \\
41 & = 5 & 64,4 & = 18 \\
50 & = 10 & 66,2 & = 19 \\
68^\circ \text{ F.} & = 20^\circ \text{ C.} \\
69,8 & = 21 \\
71,6 & = 22 \\
73,4 & = 23 \\
75,2 & = 24 \\
77 & = 25 \\
86 & = 30 \\
95 & = 35 \\
\end{array}
\]
Zum Vergleich der Niederschlagshöhen und Schneetiefen (S. 137) dient folgende kleine Tabelle:

<table>
<thead>
<tr>
<th>1 mm = 0,04 inches</th>
<th>60 mm = 2,36 inches</th>
<th>300 mm = 11,81 inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 mm = 0,20 inches</td>
<td>70 mm = 2,76 inches</td>
<td>400 mm = 15,75 inches</td>
</tr>
<tr>
<td>10 mm = 0,39 inches</td>
<td>80 mm = 3,13 inches</td>
<td>500 mm = 19,69 inches</td>
</tr>
<tr>
<td>20 mm = 0,79 inches</td>
<td>90 mm = 3,54 inches</td>
<td>600 mm = 23,62 inches</td>
</tr>
<tr>
<td>30 mm = 1,18 inches</td>
<td>100 mm = 3,94 inches</td>
<td>800 mm = 31,50 inches</td>
</tr>
<tr>
<td>40 mm = 1,57 inches</td>
<td>abgek. = 4,0 inches</td>
<td>1000 mm = 39,37 inches</td>
</tr>
<tr>
<td>50 mm = 1,97 inches</td>
<td>200 mm = 7,87 inches</td>
<td>(= ca. 40 inches)</td>
</tr>
</tbody>
</table>

abgek. = 2,0

Gliederung des Kontinents. Geographischer und floristischer Charakter der einzelnen Teile.

Bei der Bearbeitung seines gewaltigen Stoffes behält Harshberger stets dieselbe Reihenfolge von der arktischen Zone bis zu den Tropen in Westindien bei, wenngleich die Einteilung in den verschiedenen Abschnitten so gewählt ist, wie sie sich der Darstellung am besten darbot.

Zunächst aber ist des Aufbaues des ganzen Kontinents (S. 93) zuedenken, der darin seine Hauptzüge findet, daß zwei unter sich völlig getrennte und auch ganz und gar ungleichartige Gebirgssysteme seinen Charakter bestimmen, das Appalachen system im Osten und das Kordillerensystem im Westen, zwischen welchen beiden ein riesiges Bassin sich befindet, dessen Wasser vom Mackenzie in das Eismeer, von den großen Seen durch den St. Lorenz in den Nordatlantischen Ozean, endlich vom Mississippi in den Golf hinabgeführt werden. So geht von der Keewatin-Niederung westlich der Hudson-Bai bis nach Louisiana, vom Polarkreise bis über den 30° N. noch weit südwarts hinaus eine tiefe Depression, welche größtenteils unter 200 m liegt und nur in Ontario nördlich der großen Seen, sowie auf der schwachen Wasserscheide in Illinois und Indiana gegen den Mississippi, diese niedere Höhe mit Plateaus und Rücken von höheren, aber 500 m nicht übersteigenden Stufen überschreitet.

Hochplateaus, Bergketten und Gipfel von mehr als 1000—1500 m Höhe finden sich demnach nördlich des St. Lorenz nur auf Baffinland und Labrador, südlich des St. Lorenz dagegen von Neu-Braunschweig und Maine südwests bis Alabama, und dieses appalatische Bergland fällt nach Westen zum Mississippi-Bassin ab, während es im Osten und Süden von einem niederen Küstenstreifen jüngerer Landes umsäumt wird, einer breiten Ebene, an welche sich der »Piedmont Belt« (das Fußhügelland) anschließt mit unterer Grenze an der »Fall-Linie«, welche über Philadelphia und Washington bis Columbia in Süd-Carolina streichend, die beginnenden Stromschnellen der Flüsse anzeigt, welche der Schiffahrt hier ein natürliches Ende bereiteten.

Die mächtige Entwicklung des Kordillerensystems im Westen, vom Behrings-Meer bis nach Panama, ist der bekannteste Zug im Aufbau des nordamerikanischen Kontinents, auch sein Streichen so nahe der Küste des Stillen Meeres, daß die Mehrzahl der westwärts gehenden Flüsse kurzen Lauf und wenig Sammelfläche haben, mit alleiniger Ausnahme des in den Puget Sund mündenden Columbia-Flusses. Langsam erhebt sich am Unterlauf des Arkansas und Missouri das Land auf die Prärien tragende Höhenstufe von 500—1000 bis...
1500 m, dann steigt das Hochgebirge an; dasselbe Bild haben wir am Saska-
chewan, Athabasca- und Peace River.

Da diese beiden Hauptkerne des Kontinents in eigener, voneinander sehr
abweichender Geschichte sich entwickelt und erst im Tertiär zum jetzigen Nord-
amerika sich vereinigt haben, so liegt darin auch die floristische Verschieden-
heit begründet, welche die Gebirge und Küsten auf der atlantischen wie auf
der pacifischen Seite so hervorragend zeigen. Der Golf von Mexiko ist der
eingeschränkte Rest eines großen inneren Sees zwischen der Appalachen- und
der Kordilleren-Bergmasse. Die hohen Gebirge der Antillen schließen sich in
ihrer Richtung an das Kordillerensystem südlich von Tehuantepec an, welches
ostwärts streichend die Halbinsel Yucatan durchsetzt.

1. Nördliches Gebiet.

A. Gemäß dem vorhin besprochenen Grundcharakter baut sich die nörd-
liche Masse desselben auf: a) im Osten aus dem Laurentischen Plateau,
welches, die Hudson-Bai von drei Seiten umfassend, die größere Hälfte Canadas
mit Urgneis, wechsellagernden Graniten und den sedimentären huronischen
Schichten bedeckt, in der Diluvialperiode ganz eisbedeckt war, und ein weliges
Hügelland meist in der Höhestufe 200—500 m darstellt; die nördlichen Tundren
der "Barren grounds"; — b) von der Westgrenze des laurentischen Plateaus
am Winnipeg-See bis zum Ostfuß der Rocky Mts. aus einer inneren Hoch-
ebene von Kreide- und Tertiär-Formationen gebildet, welche die Ausläufer der
südlicheren Prärien tragen (S. 96), umgürtet von nördischen Wäldern; — c) aus
dem nördlichen Kordillerensystem, welches die kanadischen Rocky Mts.,
eine innere Hochebene und dann die pacifische Küstenkette mit im Westen
tief eingeschnittenen Tälern bildet. Nördlich vom Kontinent liegt der mächtig
ausgedehnte arktische Archipel, aus alten Formationen vom Silur bis Karbon
gebildet, von einem undurchdringlichen Wall von Packeis umgeben, zu dessen
Pflanzengeographie dieses Werk keinen neuen Beitrag bringt 1). HARSHIBERGER
gedenkt des mächtigen Mackenzie River, des längsten Stromlaufes in
Nordamerika nach dem Mississippi (S. 96), der Halbinsel Labrador (S. 97), der
Insel Neu-Fundland, dann des Distrikts von Alaska am Beringsmeer, an der
Küste aus Tundra bestehend, mit dem hier mündenden großen Strom Yukon
(S. 98, 99). Leider sind in dem klimatischen Kapitel von Canada (S. 135—138)
über diese nördlichen Distrikte keine speziellen Stationsnachweise enthalten,
indem die kälteste Station, White River in Ontario, im Januar mittlere Minima
von —25° C, zusammen mit mittleren Maximis von kaum —10° C aufweist,
Monatsmittel etwa —17° C.

Die bisher besprochenen Territorien sind auf der farbigen Karte als die
der Arktischen Zone (Tundra und verwandte Formationen, Farbe braun-

1) Die Pflanzengeographie der Arktis wird später von Dr. PORSILD und Dr. OSTENFELD ge-
meinsam bearbeitet werden; das arktische Europa mit Nowaja Semilja ist bei Dr. R. POHLE in
Bearbeitung für die "Vegetation der Erde".

Es schildert die Senke der Rocky Mts. aus dem Quellgebiet des Athabasca unter 53° N von 2450 m Höhe zu niederer Ketten (1000 m) unter 62° N, wo sie längs des Mackenzie nirgends mehr ewigen Schnee tragen, und hier beginnen dann an ihrem Ostfuße unmittelbar (ohne Zwischenschaltung von Prärien) die großen, bis zum Atlantischen Ozean reichenden Tiefebene; durch eine enorme Menge von Landseen erscheinen sie so sehr zerküpfelt, daß die Fläche von süßem Wasser hier größer erscheint als die des trocknen Bodens. Dabei taut aber der Boden unter 62° N (Fort Simpson) im Sommer über 3 m tief auf und der Eisboden bildet eine nur etwa 2 m dicke Schicht. Diese Verhältnisse ändern sich bedeutend gegen die Hudson-Bai hin, welche mit ihren Eismassen eine ständige Kältequelle, zumal bei Beginn des Frühlings, darstellt. Daher steigen auch alle Vegetationsgrenzen von der südlichen Umrandung der Hudson-Bai gegen das Mündungsgebiet des Mackenzie um etwa 12 Breitengrade an, so daß die Waldgrenze hier etwa am Polarkreise vom Bereich der endlosen arktischen Tundren abgelöst wird. Auf der dünnen Erdschicht über dem granitischen Detritus gedeihen besonders begünstigt die Strauchflechten (Corticium tristis, Bryopogon ochroleucum, Cetraria cucullata: alle drei auch im Riesengebirge Deutschlands!), daneben die gewöhnliche C. islandica u. a.), bald für sich allein, bald mit Zwergsträuchern vergesellschaftet, deren kurze Zweige kaum aus dem Lichenen-Teppich hervorragen: diese Zwergsträucher scheinen dieselben Arten zu sein, wie die S. 348 für Alaska genannten, nur Kalmia glauca kommt hinzu. — Außer diesen Flechtentundren entwickeln sich an feuchteren Gehängen Staudenmatten von Saxifraga-, Pedicularis-, Primula-Arten, es finden sich Sanddünen ähnlich wie die S. 350, Abs. 2 geschilderten mit Lathyrus maritimus, zu dem Polemonium coerulescens und Dodecatheon kommt,

Fundland beginnend, Ontario und Manitoba in der Mitte, Alberta ist die Land-
schaft am Westfuß der Rocky Mts., 3 Stationen in Britisch-Columbia machen
den Schluß und zeichnen sich durch milde Winter (Mittel des Januar schwankend
zwischen −5° C. und +5° C.) neben kühlern Sommeraus (JuliMittel 11° C.
bis 19° C.), während die mittleren Maxima des Juli in dem ganzen Gürtel
zwischen 17° und 26° C. liegen. Beachtenswert sind bis in den Mai hinein
die bedeutenden Schneetiefe.

Die geographische Übersicht hebt unter »Pacific Range« zunächst die
hohen Küstengipfel in Alaska hervor (S. 99) und schließt eine Skizze der
kanadischen Rocky Mts. an, deren drei nebeneinander liegende Ketten
zwischen 49° und 52° N. skizziert werden (S. 100). Dieser Gegend entstammt
das Titelbild mit dem Mt. Stephen; der Kicking Horse-Paß liegt etwa unter
51°/5° N. in 1600 m Höhe. Die floristische Schilderung dieses nördlichen Teiles
der »Rocky Mountain Region« geschieht S. 546—551 (Northern Dominion-
District) unter Hinweis auf die früher (S. 244—250) in Listen zusammengestellten
Bäume und Sträucher. Nadelholzwald mit Pseudotsuga, Tsuga und Thuja,
eine subalpine Formation von Abies subalpina und oberhalb 1830 m die Hoch-
egbirgsformationen mit Ranunculus Eschscholtzii, Dryas und Sibbaldia (S. 551)
sind das am meisten hervorzuhebende.

Die Gebiete des Fraser River und des oberen Columbia (S. 100) führen
dann zu der Küsten- oder Cascadenkette über, welche mit der sich an-
schließenden Niederung in die nach dem Flusse benannte südlische Columbia-
region und die mit der Nordhälfte der Vancouverinsel beginnende Sitka-
region geteilt ist; die letztere endet erst nördlich vom 60° N. an den
eisbedeckten Hochbergen von Alaska, und von diesem interessanten Gebiete
gibt Tafel XIV mit dem Davidsongletscher eine hübsche Ansicht (S. 587), wo
der Küstenwald aus den herrschenden Coniferen dieser Region die Gletscher-
zungen umsäumt. In dem mit diesem Bilde beginnenden Kapitel 4 sind die
floristischen Einzelheiten über die genannten Regionen (S. 587, 592) zu finden,
welche aus Britisch-Columbia zum Staate Washington südlich der Vancouver-
insel überführen (siehe unten, mittleres Gebiet, pacifische Sektion).

Zum Schluß (S. 100—102) geht die geographische Übersicht wieder ost-
wärts zurückkehrend auf das Große Seengebiet über und verweilt bei dem
einzigartigen Stromgebiet des St. Lorenz, dessen Tal im Norden von dem
Laurentischen Hügelland umgeben wird, 300 bis gegen 500 m hoch mit ein-
zellen 700 m überschreitenden Erhebungen. Südlich vom St. Lorenz haben
wir auch noch in Canada die Ausläufer des Appalachen-Bergsystems, welches
die Fortsetzung der »Green Mts.« von Vermont bildet. — So beginnt mit
diesen Territorien in Kapitel II (Atlantische Sektion der Temperierten Zone
von Nordamerika) die spezielle floristische Schilderung derselben. Sie teilt die
breit gedehnte Region des St. Lorenz und der Großen Seen (S. 360) in
einen a) Maritimen Distrikt mit dem Bezirk Neu-Braunschweig (S. 361),
schildert darunter die bemerkenswerte nordischen Floren der höheren Berge in
Neu-England, des Mt. Katahdin in. Maine (1590 m) mit Liste der alpinen

Hier knüpft nun die floristische Bearbeitung mit dem Distrikt der Großen Seen an, welchen Harshberger einteilt in den a) Interlacustrinen Bezirk (S. 390—403), dessen Süßwasser- und Uferformationen, z. B. in Michigan, ein hervorragendes Interesse bieten, und in b) den Bezirk der Adirondacks (S. 403 bis 408). Dieses Gebirge läßt sich in Höhe, Ausdehnung und auch noch einigermaßen im borealen Florencharakter mit den schlesisch-böhmischen Südeten vergleichen, hat an den Rändern und im Inneren tief eingeschnittene Seen (Tafel VIII, S. 404), deren Steilufer über einem Gürtel strauchiger Erlen mit dem Mengwald von Weißbirke, P. Strobus, höher Tsuga, Betula lutea usw. bedeckt sind, während die Fichtenformation von Picea rubra mit Tannen und Sorbus americana die Höhenstufe des Waldes bildet. Die nicht umfangreichen nackten Gipfelfelsen über 1550 m tragen neben Mooren mit Kalmit und Ledum eine reiche Flora (S. 406), darunter prachtvolle Polster der Diapensia lapponica (Tafel II auf S. 188). Zum Vergleich sei bemerkt, daß die Waldgrenze auf Mt. Washington bei 1220 m Höhe liegt; auf sie folgt aber zunächst ein Krummholz aus verkrüppelten Fichten (Picea nigra) mit Alnus viridis; auf Mt. Tahawus der Adirondacks besteht es aus Abies balsamea; Cornus canadensis (Tafel II unten) ist in der mittleren und oberen Nadelwaldregion aller dieser Gebirge eine in dichten Massen vorkommende, im Hochsommer prächtig in roten Früchten prangende Staude.

Es folgt nun die Küstenregion der Atlantic und des Golfes, eine mächtige, in Form eines Hufeisens die Appalachen umlagernde Vegetationsregion, welche von Rhode Island und New-Jersey südwest bis zur Tropenregion von Florida reicht und dann im südlichen Alabama, Louisiana, Missouri und Arkansas bis über St. Louis nach Norden hinauf zum Ohio reicht. Die gelbgrüne Schraffierung auf der Karte soll sie als ein subtropisches, von Xerophilen durchsetztes Gebiet kennzeichnen, und das sind besonders die Bewohner der Pine Barrens in Verbindung mit Salzstrand und Dünen an der Meeresküste (S. 408—400).

Diese auf 52 S. ausführlich geschilderte Region, welche in dieser Weise nebst der folgenden (Piedmont-Appalachian-Ozark) in einer für die nordamerikanische Kartographie neuen Weise die östliche und westliche Abdachung des Appalachenystems um dessen langgestreckte Achse zusammenfaßt, zerfällt bei
Kurzgefaßte deutsche Inhaltsübersicht.

XXV

Ausführlich werden die Salzstrand- und Dünenformationen geschildert, welche mit Kiefernwäldern in Anschluß stehen, worüber Tafel IV (S. 222) eine sehr gute landschaftliche Vorstellung gibt, ebenso, was einzelne Baumformen anbetrifft, Fig. 24 auf S. 417 und Fig. 25 auf S. 418; die dichten Buschwälder im Andrängen gegen eine Sanddüne, oder umgekehrt, erläutert Fig. 23 auf S. 414. Eine Menge interessanter, aus echt atlantisch-nordamerikanischen Arten bestehender Assoziationen werden aufgeführt, welche leicht an ihren Stichworten in Sperrdruck aufzufinden sind. Die Pine Barren-Formation in ihrer wechselnden Zusammensetzung (siehe unten S. LVI in dem den Formationen gewidmeten Abschnitt dieses Auszuges) beansprucht naturnäher das Hauptinteresse, zumal sie der Region den Namen gegeben hat (siehe S. 420, 434, 446, 448, 459).

Dazu kommen aber zumal im südlichen Teile dieser Region noch die höchst bemerkenswerten Sumpfwaldungen und Beigemische von Palmen, welche gleichfalls in den Illustrationen beredten Ausdruck gefunden haben. Tafel VI (S. 306) zeigt das interessante Gemisch von hochragender Pinus caribaca (eubensis!) mit dem wie die europäische Zwergpalme in Granada erscheinenden Gestrüpp von Serenoa serrulata; vom Arkansas Louisiana-Distrikt zeigt Fig. 5 (S. 213) die Sumpfwaldungen der Sumpfeyresse: Taxodium distichum, mit Nyssa gemischt, zu denen S. 454 die ausführliche Beschreibung gegeben ist; eine ähnliche Formation, in welcher aber Laubbäume (Nyssa, Acer, Fraxinus, Quercus phellos mit Liquidambar) überwiegen, schildert S. 439 mit Tafel X; endlich ist die höchste subtropische Entwicklung dieses atlantischen und Golf-Charakters in der Palmettoformation zu suchen, welche bei Kap Fear, Nord-Carolina, ihre Nordgrenze erreicht und von dieser Stelle in Tafel IX (S. 433) eine Illustration gefunden hat.

Das Studium der farbigen Karte lehrt, daß eine Menge von wichtigen Vegetationslinien grade in dieser Vegetationsregion verläuft, welche ja auch die Ausdehnung zwischen 30° N und 40° N noch beiderseits überschreitet. Gegenüber den Versuchen, hier eine Einteilung der Regionen nach einzelnen solcher Charakterarten, besonders der Palmen, zu machen, hat HARSHBERGER es vorgezogen, auf andere verbindende Züge in diesem reichen Artgemisch hinzuweisen und die wichtigen Nebenbestandteile mehr beiläufig als Unterscheidungen sekundärer Art aufzuführen: dadurch erhält auch seine pflanzengeographische Hauptkarte eine bestimmte Tendenz. Wie man auch immer kartographische Gebietsabgrenzungen ausführt, sie werden stets daran leiden, daß man einem Prinzip andere Gesichtspunkte unterordnen muß; nur darum kann es sich also handeln, welches Prinzip als das vornehmste zu betonen ist, und darüber kann nur jemand entscheiden, der das Land aus eigener
jahrrelanger Anschauung kennt und viele Vergleiche in weitem Umfange durchgeführt hat.

Für die reiche Waldflora, die diese Region in den Laubwaldformationen außerhalb der Herrschaft von Pinus kennzeichnet, mag auf die S. 456 gegebene Liste vom Wabashtal in Illinois aus dem Inlanddistrikt hingewiesen werden.

Es ist zweckmäßig, zunächst die, die meisten borealen Elemente aus den nördlich um die Großen Seen sich ausbreitenden Territorien einschließenden Bergketten des Appalachen-Distrikts zu charakterisieren, dann erst die atlantische Abdachung folgen zu lassen und zum Schlüβ den Alleghany-Ozarkdistrikt, der schon nach Westen und Nordwesten von den Prärien der »Great Plains« umrandet wird.

Auf den östlichen Ausläufern der Alleghanies in Alabama decken Wälder von *Pinus palustris* die trockenen Felsriimen krystallinischer Gesteine bis 600 m Höhe, um oberwärts durch Eichen und Hickory ersetzt zu werden (S. 493). Die montanen Coniferenwälder aber beginnen höher, auf dem Black Mountain Range unterhalb 1600 m, und bestehen aus *Picea nigra* und *Abies Fraseri* mit Ahorn, Birken, Ebereschen (S. 492); *Veratum, Vaccinium*, *Menziesia, Trillium*, *Clintonia* finden sich mit *Rhododendron catawbiense* zusammen, während im nördlichen Bezirk *Rhod. maximum* vorherrscht (S. 485).

Piedmontdistrikt (S. 460—473). Die Schilderung hebt zunächst nochmals die Bedeutung der Fall-Linie (s. S. XVII) hervor, welche McGee als eine der am stärksten ausgeprägten physiographischen und kulturellen Linien bezeichnet, da sie die Lage der großen Hauptstädte des Ostens bedingt hat. Dementsprechend zeichnet sich auch die Flora scharf von der der Küstenregion mit ihrem Pinetum ab und gipfelt im Laubwald-Charakter mit reichem Strauch- und Kräutewuchs (S. 461).

Der nördliche Bezirk hält sich besonders an das südöstliche Pennsylvanien am Delaware R. mit Sümpfen und Teichen, Laubwäldern (Abb. S. 467 zeigt den riesigen Wuchs der Liane *Vitis aestivalis*) und der Hemlockformation (S. 469). Der südliche Bezirk hat die Präponderanz mancher neuer Arten voraus (*Magnolia umbrella, Cornus florida* u. a., S. 471); auch die Arten der Eichen wechseln, wie man sich überhaupt hüten muß zu glauben, daß die große Zahl von Eichenarten, die in den europäischen botanischen Gärten nebeneinander aushalten, in gleicher Mannigfaltigkeit in einem einzelnen Territorium zu finden wäre. Es wechseln mit den Eichen (S. 472) auch zum Teile die
Stauden; denn trotz der großen Längenerstreckung des Appalachensystems von den südlichen Neu England-Staaten bis zum mittleren Georgia zeigt sich doch noch zum mindesten noch die Hälfte der Species als beiden Vegetationsregionen gemeinsam (S. 472). So endet die Piedmontflora südwestlich am Tallapoosa- und Coosafluß in Alabama, und eine kleine Liste nennt wichtige Species von entschieden nördlichem Areal, welche hier ihre Südgrenze finden (S. 473).

So beginnt die eingehendere Schilderung mit der Darlegung der floristischen Verhältnisse des Staates Missouri (S. 510), der tatsächlich eine recht interessante Mittelstellung in den vorher genannten Territorialgrenzen einnimmt. Quercus obtusiloba wird als ein Charakterzug für das Ozarkplateau genannt, während manche atlantische Species der Appalachen hier selten werden. So zeigt denn überhaupt die Zusammensetzung der Wälder mit Quercus platanoides und texana neun Fazies an, von denen auch die »Blue Beech« genannte (S. 512) und die »Blue Ash« von Fraxinus quadrangulata auf dem Hügellande, die Ulmen- und Lindenfacies (»Basswood«, Tilia americana) mit Sumpfieichen (Qu. palustris, platanoïdes, macrocarpa) für die Tieflandswälder charakteristisch sind. Sassafras, Juglans cinerea, Betula nigra und Tecomà radicans erreichen hier ihre Westgrenze (S. 513); auch andere Vegetationslinien lassen sich mehr oder weniger bestimmt bezeichnen, wo die Untersuchung des Landes (neuerdings durch Daniels) schon weit genug vorgeschritten ist.

So werden diese Arealstudien bis zum Rio Grande Fluß in Texas ausgedehnt (S. 514) und die Formationen auf nassen und trocknen Felsen, die hier noch einmal von besonderem Interesse sind, hinzugefügt (S. 515).

Die Schilderung der floristischen Verhältnisse in diesen Territorien, — die vielleicht nach meiner Meinung Anspruch auf den Titel eines eigenen Florenreiches haben, welches man dann (mit Zuziehung der nordmexikanischen Hochflächen) bis zu seiner Südgrenze vor den tropischen Elementen das Sonorische Florenreich mit dem von Merriam 1) dafür gebrauchten Titel nennen könnte—,

Die floristische Literatur zu der ganzen, so reich gegliederten Ländermasse westlich vom Mississippi und dem Ozarkdistrikt findet sich für die Rocky Mts. und die inneren xerophytischen Vegetationsregionen unter Bibliography, Sect. IV und V (S. 71—78), für die pazifischen Küstenregionen unter Sect. VI S. 78—82).

In der geographischen und floristischen Durchforschung der nordamerikanischen Union spielt der 100° w. L. eine große Rolle; ganze Florenverzeichnisse, welche eine neue Ära begründen halten, führen die Bezeichnung »westlich vom hundertsten Parallel«. Derselbe schneidet mitten durch Dakota, Nebraska, Kansas und Texas, schneidet dabei auch, wie ein Blick auf Harshbergers Karte zeigt, mitten durch dessen mächtige, im Gelb klar sich heraushebende »Region der Großen Prärie-Ebenen«, welche in ihrer Ausdehnung vom 30° n. Br. bis über den 60° n. Br. eine riesenhafte Vegetationsregion darstellt, wie sich die subarktischen Waldregion in ähnlich weiter Erstreckung über die nordischen Flächen zwischen den ganzen Längengraden vom Yukon bis Neu-Fundland erstreckt.

Diese Prärien liegen in ihrer Abdachung gegen das »Great Valley« auf sehr verschiedener geologischer Unterlage, indem im Norden sehr alte, im Süden sehr junge Schichten sich ablösen. Indem aber unter niedrigen Breiten westwärts von den Ozarkbergen immer ältere Schichten (Tertiär, Kreide) an die Oberfläche treten und unter höheren Breiten immer jüngere, treffen schließlich Schichten gleichen Alters am Fuß der Felseinheit zusammen, und zwar, da das Land im Süden wie im Norden gleichmäßig ansteigt, unter dem 100° w. L. schon auf einem 500 m überall überschreitenden Niveau, das sich bis zum Aufklingen der Schichten am Fuß des eigentlichen Hochgebirges noch um etwa 1000 m, also auf 1500 m Höhe, steigert. Dieses Aufklingen erfolgt in den Staaten Montana, Wyoming und Colorado, und hier liegt also die Grenze
dieser »Great Plains« genannten Prärieregion, welche durch ihren scheinbar ebenen Charakter über das starke Ansteigen nach Westen hinwegtäuscht.

So sind denn die inneren Hochflächen zwischen dem Felsenengebirge und den Küstengebirgen an die beiden erstgenannten Ströme angeschlossen und werden als Columbia Plateau sowie Colorado Plateau (S. 108) charakterisiert; zwischen beiden liegt noch das abflußlose Becken des großen Salzsees von Utah mit der sich an ihn anlehnenden »Great Salt Lake Desert«. Die Schilderung der Küstenketten selbst, voranstehend die Sierra Nevada, bildet hier den Schluß (S. 109—111).

Die weitere Abgrenzung der durch die hohen Gebirgsketten vielfach durcheinander geworfenen und auf ihnen boreale Verbindungen erhaltenden Vegetationsregionen ist hiernach mit einem Blick auf die Karte verständlich: die Region der Rocky Mts. (mit den Black Hills, welche an der Grenze von Dakota gegen Wyoming unter 104° w. L. schon östlicher aufsteigen) zieht fast in der ganzen Länge der Prärieregion von Neu-Mexiko im Süden bis zum 60° n. Br. zum Anschluß an die Tundren in Alaska. Der pacifische Küstenstrich ist in drei Regionen gegliedert, über deren nördlichste, die Sitka region, schon oben (S. XXI) kurz berichtet ist; die mittlere ist die columbiaische Region mit den Durchbrüchen des Fraser R. und Columbia R. von den nördlichen Felsenengebirgen her; die dritte ist die von Californien. Endlich wird die Hauptmasse der eingeschlossenen trocknen Hochflächen (Columbia- und Colorado Plateau) eingenommen von der Vegetationsregion des Großen Bassins mit

Die Prärienregion (S. 516—546) erhält zunächst eingehende floristische Schilderung, erläutert durch die Bilder der Bunch-Grasformation (S. 523), Tafel XII mit den Ansichten der Mesaregion und Salzsümpfe (Artemisia, Euphorbia marginata, S. 533), und der Yucca angustifolia-Steppe (S. 538). Anknüpfend an die im Abschnitt III besprochene Entwicklungsgeschichte in geologischen Zeiträumen geht Harshberger zunächst auf die verschiedenen über die Entstehung der Prärien geäußerten Meinungen ein (S. 516). Ich huldige durchaus der persönlichen Anschauung des Verfassers, daß die Prärie in der Hauptsache sich in sich selbst als Grasland erhält, weil die herrschenden Pflanzen andere, ihren feindlichen Vegetationsformen fern halten; die Entwicklung des Landes war aber dereinst der Besiedlung mit Gräsern günstiger als jeder anderen.

Canyons gesucht sind; auch gedeihen hier Bäume und Büsche nicht nur in den Schluchten, wo sie auch im Sandhügeldistrikt sich finden, sondern auf den Hügeln und Köpfen der Erhebungen selbst, was zu einer nicht unbedeutenden Veränderung der Formationsanordnung führt. Aber auch hier herrschen noch auf weite Flächen die Gräser der Prärien in neuen Facies, nämlich Stipa comata und Agropyrum spicatum (S. 536). Salzsämpfe mit vorherrschender Distichlis spicata sind überall eingestreut (S. 539). Über ihre östlicheren Hauptareale hinweg erreichen hier nicht ganz wenige Holzpflanzen noch äußerste Westgrenzen und zeichnen dadurch die nördlicheren foothills vor den südlicheren aus (S. 543: Ulmus americana, Quercus macrocarpa, Juniperus virginiana u. a.).

Ein besonderes Interesse beansprucht naturgemäß die Vegetationsregion der Rocky Mountains (S. 546—566), an welche der isolierte Bezirk der Black Hills angedockt ist (S. 566—567). Das Titelbild, Tafel I, bietet in Mt. Stephen eine prächtige Ansicht aus dem nördlichen Distrikt, welcher als der Northern Dominion (Canada) bezeichnet wird. Aus dem südlichen, dem Park Mountaindistrikt, zeigt Tafel XIII die merkwürdigen Verhältnisse der Travertine-Ablagerungen mit Nadelwald im Hintergrunde. (Diese Kalkablagerungen zeichnen bestimmte Geiser aus; das Pflanzenleben erlischt erst in den heißen Quellen bei wenigen Gradern unter dem Siedepunkt mit weißfädigen Bakterien, während die grünen Algen am üppigsten bei 40—52° C gedeihen; s. S. 559.)

Es mag bemerkt werden, daß trotz vieler neuerer Forschungen doch noch recht viel in Erforschung der Flora der Rocky Mts. zu tun bleibt, und daß es wenige so gründlich zusammengestellte Sammlungen dafür gibt, wie sie in den letzten Jahren Frederic E. Clements aus Colorado herausgab zur Kenntnis

Norte im SO sich erstreckende gesamte Region immerhin recht verschieden-
artige Territorien in sich begreift, und es kann noch zweifelhaft erscheinen,
dwo die phytogeographisch praktischsten Grenzen zwischen den weiten Wüsten-
steppenregionen, in deren Mitte der Coloradofluß durchbricht, sich ziehen lassen.

Es kommt dazu, daß mannigfache Modifikationen im Wechsel der Jahres-
zeiten vorkommen, von denen vielleicht die Grenzlinien wichtiger Charakterarten
abhängen. So ist im Hochtal des Rio Grande in Neu-Mexiko ein solcher
Wechsel darin angezeigt, daß noch in der Breite von Santa Fé (35—36° N)
der Himmel fast das ganze Jahr hindurch heiter ist, während im südlichen
Teil von Neu-Mexiko im Juli eine bis zum Oktober dauernde Regenzeit ein-
setzt, wodurch die Entwicklung der Steppenpflanzen bis weit in den Herbst
hinein sich verlängert und im August die Hochebenen vielfach in voller Blüten-
pracht angetroffen werden (WISLIZENUS' Exped. 1846—47; Bibliogr. S. 87).

Die 4 Distrikte, in welche das »Große Becken« bei HARSHBERGER zerfällt,
sind der Oregon-Distrikt (den man vielleicht bei seiner inneren Lage zwischen
Bitterroot- und Rocky-Mts. im Osten und den Cascades Range im Westen
zweckmäßiger »Snake River-Distrikt« nennen könnte), der Nevada-Distrikt mit
den um den großen Salzsee gruppierten inneren Steppen (S. 570—574), dann
folgt innerhalb des Areals der Gattung Yucca zunächst der Arizona- Neu-
Mexikodistrikt, der sich ostwärts bis an die Ebenen des westlichen Texas
und südwärts an die Steppenregion von Chihuahua erstreckt (S. 573—584),
schließlich der Mohavedistrikt.

Im Oregon- (Snake R.) Distrikt zeichnet sich das Landschaftsbild durch
Vorherrschen der Sagebrush-Formation von Artemisia tridentata aus, welche
wahrscheinlich 9/10 der Vegetation ausmacht — jene berüchtigte Vegetation,
in der die in ein silbergraues Laub gekleideten Wermutbüsche wie ihre
Gattungsgenossen im Orient den Charakter prägen (S. 569). Von großer Be-
deutung ist des Fehlen sowohl südlicher als östlicher Charakterarten: Larrea,
der Kreosotbrauch, fehlt, ebenso die Prärieegräser Buchholz dactyloides und
Bonteloua oligostachya. Feuchte Wiesen werden nach dem massigen Vorkommen
von Camassia esculenta bezeichnet, auf alkalischem Boden in den Tälern wird
das Wermutgesträuch vom »Greasewood«, Sarcobatus vermiculatus, abgelöst. —
Alle diese Arten besiedeln auch den Nevada-Distrikt, welcher außer Nevada
und Utah noch Teile von Idaho in sich schließt; ausgedehnte Territorien des-
selben liegen bedeutend über der 1500 m Linie und die oft stark salzhaltigen
Böden geben am meisten ausdauernden Compositen Raum, unter ihnen wiederum
Artemisien. In 3350 m Höhe herrscht Charakterflora von 7 Gehölzen (S. 571).
Von großem Interesse sind die alpinen Formationen mit z. T. weit verbreiteten
arktisch-borealen Arten (Carex, Luzula, Lloydia usw. S. 573).

Südöstlich von dem berühmten Canyon der Colorado erstreckt sich der
Distrikt von Arizona und Neu-Mexiko mit einer Menge von Bergketten
und Gipfeln, welche durchaus Rocky Mts.-Flora besitzen; die Tafelländer oder
Mesas verdanken niedrigen Mezquitebäumen, Dornsträuchern, Yucca und großen
Cereus ihre Physiognomie, und an den niedersten Berghängen erinnern harte

besetzt sind: *Pinus albicaulis* am Mt. Shasta, Textbild S. 284; und endlich zeigt das Textbild Fig. 29 (S. 610) uns in *Cupressus macrocarpa* eine endemische Nadelholzarz von warm temperiertem Klimacharakter, welche den californischen Küstenstrich bewohnt. So gibt also schon die Betrachtung dieser Figuren uns Aufschluß über die Grundzüge der hier herrschenden Vegetationsbedingungen.

Nun folgt der mächtige Distrikt der Sierra Nevada mit Anschluß der Shastakette und der südlich vom Pitt River Gap gelegenen Berge (S. 613), ausgezeichnet durch die bestimmte Höhenstufen charakterisierenden Bestände der Pinus ponderosa, Abies shastensis (S. 614), über dieser letzteren die Pinus albicaulis bis zur Baumgrenze (S. 615, und Fig. 7 auf S. 284), dann in der Sierra selbst in niederer Höhenstufe Strauchbestände von Fremontia, Quercus dumosa und vielen anderen (S. 617), Pinus ponderosa 800—2000 m, Sequoia gigantea 1500—2400 m (S. 617), und alle diese werden dann durch andere Arten abgelöst, welche subalpine Waldgürtel bilden (S. 619). Die Arten der alpinen Formationen sind in Listen S. 254—259, im Vergleich mit den Rocky Mts. schon vorher S. 195—197 zusammengestellt.

Hierunter faßt HARSHBERGER die heißen Xerophytenlandschaften von Mexiko, die Tropenküsten von Mexiko und die zentralamerikanischen Staaten bis Panama zusammen, in denen die Kordillerenkette ausläuft. Durch diese und die Hochflächen mit dem sonorischen Florenelement zeigt naturgemäß besonders Mexiko einen innigen Anschluß an die Vegetationsregionen der südwestlichen
Unionsstaaten, während die amerikanische Tropenflora, welche Zentralamerika und Westindien innig miteinander verbindet, nur an der Südspitze von Florida Anschluß an die atlantischen Golfstaaten der Union erhält. Es ist klar, daß die Behandlung des überreichen Stoffes hier eine noch mehr gedrängte werden mußte, um den Charakter des "Survey" aufrecht zu erhalten; da die gemäßigte und subtropische Zone von Canada und den Vereinigten Staaten am besten durchforscht ist und das Hauptinteresse des Verfassers auf sich lenkte, so mußten bei den Schilderungen der Tropenzone mancherlei Einzelheiten fortfallen (siehe Anm. auf S. 657).

So erhebt sich über den niedrig sandigen Küsten in Terrassen aufsteigend ein mächtiges Hochplateau, über welches sich schneebedeckte Vulkane bis zu 5580 m erheben (S. 113); die Umrundung der inneren Hochfläche fällt zwischen 18—20° n. Br. hauptsächlich nach Süden steil ab mit einer gegen den Stillen Ozean vorgelagerten Küstenkette, außerdem aber mit einer Wendung nach Norden in Puebla gegen die Golfküste der Provinz Vera Cruz, und von diesen imposantesten Ketten und Vulkangebieten verlaufen dann kettenförmige Sierras sowohl gegen den Rio Grande del Norte hin, als auch parallel zum Golf von Californien gegen die Provinz Sonora hin (Sierra Madre Occidental). Was die östliche Kette an Küstenland übrig läßt, gehört zu der obengenannten "Mexikanischen Golfregion"; was die westliche Kette übrig läßt, gehört einschließlich des weit aus dem Innern kommenden Rio Grande de Santiago-Tales in der Provinz Jalisco zu der Jalisco-Region, welche von Harshberger auf die südliche Halbinsel Californien übertretend abgegrenzt ist. Nordwestwärts schließt sich an diese dürre Region die Wüstensteppenregion von Sonora, und das lang-

Von den fünf Vegetationsregionen, in welche das mexikanische Sub tropengebiet nach Harshekergs Karte zerfällt, schließen sich naturgemäß die drei Gebirgsregionen der westlichen, der östlichen Sierra Madre und der Vereinigten Kordillerenkette im südlichen Mexiko an die Vegetationsverhältnisse der südlichen Rocky Mts., bez. der südlichen Sierra Nevada und San Jacinto Mts. an, während die beiden Wüstensteppenregionen von Sonora und Chihuahua das großartige Bild der westlich-nordamerikanischen Xerophytenflora vervollständigen, indem sie zumal von Vegetationsformen wie Opuntia, Cereus, Mamillaria, Echinocactus, Yucca, Larrea und den Dornsträuchern der Legumnosen die prächtigsten Typen aufweisen. Gleichzeitig treten hier auch in den an Grundwasser reicheren Rinnsalen xerophytische Palmen auf von eigenartig endemischem Charakter, wenn sie auch — wie in den atlantischen Südstaaten — gleichfalls den Sabaleen angehören. Diese Elementen sind auch schon im Abschn. II ausführliche Besprechungen (Yuccae: S. 285, Cactae: S. 296) und Abbildungen gewidmet, so Fig. 8 Yucca Treceuleana (S. 286), Fig. 9 Cereus pecten aboriginum (S. 297), Fig. 19 Dasylirion acrotrichum (S. 335) und Fig. 20 Beschoteria yuccoides (S. 335), zu denen der Text S. 293—296 nachzulesen ist, während in dem die Formationen schildernden Abschn. IV noch die beiden
Landschaftsbilder Fig. 30 *Cephalocereus senilis* (S. 644) und Fig. 31 *Cereus ge-
metrizans* (S. 648) für die ungeheuer formenreichen Kaktusgewächse dazu kommen.
Erstreckung an der gegenüber liegenden Festlandsküste bis zu der auf der Karte als Demarkationslinie benutzten Nordgrenze der Mangroven.
Sie zerfällt demgemäß in den nördlichen Yumandistrikt (S. 634), in den
Sinaloadistrikt zwischen Sierra Madre und Golf von Kalifornien (636), und in
den Distrikt von Nieder-Kalifornien einschließlich der Inseln (S. 638). Die For-
mationen gliedern sich in die der Wüstensteppe mit offenen Hainen und Ge-
büschen (Chaparral), in die der sandigen Wüsten, der eingeschnittenen Canyons,
Dünen und Deltabildungen. In der Gilawüste des nördlichen Distrikt (112°
bis 114° w. L.) ist schon durch EMORY i. J. 1848 die fast allgemeine Verbrei-
tung des hohen, wie ein Koloß in die Landschaft ragenden *Cereus giganteus*
bekannt geworden, den die Eingeborenen Pitahaya nennen; seine Stammhöhe
beträgt 8—20 m, Durchmesser bis fast 2 m, Früchte eßbar. (Farbiges Land-
schaftsbild in WHEELERS Report 1878.) —
Die Chihuahua-Wüstensteppenregion (S. 643—648) zeigt den Buschtypus der Chaparralformation besonders reich entwickelt, welche diese Region
mit den Prärien im südwestlichen Texas verbindet. Mimoseen und Caesalpini-
nieen mit Pappeln, Celtis, Larrea, Fouquiera, auch *Juglans rupelstris*, sind die
Hauptbestandteile. Neben Yucca wird hier besonders *Agave heteracantha* auf
steinigen Abhängen bedeutungsvoll. Die *Yucca-, Cacteae-, Compositae*-Arten
von genereller Bedeutung werden in Listen aufgeführt (S. 646—647).
Die westliche Sierra Madre (S. 640—643) steht im Gegensatz zum mexi-
kanischen Hochplateau durch das Zurücktreten sukkulenter Gewächsformen und
das Vortreten eigener Kiefern-Eichen-Bergwälder in 2150—3000 m Erhebung;
viele Täler haben eine Grasdecke mit Agave, Amaryllis und Hochstauden wie
Helianthus, deren Bestand als Parkformation bezeichnet wird. Bis nach Arizona
hinein erstreckt sich auf den Chiricahuabergen dieser mexikanische Florencharakter
in einer Anzahl von Nadel- und Laubhölzern. — Wenig genaue Florenaufnahmen
sind von der östlichen Sierra Madre zu uns gekommen (S. 649—650), für welche
einige Skizzen aus der Provinz Nueva Leon südlich Monterey (25°15', n. Br.) ein-
treten; hier liegt an den regenreichen Hängen die Nordgrenze der *Pinus montezumae*,
und dichte Wälder von *Carya myristiciformis* schließen jede andere Baumart aus.
Die Vereinigte Kordillerenregion (S. 650—656) hat ihren pflanzen-
geographisch interessanten Zug durch die Einschaltung der Kette berühmter
vulkanischer Piks erhalten, deren Verbindungslinie senkrecht die Strichrichtung
der beiden Sierras durchsetzt und demnach den Golf mit der Pacificischen Ab-
dachung durch einen Querriegel verbindet. Die Täler liegen in bedeutender
Höhe (Toluca als das höchste 2600 m), das von der Stadt Mexiko hat durch
die Kultur vieler Jahrhunderte seine ursprüngliche Vegetation eingebüßt. —

So knüpft denn die geographische Skizze des Landes (S. 116–121) an diese Fortsetzung der Kordillere an, in der mehrere Gipfel nahe an 4000 m, und einer sogar 4210 m Höhe erreichen, und bespricht die Gliederung der einzelnen Republiken Guatemala, Honduras, San Salvador, Nicaragua, welche zu einer zentralamerikanischen Provinz, der Guatemalaregion, zusammengefaßt werden, auf welche dann schließlich Costa Rica und Panama als Bestandteile der südamerikanischen Florenprovinz mit dem Namen der Costa Rica-region folgen (S. 119). Schon in der geographischen Übersicht wird zur Erklärung des Florencharakters der Gegenwart, wie er sich in der regionalen Einteilung ausdrücken soll, auf die Entwicklungsgeschichte des Landes, zumal auf die Bildung des Karaibischen Meeres in verschiedenen Perioden hingewiesen. Wie Fig. 2 (S. 172) zeigt, brach zum Schluß der Kreide- und Beginn der Tertiärperiode eine Lücke,

1) Siehe KARSTEN u. SCHENCK, Vegetationsbilder V. Reihe, S. Taf. 46–51.
bezeichnet mit den Ziffern 5—5, in den schmalen heutigen Landstreifen ein, welche das vorher breit über die Antillen mit Mexiko verbundene Südamerika isolierte. Fig. 3 (S. 179) zeigt das Karibische Meer abgesperrt durch die mit 3—3 bezeichnete Landbrücke im späteren Miocän, Fig. 4 (S. 206) das der Gegenwart am nächsten kommende Stadium; vergleiche dazu HARKSBERGERS Text S. 119, und die Idee der sich im spitzen Winkel kreuzenden Richtungen der südamerikanischen Anden und der nordamerikanischen Kordilleren (Rocky Mts.), deren Verlängerung südwarts in den tiefen Ozean westlich von Südamerika fallen würde, S. 120.

Das Klima von Zentralamerika ist für die drei Staaten Guatemala (S. 153), Nicaragua (S. 154), Costa Rica (S. 157) und Panama (S. 159) in genügender Ausführlichkeit mitgeteilt; besonders wertvoll erscheint (S. 154) der Vergleich von sechs Stationen in Guatemala zwischen Küste und 2350 m Höhe mit den Monatsmitteln in Celsiusgraden; das oberste Bergklima mit 10\(^{1/2}\)° C. Januar- und 17° C. Mai- und Junimittel ist ein wundervoll gemäßigtes.

An klimatische Fragen knüpft auch HARKSBERGER (S. 656) seine speziellen floristischen Schilderungen an, welche die schon vorhin genannten Regionen vom westlichen Mexiko an bis zur Region von Costa Rica der Reihe nach schildern. Die tropische Waldformation steht hier im Vordergrund des Interesses (S. 661, 664, 666, 669); Fig. 32 (S. 663) zeigt einen Palmenwald. Die Guatemalaregion (S. 663) wird als ein eigener Abschnitt, als ein Zwischen-glied zwischen der mexikanischen und der sich an Südamerika anschließenden costarikanischen bezeichnet, weil die mexikanischen Elemente der Wüstensteppen hier fehlen, während manche südamerikanische Tropenelemente das südliche Mexiko nicht mehr erreichen; endlich ist die Bergflora von Mexiko und Zentralamerika erheblich verschieden.

Die Savannen hat schon M. Wagner auf seinen Forschungsreisen 1857—59 als ein besonderes Merkmal des tropischen Nordamerikas zwischen Panama und der mexikanischen Provinz Chiapas festgestellt (Bonplandia 1860, S. 379), ausgerüstet mit Savannenwäldern aus lichtfreundlichen Bäumen und Sträuchern, die eine langanhaltende Dürre ertragen, mit *Duranta Plumieri*, *Davilla lucida* und *Curatella americana*. Denn an der pazifischen Seite des tropischen Nordamerikas herrscht vom Dezember bis April Trockenheit, während die Karibische Seite vom Nordost-Passat andauernde Regen erhält.

4. Westindisches Gebiet der amerikanischen Tropenzone.

Die Region der Bermudainseln weit nördlich im Ozean, doch im Bereich des Golfstromes gelegen, schließt die Aufzählung der einzelnen Territorien (S. 701—704).

Die Florenelemente und ihre Ausbreitung in Nordamerika.

Das Studium der Textfiguren 1—4 zum 1. bis 3. Kapitel von Abschn. III wird auf rasche Weise in die Florengeschichte Nordamerikas einführen; natürlich ist dabei zu berücksichtigen, daß die den Florenelementen gegebenen Signaturen in ihrer Allgemeinheit und geographischen Umgrenzung für die früheren Erdperioden theoretischen Anschauungen mit paläontologischem Untergrunde entsprungen sind, daß sie erst für das Postglazial den vollen Boden der Tatsachen gewinnen können, und daß daher nach dieser Richtung hin erst die Fig. 3 (S. 179) und besonders Fig. 4 (S. 206), deren eingesetzte Signaturen sich auf die Kenntnis der heutigen Florenverbreitung stützen, aus dem theoretischen Rahmen in denjenigen vollwichtiger Erfahrung herübertreten.

Die untere Kreideperiode zeigt gestützt auf paläontologische Funde — den gleichen Generaltypus von Coniferenvegetation über den Kontinent bis in tropische Breiten (S. 170, Fig. 1). Nun aber beginnt durch ozeanische Verbindung vom mexikanischen Golf längs durch den Kontinent, etwa entlang den heutigen Kordilleren, bis zum heutigen Eismeer eine Trennung des atlantischen und pacifischen Florenelementes (Signatur 1 und 2, in Fig. 2 auf S. 172), während zwischen Zentralamerika, den Antillen und Südamerika noch wechselnde Landverbindungen herrschten, und zwar zu einer Periode, in welcher nachgewiesenermaßen überall in den borealen Florenreichen eine außerordentlich starke Entwicklung neuer Formen Platz gegriffen hatte.

Die Differenzierung der Flora nimmt zu, die Tropenflora der Antillen wird selbständiger, der Zusammenhang zwischen Nord- und Südamerika südlich von 10° N geht auf und nieder (Fig. 3, S. 179), der Unterschied zwischen atlantischer und pacifischer Flora hebt sich stärker heraus (S. 178).

So, wie hier gezeigt, wird also in den jüngeren Perioden die heutige Verbreitung der Arten an die alten geologischen Entwicklungszweisen anzulehnen versucht, Listen solcher Arten, die als Relikt-Endemismen gelten können, werden mitgeteilt, dazu die der pleistocänen Flora (S. 185—187).

Hier ist es nun am Platz, die developmentsgeschichtlichen Fragen und das sich aus ihnen ergebende Gerippe der Flora wiederum mit der im Abschn. IV enthaltenen breiteren Formationsschilderung vereinigt zu denken, weshalb ich die wichtigsten Kapitel des letzten Abschnitts hier in Seitenzahlen mit angebe.

Es steckt die arktische Flora als herrschende Tundraformation in den Schilderungen von Kap. 1 (S. 346—350) und in den subarktischen Mooren (S. 353—355, 358—360). Mit abnehmender geographischer Breite stellen sich die arktischen Glazialrelikte auf immer größere Höhe ein, welche in Canada

Waldelemente. Habe ich so an der Hand des »Survey« auf die Arealstudien im boreal-alpinen Florenelement hinweisen können, zu denen derselbe direkt durch Verbindung der im Abschn. III und IV getrennt behandelten Gesichtspunkte einladet — und es war notwendig für die klare Disposition, dieselben getrennt zu behandeln — so liegt es fast noch näher, die entwicklungsgeschichtlichen Prinzipien an den im Abschn. IV so eingehend behandelten Waldeformationen zu verfolgen.

Die Waldespracht von Nordamerika ist oft mit Begeisterung behandelt; sie liegt dem Mitteleuropäer im Bereich großer Gärten durch die vielen Repräsentanten unserer Kultur, welche im Freien aushalten, in schönen Stichproben vor Augen; sie ist zur pflanzengeographischen Gliederung von C. S. SARGENT benutzt worden mit einer Karte, welche die berühmte geographische Anstalt von *PERTHES-Gotha* veröffentlichte und SCHIMPER noch einmal seiner »Pflanzengeographie auf physiolog. Grundlage« beigab (Karte 4, 1898); seit MICHAUX' Zeiten haben sich viele Reisende, auch Deutsche, mit dem nordamerikanischen Walde beschäftigt, und Prof. MAYR hat ihm in jüngerer Zeit ein sehr beachtens-
wertes Buch gewidmet, welches — nebenbei gesagt — merkwürdigerweise in keiner der großen Philadelphia-Bibliotheken zu finden ist.

Über die in Fig. 4 recht klar zutage tretenden Entwicklungszentren der nordamerikanischen Flora hat HARSHBERGER im Januar 1905 in den Proceedings of the Academy of Natural Sciences, Philadelphia, die Grundlinien veröffentlicht, welche der Survey nur weiter ausführt. HARSHBERGER setzt voraus, daß bei der frühzeitig angedeuteten Trennung Nordamerikas in eine östliche und eine westliche Sektion vielleicht schon im Tertiär der Laubwald im Osten, der Nadelwald im Westen prädominierte, und daß dann nach dem Rückzuge des prächtigen Miocänwaldes mit Sequoia, Cinnamomum und Palmen von Grönland bis zum Mississippibacken am Schlusse der Eiszeit aus dessen Resten eine neue, der Vorzeit in den Typen entsprechende Neubesiedlung sowohl vom Osten als vom Westen ausging. Die fünf großen postglacialen Ausbreitungsgebiete Nordamerikas umfassen demnach den Laubwald des Ostens, die Prärie flora des Innern, den großen Coniferenwald des pazifischen Westens, die xerophytische Wüstensteppenflora des mexikanischen Tafellandes, endlich Anteile der südamerikanischen Tropenflora.

Aus diesen fünf Zentren sind im »Survey« insofern sieben geworden, als erstens die arktische Flora auch nach ihrer heutigen Beschränkung als eigenes Element mitzuzählen ist, und zweitens die Tropenflora in zwei Sondergebiete (Festland und Antillen) zerfällt wurde.

Den Charakter solcher Entwicklungszentren findet HARSHBERGER in der Ansiedelung daselbst der allerverschiedenartigsten Formen eines bestimmten Typus, (»location of the greatest differentiation of type«), im größten Reichtum daselbst an herrschenden Individuen dieses Typus, in der Zwischenmischung von besonderen endemischen Arten, und in der Einheitlichkeit und in der Konvergenz der Verbreitungsrichtungen nach diesem Zentrum hin.

Die Zahl der ökologisch gut unterscheidbaren hauptsächlichen Waldformationen ist naturgemäß noch größer, als sie sich aus der eben angegebenen Zahl und Lage der Verbreitungszentren dafür ergeben würde. Denn zunächst zählt die zunächst am Eisrande im Innern des Kontinents um den 40° n. Br. und auf den Bergeshöhen befindlich gewesene boreale Flora, welche dem sich zurückziehenden Eise folgte, unter den Elementen teils selbständig, teils in bedeutenden Mischungen zwischen den mit reichem Endemismus ausgestatteten südlicheren Entwicklungsgebieten mit, außerdem gliedern sich die letzteren
selbst nach klimatisch-edaphischen Grundsätzen in eine größere Zahl selbständig nebeneinander bestehender Formationen. Darnach scheint mir eine Gliederung der nordamerikanischen Waldformationen, auf welche diese Gesichtspunkte zusammen Einfluß nehmen, in der kürzesten Weise so etwa zusammenzufassen zu sein:

Die Sumpfwälder im Küstengebiet mit gleichem Einschlag (S. 213, Fig. 5) bilden in dieser Gruppe eine besondere edaphische Formation.

6. Der Tropenwald und tropische Bergwälder mit dem an Südamerika sich anschließenden Hauptcharakter.

Die nordischen Bergwälder finden ihre Charakterisierung in den Schilderungen von Neu-England (S. 370, 374, 377), Adirondacks (S. 403—405), Piedmont (S. 469, 475, 479), und die Schilderung der am weitesten nach

Die Entwicklungsgeschichte des Rocky Mts.-Systems ist besonders S. 241—243 behandelt von der Zeit an, wo die riesigen (an 3000 m Tiefe haltenden) Kreidesedimente sich hoben, ebenso den Felsenengebirgen parallel die Küstenkette, zwischen ihnen das hohe Tafelland und mächtige Seen, welche auf ein viel feuchteres Klima hindeuten als gegenwärtig hier herrscht, und die demnach eine reiche plio-zeane Waldflora mit Vorlieben der (ursprünglich getrennt für sich entwickelten) westlichen Elemente zur Ausbreitung gelangen ließen. Ein solcher See dehnte sich in Utah aus, ein anderer vom nordwestlichen Nevada bis Californien. Damals lebten noch Arten von *Sequoia, Glyptostrobus, Ficus, Caesalpinia* u. a. jetzt verschwundenen Gattungen hier. Später griff das trockne Klima um sich und ließ die Scheidung zwischen

Es erschien nützlich, die auf ein großes Areal durch viele verschiedene Vegetationsregionen ausgedehnten borealen Waldelemente in ihren z. T. prächtig lokalisierteren Arten zu verfolgen; die übrigen oben (S. LIII) unterschiedenen Waldformationen halten sich naturgemäß viel enger an eins der Haupt-Entwicklungszenren.

Südlich von diesem Walde begegnen wir dann in dem Appalanchendistrikt einer zunehmenden Fülle von frostmempfindlichen Arten, aber deren Hauptmasse ist erst in der die Appalachen umrandenden Golfküstenregion zu suchen,
in den Dünencode von Carolina und südwestlich, wo bis zur Breite von Virginien heraus die immergrüne Quercus virginiana (virgens) als Zwergbaum sich einmischt (S. 431), Sabal Adansonii die Zwergpalmen stark wüchsig vertritt (S. 432), und endlich Sabal Palmetto seine Nordgrenze erreicht (S. 433).

Menge von Eichen, Carya, Nyssa u. a. A. (S. 451). Indem nun in dem Arkansas-
Louisiana-Distrikt der nach den Pine Barrens benannten Region die Longleaf
Pine (P. palustris) fehlt und wieder durch P. mitis ersetzt wird (S. 454), zu-
gleich auch die Arten der Laubgehölze im unteren Alluvial-Lande besonders
reich sind (S. 456–457) und dort die Pinen völlig ersetzen (S. 458), kommt
ein Anschluß an die inneren Territorialformationen heraus. Vielleicht ist diese
Pine Barrens-Region die einzige in der Welt, in der von einigen wenigen sich
ablosenden Arten der Gattung Pinus in regelmäßiger Auseinanderfolge und
Zwischenmischung so viel zusammenhängender Wald gebildet wird.

Sowohl entwicklungs- und faunistisch interessant in Hinsicht auf die sich zu-
sammenfindenden Arten, als auch ökologisch durch die Blattorganisation, sind
die kleinen Waldungen, die sich in der Umrandung der Bergwälder in
den südlichen Rocky Mts., auf dem Coloradoplateau und an den Flanken
der Wahsatch Range finden und die die Karte von SARGENT (SCHIMPERs
Phytogeographie) als ‚Wälder des Binnenlandes‘ bezeichnet. Über den
Buschdickichten von Fouquieria und Larrea mit Mesquite-Bäumen (Prosopis
juliflora, S. 574–576) kommen in den höheren Lagen harte Kiefern (Pinus
edulis) in Gesellschaft von Wacholderarten, Eichen und Rhus aromatic mit
Yucca und Opuntia vor; in den Bachtälern wachsen Pappeln und Platanen als
hygrophile Elemente (S. 579–581), Robinia neomexicana spielt eine große
Rolle. Zwischen der Sierra Nevada und dem Colorado findet sich ein 600 m
breiter Gürtel von Pinus monophylla mit Juniperus utahensis, höher hinauf
P. flexulis und P. aristata (S. 586–587). Eine Liste derjenigen Bäume, welche
nördlich von der mexikanischen Grenze die Territorien zwischen dem Ostfuße
der Rocky Mts. und dem Ostfuße der Sierra Nevada nebst Cascadengebirge
besiedelt haben, in welcher sich also Pinus und Larix mit Quercus, Prosopis,
Yucca und Cereus mischen, findet sich S. 244–245, und die folgenden Seiten
enthalten höchst wichtige Zusammenstellungen der Arealverbreitung von Ge-
hölzen in den nördlichen Felsengebirgen, im Great Basin (S. 250) und in der
dürren Region von Neu-Mexiko und Südcalsifornien (S. 251–253).

Die Elemente der tropischen Waldflora haben ja im allgemeinen in
Nordamerika gut abgeschlossene Ausbreitungsareale angenommen, weil der im
Bereich des nördlichen Wendekreises vorgelagerte Gürtel weitgedehnter xero-
phytischer Formationen nur eine kleine Ausdehnung der Mischungsgebiete
zuläßt. Am bekanntesten ist Florida in seiner von Süden her erfolgten In-
vasion tropischer Elemente; den Bäumen schließen sich aber auch mancherlei
Gräser, Cyperaceen und dikotyldone Stauden an, für welche S. 226–227
Beispiele liefert. Der Vergleich von Florida mit den Bahamas führt zu einer
übischen Tabelle, in welcher auch die Arealausdehnung auf die Antillen durch
Signaturen erläutert ist (S. 229), und die sich anschließenden Auseinandersetzungen
sind der besonderen Stellung von Florida gewidmet. Die Beschreibung der
Formationen trennt naturgemäß die nördliche Halbinsel als zum Pine Barren-
Stranddistrikt gehörig (S. 438, 441) von der tropischen Südspitze, welche an
die Bahamaregion angeschlossen erst im letzten Kapitel des Buches folgt.
S. 695—700). Die übrigen tropischen Elemente, soweit sie nicht zu der xerophytischen Wüstensteppenflora gehören, sind im Abschnitt III Kap. 3 § 7 (S. 300—311) im Zusammenhang von Zentralamerika mit den Antillen behandelt.

Grasland und Xerophyten. Von den sieben großen Bereichen mit eigenen Entwicklungsformen, welche von HARSHBERGER als vor der Glazialperiode bereits in situ angenommen werden (S. 310—311), bleiben nunmehr noch die Entwicklungsverhältnisse der Grasland-Flora und der Mexikanischen Hochland-Flora zu betrachten übrig, dieser so hoch interessanten Floren, welche in einer durch den Kontinent auf etwa 40 Breitengrade durchgehenden Sperre (20° N. bis 60° N.) die Gebirgs- und Niederungsfloren der östlichen und westlichen Gebiete geschieden gehalten haben. Es ist wichtig, sich daran zu erinnern, daß in frühen Zeiten geologischer Entwicklung gerade an den Stellen, wo jetzt ein Hauptteil dieser xerophytischen Floren sich ausbreitet, das Meer durchging (Fig. 2, S. 172), daß noch zur Tertiärperiode große Binnenseen hier übrig geblieben waren (Fig. 3, S. 179), und daß dann zur Glazialperiode nach Fig. 4 (S. 206) die Wüstensteppenflora und die Graslandflora in ganz dicht aneinander schließenden Territorien ihre besondere Ausbildung und den interessanten Reichtum an Arten entfalteten.

Das Entwicklungszentrum der Prärien liegt in Nebraska, Iowa, Kansas und den beiden Dakotas, also in dem um das Ozarkplateau herum sich ausdehnenden mittleren Präriengebiet (S. 237 und 519). Merkwürdig wenig Bäume sind in dies Gebiet von Westen her eingedrungen; die Liste S. 237 deutet 10 Arten an; zuweilen treffen östliche und westliche Besiedelungselemente
miteinander zusammen. — Nunmehr werden die einzelnen Teile der höher aufwärts liegenden Wüstensteppen durchgesprochen, die Sandhill-Region (S. 238), die Foothill-Elemente im Great Basin (S. 239), und es wird ihre Ver-
imschung in die Bergflore der Rocky Mts. nach floristischen Arealen, besonders denen der untersten trocknen und baumlosen Distrikte in diesem riesigen Berg-
lande auseinandergesetzt (S. 243), dessen obere Regionen schon unter Wald-
und Hochgebirgsflora mit alpinen Formationen ausgeführt sind.

Im Verfolg aller dieser leitenden Grundsätze sind dann im vierten Haupt-
abschnitt die Formationen der Prärieregion breiter dargestellt unter Ergänzung
dessen, was in Abschn. III über die geologische Entwicklung gesagt war, durch
floristische Untersuchungen der Gegenwart (S. 516—519) mit Anführung der
endemischen Arten; sie gehören zu Gattungen, die meistens auch im Appa-
lachengebiet vorkommen. Die Formationen gliedern sich bekanntlich so, daß
auf ein Übergangsgebiet mit Laubbäumen (Eichen! Hickory und Ahorn, Gle-
ditschia usw., S. 519—522) und mit Präriefluren auf feuchtem und trocknem
Grunde (S. 522—525), die eigentlichen echten Prärien auf Lehmboden und auf
Tonboden westwärts folgen (S. 526—531) mit den geselligen Hauptarten je
eines Sporobolus, Koeleria, Eutokia, Panicum, ferner Bouteloua und Andropogon
als sekundär wichtiger Gattungen. Auf sie folgen die Sand Hills mit den
Bunchgras-, Blowout- und Sanddraw-Formationen (S. 532) bis zum Foothill-
Distrikt, in welchem die Stipaformation und die Grama-Grasformation von
Bouteloua überwiegen (S. 536—538).

Eine Sonderstellung hat das Great Basin, welches seine geographische
Breite mit dem Zentrum der Prärien von Kansas bis Norddakota teilt, von
diesem aber durch den Gebirgswall der Rocky Mts. getrennt ist und dafür im
Lauf des Colorado mit dem eigentlichen Sonora-Entwicklungsgebiet zusammen-
hängt. Hier strahlen daher die Areale mancher Arten des mexikanischen Plateau-
elements aus, wofür eine kleine Tabelle S. 250—251 deutliche Beispiele bringt.

Die theoretische Vegetationskarte der Eiszeit (S. 206) setzt die Nordgrenze
der damaligen Entwicklung dieser Wüstensteppenformation etwa zwischen
30°—35° n. Br. fest, während jetzt die Ausdehnung der Great Basin-Vegetations-
region um mehr als 10 Breitengrade höher nach Norden geht. Die Flora der
südlich vom Canyon des Colorado liegenden Wüstensteppen ist daher als die
älteste und ursprünglichste anzusehen, ihrer floristisch-entwicklungsgeschicht-
llichen Betrachtung widmet HARSHBERGER den § 6 in dritten Kapitel seines
Abschnitts III (S. 282—300). Es ist bekannt, daß die fossilen Pflanzenreste
sich längst nicht auf alle früher herrschend gewesenen Formationen beziehen,
daß beispielsweise aus Skandinaviens Diluvialflora die Wald- und Torfmoo-
elemente in großer Vollständigkeit bekannt geworden sind, während alle Xero-
phyten fehlen; man darf annehmen, daß die Bedingungen der Fossilisierung
der letzteren überall sehr ungünstig gewesen sind und daß man daher mit
paläontologischen Funden hier nicht so rechnen darf wie etwa bei der Wald-
flora. Die Entwicklungsgeschichte kann daher hier in der Hauptsache nur
die frühere Landgestaltung und Physiographie nebst den Arealen der jetzt
herrschenden Formationsglieder und deren systematischer Stellung zum Untergrund der Betrachtung nehmen.

Gegenwart dort fehlen. Um so interessanter ist es, daß diese Artgenossen-
schaften (Harshberger führt dafür als englischen Terminus die Bezeichnung
»Species guild« ein) von Oregon und Washington her der Redwood-Formation
(siehe S. 605) folgen! Ihm begegnet naturgemäß das sonorische Floren-
element von Süden her in andern Formationen, so daß, im Zusammenhange
mit dem stark endemischen Charakter der Flora, sich hier im Cismontanen-
Distrikt (S. 274) eine vielseitige Flora zusammendrängt. Sie hat ein besonderes
Prüfungsmittel noch in den Inseln an der Küste von Californien (S. 275), die
nicht nur endemische Arten, sondern sogar Gattungen in Abweichung
von der Festlandsflora aufzuweisen hat. Indem sich nun im californischen
Westland ein eigenes dürres Gebiet ausbildete zwischen den Schneebergen im
Osten und der Küste, indem den vielseitigsten Wanderungen hier die Wege
göffnet waren, kommt Harshberger zu einer Zusammensetzung der Flora
vom südlichen Californien aus fünf Elementen (S. 279).

Die Einzelheiten, unter erneutem Hinweis auf den endemischen Charakter
der Flora der eigentümlichen Küstenkette (S. 603), sind dann in Abschn. IV
unter Californischer Region abgehandelt (S. 602—633), in welcher auch die
Flora der interessanten Inseln S. 621—623 eine Besprechung nach den einzelnen
Inseln gefunden hat, nach ihr die gegenüberliegende Küste mit endemischen
Arten in den Strandformationen (S. 624) und den Chaparrals; durch den Reich-
tum an Arten unterscheidet sich diese Landschaft von der im Innern gelegenen
San Jacinto: 100 Arten erstrecken sich nicht in das Innere hinein (S. 627).

Tropenflora. Der Schluß des entwicklungs geschichtlichen Kapitels ist der
Ausbreitung der Nicht-Steppen-Florenelemente im tropischen Anteil von
Nordamerika gewidmet (Abschn. III, 3, S. 300—311). Davon sind die interessantesten
Gesichtspunkte naturgemäß die, welche sich aus dem Verfolg der Areale sub-
tropischer Florenelemente aus Territorien wie Texas, Sonora und Californien süd-
ostwärts nach Zentralamerika hinein ergeben, sowie die Beziehungen der An-
tillen sowohl zum westwärts als zum nordwärts von ihnen gelegenen Festlande.

In ersterer Beziehung ist die Chaparral-vegetation von Bedeutung, welche
Texas mit dem nördlichen Yucatan verbindet (siehe Karte: Golfregion
der mexikanischen Florenprovinz); die Mimosen und Caesalpinien bilden
30% von dieser Formation im Chaparral vom Rio Grande del Norte, einen
noch viel größeren Bruchteil des Bestandes, wenn die Geselligkeit in Anschlag
gebracht wird, und dieser Charakter geht am Golf in niedere Breiten über,
während andererseits der mexikanische Mesquitebaum, Prosopis juliflora, sich
mehr und mehr über Texas ausbreitet (S. 301, vergl. auch im Abschn. IV,
Kap. 6, S. 639—660, 666). — Außerdem ist von großer Bedeutung das Studium
der Hochgebirgsfloren in Mexiko (vergl. oben, S. Li). Hier treten in den
obersten Stufen boreal-zirkumpolare Gattungen auf wie Draba, Potentilla, Carex,
die über den Äquator jenseits hinausgehend ihre Areale bis Chile und zum
Feuerlande (S. 304) erstrecken, während sehr wenige der eigentlich amerika-
nischen, oder mexikanischen, Gattungen die Höhengrenze der Vegetation er-
reichen (S. 302). Es ergibt sich dies dem Leser leicht beim Durchmustern der
alpinen Formationen am Orizaba (S. 653) und den anderen Vulkankegeln (S. 654—656).

alpinen Formationen am Orizaba (S. 653) und den anderen Vulkankegeln (S. 654—656).

Part I.

History and Literature of the Botanic Works and Explorations of the North American Continent.

Chapter I. History.

§ 1. Floristic Work.

The botanic history of North America has never been written. The information, therefore, is fragmentary and often published in an inaccessible form. This chapter will be devoted, therefore, to a brief, but comprehensive, account of the most important explorations that have made botanic collection and study a special feature, and to a mention of the principal monographs, manuals, papers and pamphlets which have appeared on the North American flora in general and North American phytogeography in particular. For facility in treatment and also for the purpose of classification the following broad arrangement will be followed in presenting the historic facts which concern this chapter with the following broad classification of material according to geography: I. Canada, II. New England, III. Middle Atlantic States, IV. South-eastern States, V. Prairies, Arid Plains and Rocky Mountains including Great Basin, VI. Pacific Coast, VII. Great Southwest, VIII. Mexico, IX. Central America, X. West Indies.

Because several of the large scientific expeditions were transcontinental, it is impossible therefore, to make a strict geographic classification of the historic material. In the following account, therefore, such expeditions are mentioned in connection with the region with which they were most prominently identified.

I. Canada.

Passing over the explorations and an account of the voyages of Jacques Cartier 1534, Champlain 1608, La Salle 1679—82, La Hontan 1703, we come to Dierville, who visited the coast of America in 1706 and carried back to France a number of plants which were submitted to Tournefort, who dedicated one plant to its discoverer Dierville. Mackenzie in 1789 penetrated the heart of British North America, but he contributed nothing to enrich Harshberger, Survey N.-America.
botanic science, nor do Hennepin 1679, Charlevoix, Lafitan add much, although, they describe the common plants. In 1635, however, Jacques Philippe Cornut of Paris published a list of Canadian plants under the title of "Canadensium plantarum alierumque nondum editarum historia". It contains descriptions of a very considerable number of common plants which are figured in admirably executed plates. Dr. Sarrasin of Quebec who sent a number of plants to Europe discovered the pitcher-plant in whose honor it was named Sarracenia by Tournefort. In 1749, Peter Kalm proceeded by way of Albany and Lake Champlain to Canada making a somewhat prolonged stay at Quebec, where he met Dr. Gaulthier and discovered the plant dedicated to his friend, Gaultheria. The labors of Kalm gave a decided impulse to Canadian botany, as his collections formed so conspicuous a part of the material on which Linnaeus based his descriptions of American plants. Kalm was the first botanist in the field and may justly be regarded as the father of Canadian botany. Following Kalm in 1785—86, André Michaux, a disciple of Bernard de Jussieu visited America on a similar mission and in 1792 he reached Montreal and Quebec and proceeded to the lower St. Lawrence, Lake St. John and Mistassini, and thence towards Hudson Bay. On this trip, he determined the northern limit of a number of North American forest trees. His notes and collections served as the basis of his Flora Boreali-Americana which was published by the eminent botanist Claude Louis Richard in 1803 with descriptions of 1700 plants with illustrations. Archibald Menzies was the first English naturalist to enter the field of botanic collections in Canada and although he published nothing of importance yet his collections were important to the science. Frederick Pursh made extensive collections in Canada, chiefly in the province of Quebec, but all the material thus accumulated was subsequently destroyed by fire, prior to his death which occurred at Montreal in 1820. The botanic collections of Dr. A. F. Holmes, Titus Smith, John Goldie, David Douglas (1824), Bachelot de la Pylaie stimulated great scientific activity and for the first time the names of W. J. and J. D. Hooker, as also of Robert Brown, become permanently connected with the history of Canadian botany. Within the same period was a somewhat remarkable advance in botanic science in the United States the results of which was an important influence exerted on Canadian botany. In 1828 Nuttall's Genera of North American plants appeared to be followed in 1842 by his important supplement to the work of the younger Michaux on the North American Sylva. The names of W. P. Barton, John Torrey, Parry are incidentally associated with the northern flora. In 1840 William Jackson Hooker published his great work Flora Boreali-Americana and in it recorded all the knowledge of species and their distribution obtained by the early travellers and explorers, such as Ross, Franklin, Beechy and the officers of the Hudson Bay Company. Torrey and Gray in the same year published their work on the Flora of North America which included the Polypetalae only. Three years later the Gamopetalae to the end of the Compositae was published by the same authors
and finally in 1878, ASA GRAY published the remaining part of the Gamopetalae. For notices of Newfoundland plants, besides the volumes mentioned above, we are indebted to Dr. JOHN BELL who published a list of plants collected by him on the west coast of the island in 1867, which plants are in the herbarium of McGill University. WAGHORNE (1893—95) published a paper on the Flora of Newfoundland, Labrador and Saint Pierre et Miquelon.

In addition to the last mentioned paper, the flora of Labrador is represented by a number of publications. MEYER in 1830 issued his De plantis labradoricis, at Leipzig. JOHN RICHARDSON published in the Annals of the Canadian Botanical Society a list of plants collected on the island of Anticosti and the coast of Labrador. BUTLER in the Canadian Naturalist for September 1870 has an article on Labrador plants. ROBERT BELL comes next with a paper published in the Geological and Natural History Survey of Canada, entitled Observations on the Geology, Mineralogy, Zoology and Botany of the Labrador Coast, Hudson’s Strait and Bay (1884). JOSEPH F. JAMES published the same year his Flora of Labrador, and the next year MACOUN in the Annual Report of the Geological and Natural History Survey of Canada his list of plants known to occur in the Labrador peninsula. Several other papers deal with the flora of Labrador, but two only of these can be mentioned here, namely, the chapter on botany in PACKARD’s book, entitled the Labrador Coast, a Journal of Two Summer Cruises to that Region (New York 1891) and the report of the BROWN-HARVARD expeditions to Labrador in 1900, where the botanic results of the expedition are given.

Our knowledge of the Nova Scotian flora is derived chiefly from a list published in the Proceedings and Transactions of the Nova Scotian Institute of Natural Science for 1875—76 and to a Catalogue of the Flora of Nova Scotia by A. W. H. LINDSAY with the ferns contributed by Rev. E. BALL and the fungi by J. SOMMERS, published in the fourth volume of the afore mentioned proceedings.

The New Brunswick flora is represented by a Catalogue of New Brunswick plants published in the years 1878—79 by the Rev. JAMES FOWLER, professor of natural history, Queen’s College, Kingston, Ontario. The Bulletin of the Natural History of New Brunswick (1882—83) contains additional notices both of species and localities, while in the Botanical Gazette for 1885 appears an article entitled Botanical Features of New Brunswick by G. U. HAYS. The same botanists published an account of the marine algae of New Brunswick in the fifth volume of the Proceedings and Transactions of the Royal Society of Canada and later lists of fungi and mosses noticed in the bibliography. Rev. JAMES FOWLER contributed to the last mentioned journal, an account of arctic plants growing in Brunswick and an additional paper on the same subject published in the sixth volume. Prof. L. W. BAILEY in the first volume new series of the Canadian Naturalist furnishes some notes on the geology and botany of New Brunswick and Prof. W. F. GANONG studying the flora from the ecologic side is the author of a number of important papers entitled

Our knowledge of the Quebec flora is obtained from the following sources: a Catalogue of the Plants collected by Dr. Andrew Holmes in the Vicinity of Montreal about the Year 1821. These plants are in the herbarium of McGill University. Dr. Thomas published a list of plants growing at Rivière du Loup and on the Island of Orleans. L'Abbé Ovide Brunet's catalogue published by the author in 1865 and distributed to friends, gave all the Canadian plants in the herbarium of Laval University, Quebec. W. S. M. D'Urban collected plants in the year 1858 in the counties of Argenteuil and Ottawa and published the list in the Canadian Naturalist and Geologist for 1861. A few additions were made in the Canadian Flora (Flore Canadienne) published by L'Abbé Provancher and by Dr. Maclagan, who collected near Montreal, and at a few other localities in the province of Quebec. The results of Macoun's exploration in Gaspé are included, as well, as notes obtained from an examination of the various collections in McGill University an the herbarium of the Natural History Society of Montreal. This historic account of Quebec is nearly complete, if we mention the following papers, viz., J. G. Jack, Native Trees and Shrubs about Montreal, Canada; The Flora of Montreal Island by Rev. Robert Campbell; Some Statistical Features of the Flora of Ontario and Quebec by A. T. Drummond and published in the Canadian Naturalist (new ser. III, 29); Alpine Flora of the Province of Quebec by J. A. Allen; Notes on the Flora of Cacouna, P. Q. by Prof. D. P. Penhallow. — Ontario has been pretty thoroughly worked in almost every district. The eastern part by Mr. James Fletcher and Mr. R. B. Whyte of the Ottawa Field Naturalists' Club, and by B. Billings, Esq. in the neighborhood of Prescott and Brockville. John Macoun's explorations include the Counties of Prince Edward, Addington, Hastings, Northumberland, Peterboro and Victoria in the central district; the vicinity of Toronto, the Niagara peninsula, the country along Lake Erie, the north shore of Lake Superior, and the country from Thunder Bay to Manitoba. The neighborhood of Hamilton has been well explored, by Judge Logie and J. M. Buchan. The district about London has been examined carefully by William Saunders and Thomas Burgess, who has also explored from Niagara Falls to Muskoka and Parry Sound. John Bell published a list of Manitoulin Island plants.

Dr. Robert Bell has collected in the country north of Lake Superior, along the shores of Lake Huron and in the country extending northward to James' Bay along the east coast of Hudson's Bay, and in the valleys of the Nelson and Churchill rivers and the intervening district. Warburton Pike in his book The Barren Ground of Northern Canada (London 1891) makes frequent mention of the plants of that region and still later Edward A. Preble unter the auspices of the Division of Biological Survey, U. S. Depart-
ment of Agriculture gives an account of a biologic investigation of the Hudson Bay region. The Ottawa Naturalist 1899 contains an article by M. L. Fernald, on the Northwest Shore of Hudson Bay, and a few years prior to this (1895), Tyrrel published in the Geographical Journal an account of a second expedition through the Barren Lands of Canada.

The great plains between Manitoba and the Rocky Mountains have been pretty thoroughly examined. The collection made by Dr. G. M. Dawson, while geologist and naturalist to the boundary commission, embraces the whole flora of the 49th parallel from the Lake of the Woods to the Rocky Mountains. During the summers of 1872, 1875, 1879, 1880, 1881, John Macoun made extensive journeys through both the prairie region and the wooded country to the north, as far as latitude 59°, including the whole length of the great Peace River. M. Bourgeau, botanist to Captain Palliser's expedition in 1857—58, made numerous traverses of the country bordering on the Saskatchewan and southward. Douglas and Drummond explored the whole country from the Red and Assiniboine rivers to the Rocky Mountains. The former passed across the Rocky Mountains by the Athabasca Pass and examined the entire length of the valley of the Columbia, while the latter collected in the main range of the Rocky Mountains between latitude 52° and 56°, and particularly in that part about the head of the Smoky River, a tributary of the Peace. Sir John Richardson and other arctic explorers have noted and collected the plants of the wooded country from Hudson Bay to the Arctic Sea, its coasts and islands, including the country north of the Saskatchewan River and the whole valley of the Mackenzie River.

The flora of the Rocky Mountain region proper is still imperfectly known. Dr. G. M. Dawson examined the region in the vicinity of South Kootanie Pass, near the 49th parallel, and traversed the mountains by Pine Pass in latitude 55°. In September 1879, John Macoun ascended the Bow River Pass for a few miles, and obtained some knowledge of its alpine flora. Bourgeau also spent some time in August 1858 in the Bow River Pass and on the adjacent mountains and made extensive collections. During his explorations with Douglas, Drummond spent a whole summer in the mountains. — In 1875 John Macoun was again in the mountains, ascending the Peace River Pass and Mount Selwyn at its western end. Rev. Robert Campbell published in the Canadian Record of Science a paper on the flora of the Rocky Mountains. Quite recently, Dr. Chas. Schaffer and Mrs. Schaffer of Philadelphia have spent several summers in the Selkirk mountains collecting and photographing the plants. During the months of July and August 1903, 1904 Miss Edith Farr of the University of Pennsylvania collected plants in the neighborhood of Banff, Field, Glacier, lakes Agnes and Louise and these plants are preserved in the herbarium of the University at Philadelphia. Dr. Charles H. Shaw of Ursinus College, Collegeville, Pa., and Stewardson Brown of Philadelphia made some extended tours through these mountains and rich collections of alpine plants in 1904.
British Columbia also still requires much attention. Besides the early explorers mentioned by Hooker, JOHN MACOUN during the early part of 1875 made collections of plants on Vancouver Island and in the valley of the Fraser River from the coast to Fort McLeod at the western base of the Rocky Mountains in latitude 55°. G. M. DAWSON collected on Vancouver Island in the valley of the Fraser in the country lying west of it to the coast ranges in 1875—76, and during the summer of 1879, a traverse was made to the Rocky mountains by way of the Skeena River. The results of these and other expeditions are given in the Reports of the Geological and Natural History Survey of Canada for 1875—76, 1876—77, 1879—80, 1882—84. JOHN MACOUN contributed to Garden and Forest in 1888 an article on the Forests of Vancouver Island and to the same periodical an account of the mountain forests of that island. M. LAPATECKI contributed an article to the West American Scientist in 1899 on the Trees of British Columbia, and GEO. M. DAWSON to the Canadian Naturalist notes on the distribution of some of the more important trees of British Columbia with maps. A. J. HILL in 1880—82 investigated the flora of the Fraser and Thompson rivers. WILFRED H. OSGOOD, under the auspices of the Division of Biological Survey, United States Department of Agriculture, gives a description in bulletin number 21 of the natural history of the Queen Charlotte islands and of their flora. The algae of the coast are adequately treated in a monograph by WILLIAM A. SETCHELL and N. L. GARDNER entitled Algae of Northwestern America issued in the University of California publications on botany, 1903. S. A. SKINNER contributes to our knowledge of the Algae of Port Renfrew in Minnesota Botanical Studies (third series Part II, 145).

R. S. Williams contributes to the Plant World, Botanical Notes on the Way to Dawson, in 1899 and J. B. Flett in the fourth volume of the same journal Notes on the Flora about Nome City (1900). The two sumptuous volumes published as the Results of the Harriman Alaska Expedition issued with the cooperation of the Washington Academy of Sciences contain several chapters on the flora of the region visited, particularly one chapter on the forests of Alaska by Bernard E. Fernow, who also furnishes an account of these forests to the eighth volume of Forestry and Irrigation (66).

No. 19, North American Fauna (1900) contains an account of the flora of the Yukon River Valley, as the results of a biologic reconnaissance of the river by Wilfred H. Osgood, who the next year 1901 contributes to number 21, North American Fauna, a description of the natural history of the Cook Inlet region, including a short account of the flora.

The flora of the Pribilof islands in Bering Sea has been investigated by James Macoun (1893), C. Hart Merriam (1892). A paper by James M. Macoun, published as a part of the report on the furseals and furseal islands (Washington 1899), gives a list of the plants known to grow on the islands.

II. New England.

No one region in North America has been more carefully studied botanically than New England. Many books and papers have at various times been published on its flora, and it is, therefore, incumbent on the writer to refer to only the most important that have appeared.

The first serious attempt to describe the natural products of New England was made by John Josselyn in two volumes entitled, “New England Rarities discovered in Birds, Beasts, Fishes, Serpents and Plants of that Country, (London 1672)”. However, Dr. Manasseh Cutler may be called the first New England botanist. In 1785 in the first volume of the Memoirs of the American Academy of Arts and Sciences was printed the chief published result of this botanist’s studies in a paper entitled “Account of some of the Vegetable Productions growing in this part of America, botanically arranged”. In July 1784, Cutler was a member of the first party to ascend the White Mountains for scientific observation; and he repeated the trip twenty years after. Dr. Benjamin Waterhouse was a botanist of note, professor of the theory and practice of the physic in the University at Cambridge, Mass., and his botanic lectures were printed in the Monthly Anthology from 1804 to 1808, and in 1811, they were first published at Boston in a volume entitled The Botanist. In 1805, the botanic garden at Cambridge was established and William Dandridge Peck became the first incumbent of the chair of natural history. He was succeeded by Thomas Nuttall, who remained as curator of the garden until 1828. Jacob Bigelow, a contemporary of Peck and Nuttall, published his Florula Bostoniensis in 1814. The American Medical Botany was published in three volumes between 1817 and 1820 and was long the
standard authority on officinal plants. Amos Eaton was the author of various
text-books and of the most widely used Manual of Botany which appeared
about 1814. The last edition of this work called North American Botany
was printed in 1840.

Passing over the names of Chester Dewey, the brothers Boott interested
in the study of the carices, we come to Edward Hitchcock, professor of
chemistry and natural history in Amherst College. He published in 1829, a
Catalogue of Plants growing within twenty miles of Amherst College. He also
prepared the first Report on the Animals and Plants of Massachusetts. George
B. Emerson must be mentioned next. To the preparation of his report on
the Trees and Shrubs growing naturally in the forests of Massachusetts, he
devoted all his leisure for nine years. It was published at Boston in 1846
and a beautiful second edition with colored plates, followed in 1875. The
names of William Oakes and Charles Pickering author of the Chronological
History of Plants, Man’s Record of his own Existence, are inseparably con-
nected with the early history of New England botany. In 1833, Harvard
College received by the will of Dr. Joshua Fisher, an endowment to establish
a Fisher-professorship of natural history. This chair was offered in 1842 to
Asa Gray and accepted by him. His first book published when he was
twenty-six years old was the Elements of Botany. In 1842 appeared the
Botanical Text-book, and in 1848 the first edition of the Manual of Botany,
the fifth edition published in 1867, the sixth in 1890 after the distinguished
author’s death, and the last edition in 1908. Gray’s chef d’oeuvre, the Synop-
tical Flora of North America appeared in several volumes, as follows: Volume
II Part I Gamopetalae after Compositae 1878; Volume I Part II Caprifoliaceae
to Compositae 1884; Volume I Part I Polypetalae to Frankeniaceae 1895.

The name of Charles Wright is associated with that of Asa Gray. Wright
spent some years after his graduation in 1835 in the exploration of Texas, and
the fruit of his labors appeared in Plantae Wrightianae by Gray. Sereno
Watson, an associate of Asa Gray in botanic work, accompanied King’s ex-
ploring expeditions from 1867 to 1871. The resulting volume the first (1876)
of the Botany of California showed his grasp of the subject so clearly that
he was appointed curator of the Gray-Herbarium in 1874. The second volume
appeared in 1880. Sereno Watson is also the author of an important work
titled Bibliographical Index to North American Botany (1878).

The first systematic account of American Algae is by an Irishman William
Henry Harvey. About 1849 he spent considerable time in New England
and issued a work in three parts the Nereis Borcali-Americana. Edward
Tuckerman engaged himself in the study of lichens published Genera Lichenum:
an Arrangement of North American Lichens 1872, and he also found time to
issue an elaboration of Hitchcock’s catalogue of plants growing within twenty
miles of Amherst College. Stephen T. Olney of Rhode Island published a
Catalogue of Rhode Island Plants and a few years before his death in 1873
his Algae Rhodiaceae. Thomas P. James, a resident of Cambridge, with Leo
Lesquereux issued in 1884 a Manual of the Mosses of North America, which has never been replaced by a later work. Daniel Cady Eaton was graduated from Yale in 1857 and spent his life there as professor of botany. He elaborated the pages on the ferns in the several editions of Gray’s Manual and published in addition, Ferns of the Mexican Boundary in Mexican Boundary Survey (1857); Ferns of North America illustrated with colored plates by J. H. Emerton and C. E. Faxon. Charles J. Sprague (1856—58) published several papers on New England mycology. Alex. F. Kemp studied the seaweeds, and his paper entitled on the Shore Zones and Limits of Marine Algae on the N. E. Coast of the United States was printed in the Canadian Naturalist and Geologist in 1862. William G. Farlow, pursuing the same line of research, published two papers on seaweeds under the auspices of the United States Fish Commission. The last one, still in use, entitled Marine Algae of the New England and Adjacent Coast, appeared in 1879. Frederick L. Sargent printed in 1886 a Guide to the Principal Orders of Cryptogams and the Commoner and more easily distinguished New England Genera.

Passing by the long list of local floras, lists and notices of plants which have appeared on the New England flora, mention should be made of the Flora of Essex County, Massachusetts 1880 by John Robinson; a Catalogue of Plants growing without cultivation in the County of Nantucket, Mass. 1888 by Maria L. Owen; Catalogue of all Phaenogamous Plants at present known to grow without Cultivation in the State of Connecticut (1851) by James N. Bishop; The Portland Catalogue of Maine Plants (first edition 1868; second edition 1892); a Preliminary Catalogue of the Plants growing on Mount Desert and the Adjacent Islands by Edward L. Rand and John H. Redfield 1894.

Flora of Vermont. A List of the Fern and Seed Plants growing without Cultivation in Vermont prepared by Ezra Brainerd, L. R. Jones and W. W. Eggleston, committee for the Vermont Botanical Club 1900; Flora of the Town of Southington, Conn. and its Vicinity by Charles H. Bisell and Luman Andrews 1902; Catalogue of the Plants of New Hampshire by Wm. F. Flint 1874. Plants of Rhode Island being an Enumeration of Plants growing without Cultivation in the State of Rhode Island by James L. Bennett appeared in 1888, as a publication of the Providence-Franklin-Society; List of Marine Algae collected near Eastport; Me. by D. C. Eaton (New Haven 1873); Desmids of Maine by William West 1888 and Fresh Water Algae of Maine by F. L. Harvey in 1889.

The Silva of North America, a Description of the Trees which grow naturally in North America, by Charles Sprague Sargent, Director of the Arnold Arboretum near Boston, Mass. is a monumental work on American botany issued in twelve sumptuous volumes between 1891 and 1898. The beautiful drawings reproduced in the work are by C. E. Faxon. Prof. Sargent is also editor of the Scientific Papers of Asa Gray in two volumes, published in 1889; author of The Woods of the United States with an Account of their
Structure, Qualities, and Uses 1885 and Report on the Forests of North America, issued as a volume of the Tenth Census of the United States in 1884 with numerous maps. In Rhodora (1903), the organ of the New England Botanical Club, Prof. Sargent has contributed a series of five articles on Recently Recognized Species of *Crataegus* in Eastern Canada and New England. Aside from Prof. Sargent’s Silva, perhaps his most valuable work, is his Manual of the Trees of North America (exclusive of Mexico) a book of 826 pages, issued in 1905.

New England botany has been enriched also by the contributions of B. L. Robinson, M. L. Fernald and Jesse M. Greenman, who have done much to make the flora of the region known, beside working upon the collection of Mexican and Central American plants forwarded to the Gray Herbarium by Cyrus G. Pringle and other botanists for identification.

Mention has not been made of the collectors, who have done so much to forward our knowledge of New England plants. The vegetation of the White Mountains has been investigated by Edwin Faxon, C. H. Hitchcock, Cyrus G. Pringle, Fuller, Endicott, Hunt and Davis, J. W. Chickering, W. G. Farlow and B. F. Robinson. Frederick W. Batchelder has printed a Preliminary List of Plants growing without Cultivation in the Vicinity of Manchester, New Hampshire 1899. Our knowledge of the flora of Mt. Katahdin is due to the efforts of J. W. Bailey, F. Lamson-Scribner, Charles E. Hamlin, George R. Kennedy, Merritt L. Fernald, J. Franklin Collins, Emile F. Williams, Joseph R. Churchill, J. W. Harshberger, Le Roy H. Harvey and George Thurber. William Gilson Farlow has contributed articles to various scientific journals on the fungi of the region and other botanists have furnished articles which are now counted by the hundreds. An enumeration of the various papers that have appeared is given by Mary A. Day in Rhodora under the caption the Local Floras of New England, and these series of articles must be referred to, as also a List of State and Local Floras of the United States and British America by N. L. Britton in the Annals of the New York Academy of Sciences 1890 page 237 to 300, for bibliographic details.

Early in his botanic work, about 1835, Dr. Asa Gray began his herbarium 1). His own collecting was largely done in the lake-region of western central New York, the Southern Alleghanies, the central Rocky Mountains, Mexico and California. Associated with Dr. John Torrey from 1838 to 1843 in the preparation of the Flora of North America. Dr. Gray received duplicate types of nearly all the plants therein described. Soon after began the notable series of trans-continental surveys. During this epoch extending from Fremont’s expedition in 1842 to the natural history survey of California, Dr. Gray’s eminence in American botany attracted to him an extraordinary wealth of botanic material. The collections of the Pacific Exploring Expedition, of Charles Wright in Texas, New Mexico, Arizona, Cuba and Nicaragua,

of August Fendler in New Mexico, Venezuela and Trinidad, of Dr. George Thurber on the Mexican boundary, of Messrs. Brewer, Bolander and others in California, of Dr. Sereno Watson in the Great Basin, and of Dr. Rothrock in Arizona merit particular mention on account of their size and importance. — In 1864, Dr. Gray presented his herbarium and valuable library to Harvard College. From the early seventies until the end of his life Dr. Gray was engaged in the preparation of the Synoptical Flora and his notes made then on the herbarium sheets adds to their value. His studies on the Mexican flora upon the basis of the rich collections of Gregg, Wright, Schaffner, Parry, Palmer and Pringle are represented by notes made on the collections in the Gray Herbarium.

In 1870 Dr. Sereno Watson who had been engaged at the Gray Herbarium in the identification of the material from the Clarence King Exploration of the 40th parallel, was made assistant and later in 1880 Curator. After the death of Dr. Watson in 1892, the present curator Dr. B. L. Robinson was appointed.

Among the most noteworthy collections which have been incorporated in the Gray Herbarium are the herbaria of Jacques Gay, G. Curling Joad, John Ball, of William Boot, containing a wealth of New England material, chiefly from the suburbs of Boston, the White Mountains and Vermont, and the Compositae from the herbarium of Dr. F. W. Klatt of Hamburg.

III. Middle Atlantic States.

The early history of botany in New York State gathers about the name of John Torrey. However prior to his active labors, Jacob Green issued a Catalogue of Plants indigenous to the State of New York in 1814 and in 1829 James Macauley, Trees, Shrubs and Plants of New York. John Torrey was early associated with Major Le Conte, with David Hosack, who during Torrey's youth was engaged in the development of the Elgin Botanic Garden, where Torrey studied under the direction of that eminent physician and naturalist. His flora of the Northern and Middle States, or Systematic Arrangement and Description of all the plants heretofore discovered north of Virginia was published in 1824 and later his Compendium of the Flora of the Northern and Middle States in 1826. Appointed botanist of the
Geological Survey of New York at its organization in 1836, he brought together the material which was issued in 1843, as a Flora of the State of New York in two large quarto volumes illustrated by 161 plates. Shortly after the publication of the Botany of the Mexican Boundary in 1859, Dr. Torrey transferred his herbarium and botanic library to Columbia College, where it forms the nucleus of the collections now gathered together in the New York Botanic Museum at Bronx Park. The Flora of North America containing Descriptions of all Plants north of Mexico by Torrey and Gray in two volumes appeared in the period from 1838 to 1843. The Torrey Botanical Club organized in 1873 has been a constant stimulus to botanic work in New York City and neighborhood. One of the most valued results of its labors has been the work of individual members on the local flora. Catalogues prepared by members, later than the Catalogue by Torrey in 1817, where those on Staten Island by N. L. Britton and Arthur Hollick; Stissing Mountain by Lyman O. Hovsradt; on West Chester County by O. R. Willis; on Manhattan Island by O. W. Morris; on Central Park by E. A. Day; on Long Island by S. E. Jelliffe extending the earlier partial lists of E. R. Miller, Henri W. Young and others. Most valuable work contributory to the New York local flora was done by W. H. Leggett, C. F. Austin, T. F. Allen, H. Schrenk in earlier years and in recent years by Rev. Mr. Lighthouse, Mrs. E. G. Britton, Miss Sanial, E. P. Bicknell and N. L. Britton. The Preliminary Catalogue of Anthophyta and Pteridophyta growing within 100 miles of New York was a result of the labors of N. L. Britton, E. E. Stearns and Julius Poggenburg. In addition to the publications issued under the auspices of the Torrey Club should be mentioned Paines Catalogue of Plants found in Oneida County 1864; the Cayuga Flora by Wm. R. Dudley 1886; the Plants of Buffalo and its Vicinity (1882) by David F. Day; the Chataqua Flora by Edward S. Burgess in 1877; Flora of the Upper Susquehanna by Willard N. Clute and later 1903 by Frank E. Fenno for the same region; Plants of Monroe County, New York 1896 by Florence Beckwith and Mary E. Macauley; Plants of the Summit of Mt. Marcy published in Bulletin of New York State Museum for 1899 by Charles H. Peck, and Plants of North Elba in the same periodical for 1899 by the same botanist. Britton and Brown’s Illustrated Flora appeared in 1896, Britton’s Manual in 1901 and Britton and Shafer’s North American Trees in 1908.

The botanic staffs of Columbia University and the recently organized New York Botanic Garden and Museum in Bronx Park have within the past few years shown unusual vigor in the pursuit of botanic knowledge under the direction of Nathaniel L. Britton and Lucien M. Underwood, a large botanic establishment has been formed, vast collections of plants from all parts of America and the world have been gathered and expeditions in search of botanic material have been in the field under the auspices of the New York Botanic Garden. Marshall A. Howe has devoted his attention to hepatic mosses and seaweeds, Mrs. E. G. Britton and A. J. Grout to true mosses,
Floristic work. — Middle Atlantic States.

F. S. Earle to the fungi, N. L. Britton to the flowering plants of the northern states, West Indies, John K. Small to the flowering plants of the southern states. Per Axel Rydberg has devoted himself to the Rocky Mountain flora, Lucien M. Underwood to the ferns, while Francis E. Lloyd, Daniel T. MacDougal, Carleton C. Curtis devote themselves to the morpho-physiology of plants. The Bulletin of the Torrey Botanical Club first issued in 1870, has appeared regularly ever since; it was long under the editorship of W. H. Leggett, later of W. R. Gerard, afterward of Dr. and Mrs. Britton, Lucien M. Underwood and now in charge of John H. Barnhart. Its influence has been felt in Europe and all parts of the American continents. The work of these botanists and others will appear in North American Flora, Descriptions of the wild plants of North America, including Greenland, the West Indies and Central America (now in course of publication).

The flora of New Jersey has received attention from both the botanists of New York City and of Philadelphia. Arthur Hollick, L. H. Lightfipe, N. L. Britton of the New York Club have investigated it, while John M. Maisch, I. C. Martindale, John H. Redfield, Isaac Burk, J. Bernard Britton, Joseph Crawford, Stewardson Brown, Benjamin Heritage, Uselma C. Smith, are Philadelphians that have made collections in New Jersey. P. D. Knieskern published in 1857 a Catalogue of Plants growing without Cultivation in the Counties of Monmouth and Ocean in the State of New Jersey and Samuel Ashmead in 1857, a List of Plants and a Catalogue of Marine Algae collected on the Coast of Egg Harbor. Isaac C. Martindale contributed to the memoirs of the Torrey Botanical Club a monograph on the marine algae of the New Jersey coast and adjacent waters of Staten Island, 1889. Mary Treat of Vineland has studied the flora from the standpoint of a nature lover and has contributed observations of value to botanic science. J. W. Harshberger has written on the Strand Flora of New Jersey in two papers 1900 and 1902. A Preliminary Catalogue of the Flora of New Jersey, issued by the Geological Survey, was printed at New Brunswick in 1881 and in the final report of the State Geologist, volume II (1889), appears the Catalogue of Plants found in New Jersey by N. L. Britton (pages 27—642). Both of these publications were preceded by Catalogue of Plants growing without Cultivation in the State of New Jersey by O. R. Willis 1874 with a revised edition in 1878.

The history of botany in Pennsylvania may be said to commence with the establishment in 1694 of a garden at the Hermitage on the lower Wissahickon Creek by the German Pietists, presided over by Kelpius, where medicinal plants were raised for use and study. In 1739 was published at Leyden in Holland an essay entitled Experimenta et Meletemata Plantarum generatione by the Governor of Pennsylvania James Logan. This may be said to be the first work issued by a Philadelphia botanist. In the year 1748, Peter Kalm, a pupil of Linnaeus, visited Pennsylvania and spent three years in exploring America, and in 1753—61 published En Resa til Norra America
in three volumes, translated into German in 1754—64. Passing by JOHN BARTRAM, who established the second botanic garden in America, and ADAM KUHN, professor of botany in the University of Pennsylvania, we come to HUMPHREY MARSHALL, author of Arbustum Americanum the American Grove, or an alphabetical Catalogue of Forest Trees and Shrubs, natives of the American United States (Philadelphia 1785).

In 1791 WILLIAM BARTRAM’s Travels through South Carolina, Georgia, East and West Florida appeared and in 1801 ANDRÉ MICHAUX’s Oaks of North America. Two years later in 1803, the first elementary work on botany by BENJAMIN SMITH BARTON was published in Philadelphia. F. ANDRÉ MICHAUX in 1810 issued his history of the forest trees of North America (Histoire des Arbres Forestières de l’Amerique Septentrionale) with colored plates. A catalogue of the native and naturalized plants of North America was published by MÜHLENBERG at Lancaster in 1813. Later FREDERICK PURSH published in London in 1814 his comprehensive work Flora Americae Septentrionalis. Arranged according to the Linnaean system, there appeared in 1818 in two volumes WILLIAM P. C. BARTON’s Compendium Florae Philadelphicae. Botanic works and papers began now to multiply and in 1818 THOMAS NUTTALL issued his Genera of North American Plants.

In 1826 in conjunction with some of his intimate friends, WILLIAM DARLINGTON of West Chester assisted in organizing the Chester County Cabinet of Natural Science and in the same year published Florula Cestrica. This paved the way for a large and more comprehensive manual of the botany of Chester County, which appeared in 1837 under title of Flora Cestrica. A third edition of this book appeared in 1853. The study of the cryptogams was not neglected, for LEWIS D. DE SCHWEINITZ published in 1831, a synopsis of North American fungi, Synopsis Fungorum in America Boreali Media Digestum. About the same time ELIAS DURAND contributed several botanic papers to the Journal of the Academy of Natural Sciences namely, descriptions of HEERMANN’s and PRATTEN’s collections. In 1899 appeared an historic account of the botany of the region in the Botanists of Philadelphia and their Work by JOHN W. HARSHBERGER.

The University of Pennsylvania and the Academy of Natural Sciences of Philadelphia may be looked upon as seats of botanic learning for Pennsylvania and for the adjoining region. The history of botany at the University is somewhat as follows ADAM KUHN a pupil of LINNAEUS was the first professor of botany being appointed in the year 1768. BENJAMIN SMITH BARTON occupied the chair of materia medica and botany from about 1800 to 1813. He was succeeded by WILLIAM P. C. BARTON in 1816 who lectured until about 1822; the faculty of natural history being abolished in 1828. In 1829 SOLOMON W. CONRAD was elected botanist and served until the time of his death in 1831. Later in 1835, GEORGE B. WOOD was elected to the chair of materia medica and was succeeded by his nephew HORATIO C. WOOD, who occupied the chair of botany until 1876 when JOSEPH T. ROTHROCK was
elected to fill the vacancy caused by Dr. Wood accepting the chair of materia medica and therapeutics. In 1884, the School of Biology was opened through the liberality of Dr. Horace Jayne and with Dr. Rothrock was associated William P. Wilson, who was appointed professor of the anatomy and physiology of plants. Later upon the resignation of Dr. Wilson, John M. Macfarlane was made professor of botany and director of the botanic garden and with them have been associated in the teaching John W. Harshberger, Jesse M. Greenman, Hobart C. Porter, Orville P. Phillips, Henry S. Conard, Louis Krautter. The herbarium of the department of botany began with the collections of Isaac Burk, as a nucleus, to which have been added subsequently the herbaria of Aubrey H. Smith, Joseph Leidy, J. Bernard Brinton, the fern collections of John W. Eckfledt, the collections of C. G. Pringle, J. W. Harshberger, J. T. Rothrock, J. M. Macfarlane, Edith M. Farr, H. S. Conard, Louis Krautter and others.

The Academy of Natural Sciences of Philadelphia was founded March 12th, 1812 and from the outset the department of botany received attention. The first contribution to the Academy's herbarium consisted of a collection of plants made in the environs of Paris and presented by Nicholas S. Parmentier. During the years which followed, this nucleus received constant accretions and the names of Collins, Elliott, Pursh, Baldwin, Le Conte, Conrad, Nuttall, Torrey and Pickering are inscribed on many of the tickets attached to the plant sheets. In 1834, the Academy received by bequest the collections made by Lewis David de Schweinitz. Other valuable contributions followed among which may be specified the Poiteau collection of Santo Domingo plants, Chilian plants from Stiles and Ruschenberger; Nuttall’s collections made in his expeditions to Arkansas, Oregon and the Sandwich Islands; the Ashmead collection of marine algae; Lesquereux’s collection of over 700 species of algae and a large collection of cryptogams from Ravenel. More recent additions than the above consists of the herbaria of Thomas G. Lea, Joseph Carson, John Stuart Mill, the collections of Charles Pickering, and the Mexican collections of Parry, Palmer, Pringle, Nelson and Rose. The most important accession was the herbarium of Charles W. Short of Louisville, Kentucky. All these collections including those from North Pacific Survey by William Canby, from Alaska made by Thomas Meehan, from the Yellowstone made by F. Tweedy, from Tabasco and Chiapas, Mexico by Rovira, from the West Indies by Leopold Krug, from Guatemala distributed by John Donnell Smith, from the West Indies by Rothrock; from California by Brandegee are valuable, because they represent type specimens. The cryptogamic collections include Ellis’ Centuries of North American Fungi, Drummond’s Mosses of the Rocky Mountains and British America; a set of fungi belonging to the late George Martin of West Chester and the lichen herbarium of John W. Eckfledt. New American collections are being constantly added to the Herbarium of the Academy of Natural Science, so it is kept up to date in almost every respect.
The later books on the flora of Pennsylvania may be said to begin with a Botany of Pennsylvania by CHAS. B. TREGO, which appeared in a Geography of Pennsylvania in 1843. HENRY R. NOLL’s Flora of Pennsylvania and Botanist’s Pocket Manual 1851. Journal of a Botanical Excursion in the Northeastern Parts of the States of Pennsylvania and New York during the year 1807 by FREDERICK PURSH was printed for the first time in 1869 and edited by THOMAS P. JAMES. In 1862 GEORGE SMITH published in the History of Delaware County, Penna. a description of the botany of the County. AUBREY H. SMITH issued a paper in 1867 on Colonies of Plants Observed near Philadelphia. THOMAS C. PORTER’s Enumeration of the Indigenous Plants of Lancaster County, Pennsylvania was incorporated in MOMBERT’s Authentic History (Lancaster 1869). A sketch of the botany of the state by the same botanist was published in WALLING and GRAY’s New Topographical Atlas of the State of Pennsylvania (1872). A Catalogue of the Flowering Plants and Vascular Cryptogams found in and near Lackawanna and Wyoming Valleys by WILLIAM R. DUDLEY and CHARLES O. THURSTON appeared in 1892. THOS. C. PORTER published in 1898 in the Bulletin of the Torrey Botanical Club a description of the Flora of the Lower Susquehanna and issued privately in 1900 a small pamphlet entitled Rare Plants of Southeastern Pennsylvania. The ecologic aspect of the Pennsylvania flora has been presented in a paper by ALEXANDER MAC ELWEE, The Flora of the Edgehill Ridge near Willow Grave printed in the Proceedings of the Academy of Natural Sciences of Philadelphia and Flora of the Serpentine Barrens of Southeastern Pennsylvania by J. W. HARSHBERGER published in Science, and a Phytogeographic Sketch of extreme Southeastern Pennsylvania in the Bulletin of the Torrey Botanical Club for March 1904 by the same author. Finally in 1903 appeared Flora of Pennsylvania by THOMAS C. PORTER edited with the addition of Analytical Keys by JOHN K. SMALL. This work of three hundred and sixty two pages is a carefully annotated list of the plants of the state with notes on their geographic distribution by counties.

The flora of the State of Delaware is meagerly represented by published accounts. In 1860 EDWARD TATNALL published a Catalogue of the plants of New Castle County, and in 1902 in the Botanical Gazette, LETTIA M. SNOW, a paper entitled Some Notes on the Ecology of the Delaware Coast. The flora of this state has however, received attention from WILLIAM M. CANBY, a resident of Wilmington, who amassed a fine herbarium of the plants of his native state, as also various other parts of the United States and foreign countries. This herbarium was purchased by the College of Pharmacy of the City of New York and deposited in their building. J. T. PENNYPACKER has also actively collected plants in the State. —

The Southern United States have been carefully worked over by botanists usually non resident in that section, so that the stimulus which comes from the presence of coteries of botanists in the different cities and towns in the institutions of learning, which are not numerous and have been backward
in scientific progress, has been lacking. The result is, that there are few books dealing with the flora of the southern states and a paucity of local catalogues and lists. The writer believes that, in mentioning the following, very few important publications have been overlooked.

IV. Southeastern States.

The first account of any importance that we have of Southern plants appears in the Natural History of Carolina by Mark Catesby in two volumes (London 1731—43), followed by a book by J. Brickell. The Natural History of North Carolina (1737) where, pages 57—106, the vegetables of the country are discussed. These were proceeded by Banister's Catalogus plantarum in Virginia observatarum 1688 and Petiver's Herbarium Virginianum 1707. Flora virginica (1739—43) by J. F. Gronovius, Walter's Flora Caroliniana (1788), Wm. Bartram's Travels through North and South Carolina, Georgia, East and West Florida 1791; L. E. W. Secout's Flora Carolinacensis (Charlestown 1806) and Barton's Flora virginica (Philadelphia 1812), are among the most important early books on botany of the South. A catalogue of plants in the vicinity of Charlestown 1834 and one by Gibber of plants of Columbia, South Carolina 1835, and catalogue of the native phaeognamous plants and ferns of Kentucky by Short (C. W.) Peter S. Griswold 1833, occupy an intermediate position in point of time between the earlier books and the descriptive manuals. Until the appearance of Stephen Elliott's Botany of North Carolina and Georgia in two volumes 1821—24, there was no descriptive manual of the Southern States. Later this want was supplied by a Manual of Botany adapted to the Productions of the Southern States by John Darby published in 1814. This last work was supplemented by Darby's Botany of the Southern States in 1855.

Finally in 1865 appeared Chapman's Flora of the Southern States, which has appeared in several editions, the third one issued in 1897. During this time Rev. M. A. Curtis published in 1867 a Catalogue of Indigenous and Naturalized Plants of North Carolina and in 1869 Resources of the Southern Fields and Forests was published by Francis Peyre Porcher. A number of botanists have recently explored the southern states and as the result of their work have either published accounts of their labors, or have distributed their collections of plants to various botanic centres. Among these persons may be mentioned Asa Gray, Charles S. Sargent, A. H. Curtis of Jacksonville, Florida, Charles Mohr of Alabama, Roland M. Harper, John K. Small, G. V. Nash, Anna M. Vail, Thomas H. Kearney, H. J. Webber, J. M. MacFarlane, Lester F. Ward, C. D. Bean, of Biltmore, Augustin Gattinger of Tennessee, Gifford Pinchot, A. Cuthbert of Georgia, C. F. Millsbaugh, A. M. Huger of North Carolina, J. W. Harshberger, Francis E. Lloyd, S. M. Tracy, W. W. Ashe, W. C. Coker and F. E. Boynton. Reference will be made to their papers in the accompanying bibliography, but the following of special merit must be mentioned in this connection, viz., Flora

Harshberger, Survey N.-America.
of West Virginia issued from the Field Columbian Museum Chicago 1896 by CHARLES F. MILLESPAUH and LAWRENCE W. NUTTALL; Timber Trees and Forests of North Carolina by GIFFORD PINCHOT and W. W. Ashe 1897; the Plants covering of Ocracoke Island by THOMAS H. Kearney 1900; the Insular Flora of Mississippi and Louisiana by FRANCIS E. LLOYD and S. M. TRACY 1901; Plant Life of Alabama issued as volume six of Contributions from the United States National Herbarium 1901 by CHARLES MOHR; Report on a Botanical Survey of the Dismal Swamp Region by THOMAS H. KEARNEY 1901; the Flora of Tennessee by AUGUST GATTINGER; a Phyto-geographical Sketch of the Altamaha Grit Region by ROLAND M. HARPER (1906). Finally a work published in New York in 1903 superceded the manuals of Southern botany previously published, when JOHN K. SMALL published his volume of 1370 pages entitled Flora of the Southeastern United States. This book already noticed in the introduction will long remain the authoritative work on flora of the South.

V. Prairies, Arid Plains and Rocky Mountains.

At this point it is necessary to give some account of the early explorers and explorations that made known the south, middle west and the Rocky Mountain region. Probably the first extensive trip was undertaken by JOHN BARTRAM of Philadelphia. Neither dangers nor difficulties impeded or confined his researches after objects in natural history. The summits of the eastern mountains were ascended and explored by him. The lakes Ontario and George; the shores and sources of the rivers Hudson, Delaware, Schuylkill, Susquehanna, Alleghany were visited by him at an early period, when it was a perilous undertaking to travel in the territories, or even on the frontier. The results of this journey are recorded in Observations on the Inhabitants, Climate, Soil, Rivers, Productions made by Mr. JOHN BARTRAM in his travels from Pennsylvania to Onondaga, Oswego and Lake Ontario 1751. He traveled several thousand miles in Carolina and Florida. Arriving at Charlestown by sea he proceeded to St. Augustine, Florida and explored the St. Johns River of which he made an accurate draft and survey. His son WILLIAM BARTRAM traveled extensively in the southern states and an account of these journeys appeared in a book entitled Travels through North and South, East and West Florida 1791. PETER KALM, comes next as an explorer of North America and after spending sometime in the states, he proceeded by way of Albany and Lake Champlain to Canada making a somewhat prolonged stay at Quebec. His extensive collections went to LINNAEUS of whose herbarium they formed a part, yet distinguished from those of others by the initial K prefixed to the name of each specimen. Following Kalm came ANDRÉ MICHAX, a student of BERNARD DE JUSSIEU, on a similar mission in 1785. With New York City, as headquarters, the first seven years of his work was directed to an exploration of the southern states, as far, as Florida and during that time he gathered a rich harvest of material. In 1792 he visited Canada proceeding by way of
Saratoga and Lake Champlain reached Montreal and Quebec which he left subsequently to visit the interior along the Saguenay and lakes St. John and Mistassini; thence towards Hudson Bay.

FREDERICK PURSH under the patronage of BENJAMIN SMITH BARTON set out early in 1805 for the mountains and western territory of the southern states beginning at Maryland and extending to the Carolinas returning late in the season through the lower country along the sea-coast to Philadelphia. The following season, he went north through Pennsylvania thence to Onondaga and Oswego down the Mohawk Valley to Saratoga and north to the upper part of Lake Champlain, the mountains of Vermont and New Hampshire returning by the seacoast 1).

F. ANDRÉ MICHAUX to collect information found it necessary to visit different parts of the United States. Beginning with Maine, he traveled over all the Atlantic states making five excursions into the interior parts of the country. The first along the rivers Kennebec and Sandy; the second from Boston to Lake Champlain crossing the states of New Hampshire and Vermont; the third from New York to Lakes Ontario and Erie; the fourth from Philadelphia to the borders of the rivers Monongahela, Alleghany and Ohio and the fifth from Charlestown to the sources of the Savannah and Oconee. In another journey described in Voyage a l’Ouest des Monts Alleghanys (Paris 1804). MICHAX left Charlestown from New York presumably travelling by the sea coast through Raleigh, Richmond, Washington and Philadelphia to New York. From New York returning by Philadelphia, he left for the west by way of Lancaster, Pittsburgh, Wheeling, W. Va., Chillicothe, Ohio, through Kentucky to Nashville, passing through eastern Tennessee, mountainous North Carolina and across South Carolina on his way to Charlestown. This scientific journey of the younger Michaux in 1801 across the mountains into the Mississippi and Ohio valleys prepared the way for the subsequent explorations of the great territory extending westward to the Rocky Mountains.

Beyond the Mississippi, explored by FATHER MARQUETTE, all that was really well known was the territory in the immediate neighborhood of the little French villages at the mouth of the Missouri River. The headwaters of the Missouri were absolutely unknown. The Rocky mountains were not known to exist. The United States government undertook the task of exploration. The first of these expeditions was planned by JEFFERSON and authorized by the Congress. The explorers Captain MERIWETHER LEWIS and Lieutenant WILLIAM CLARK were chosen as leaders and were carefully instructed to report upon the geography, physical characteristics, botany and zoology of the region traversed. The young officers started on their trip from St. Louis in 1804 accompanied by twenty seven men. They made their way through the State of Missouri. From the Little Missouri at the head of the Missouri proper the explorers passed the plains and came to the mountains which they crossed

so as to strike the headwaters of the Columbia, which they descended to the Pacific Ocean. In March 1806, they started eastward to retrace their steps. Early in July, the leaders separated for a time, Clark descending the Yellowstone and Lewis the Missouri, until they met at the junction of the two rivers and in September reached St. Louis, where they forwarded to Jefferson an account of what they had done. They had opened the great West to science and trade. — About this time David Thompson, an astronomer and surveyor, in 1796 was sent by the North West Company to explore the source of the Mississippi. He visited the Mandan villages by way of Rainy Lake, lakes Manitoba and Winnipeg, Saskatchewan and Assiniboine rivers returning by way of the Red River of the North, Lake Superior and St. Louis River. On another expedition in 1806 he discovered the upper waters of the Columbia River, and was at Lake Athabasca in 1810. Simon Fraser also figured in the exploration of the great Northwest.

While Lewis and Clark were descending the Columbia, another army officer was conducting explorations which were scarcely less important than theirs. In 1805 Zebulon Pike turned his face towards the headwaters of the Mississippi River. The winter was spent in what is now Minnesota. In his search for the source of the Mississippi, Pike penetrated a lake-dotted region and explored the Leech Lake drainage system. Returning to St. Louis, he started for the Southwest. He crossed the great plains to the Arkansas River and then up that river, where Wilkinson and three other men left the party and returned down to the river to the settled country. The others struck westward across the mountains reaching in November the bold peak which was afterward named in the leader's honor. They finally reached after much privation and hardship the Rio Grande River. Pike was made prisoner by the Spaniards at Santa Fe and after release was sent home by a round about route through Chihuahua and Texas, and so ended the second great transcontinental expedition. Others followed in rapid succession. Those in which botany was given a prominence must now be mentioned.

Thomas Nuttall, an Englishman, long resident in Philadelphia, accompanied by Bradbury left St. Louis in 1809, crossed the Kansas and Platte rivers and ascended the Missouri River, returning enriched with much material. Leaving Philadelphia again in 1818, Nuttall reached the mouth of the Arkansas River and botanized extensively in the region returning with large collections which formed the basis for his book a Journal of Travels into the Arkansas Territory during the year 1819, Philadelphia 1821. In 1819 Major Stephen H. Long was deputed by President Monroe to discover, if possible the South Pass, and on his return make an attempt to determine the sources of the Red River. Proceeding up the Missouri and its South Fork, they reached the mountains where the lofty mountain (Long's Peak) was discovered, the party returning homeward via, the Arkansas River. The results of the expedition led by Governor Cass appeared in Silliman's Journal in 1822 by John Torrey. The plants collected by Thomas Say in Long's second expedition
to the Northwestern Territory in the year 1823 were repeated upon by L. D. de Schweinitz in 1824. Nuttall and John K. Townsend sent out jointly by the American Philosophical Society and the Academy of Natural Sciences of Philadelphia joined Captain Wyeth's party at Independence, Missouri from which place they started April 28th, 1834. The account of the journey is given in Townsend's Narrative of a Journey across the Rocky Mountains to the Columbia River. On September 3th, they began to descend the Columbia River reaching Fort Vancouver. Here the two naturalists remained for the rest of the Autumn exploring the surrounding country. Later they visited the Hawaiian islands. Two important memoirs, the fruits of the trip across the continent, were published in the Transaction of the American Philosophical Society in 1841 and 1842. — John Torrey contributed the list of plants collected on a reconnaissance from Fort Leavenworth, Missouri, to San Diego, California, given in Emory's Report of Reconnaissance, 1848 and also studied the plants collected during Captain March's exploration of the Red River of Louisiana in 1852.

Passing over a lot of minor expeditions and surveys we come finally to the period of the great surveys beginning with the United States and Mexican Boundary Survey under W. H. Emory and published in the report in 1858, appears the botany of the expedition by John Torrey. In the Reports of Explorations and Surveys to ascertain the most practicable and economical Route for a Railroad from the Mississippi River to the Pacific Ocean (Washington 1855—61, 12 volumes) appear reports of the collections of plants made by the botanists of the several expeditions. The second volume treats of the 41st Parallel expedition under E. G. Beckwith; the 38th and 39th Parallel under J. W. Gunnison and the 32nd Parallel under J. Pope. The botany of these surveys was elaborated by John Torrey and Asa Gray. The fourth volume deals with the survey of the 36th Parallel under A. W. Whipple, the Cactacae by George Engelmann and J. M. Bigelow, the general botanic collections by J. Torrey and A. Gray; the mosses and liverworts by W. S. Sullivant. The fifth volume contains the material of the 35th and 32nd Parallel California expedition under R. S. Williamson. The botanic portion of the report is by J. Torrey, E. Durand and T. C. Hilyard. The sixth volume (1857) deals with the California and Oregon Survey under R. S. Williamson, the botany by J. S. Newberry, J. Torrey, A. Gray, W. S. Sullivant and E. Tuckerman. The seventh, the report of the 32nd Parallel and California under J. G. Parke contains a botanic portion by John Torrey. Volume twelve, the last one, deals with the surveys of the 47th and 49th Parallels under I. Stevens, J. G. Cooper reports on the botany of the route and there is included a catalogue of plants collected east of the Rocky mountains and one of Washington Territory. Finally with reference to the great expedition of the middle West must be mentioned S. Watson and D. C. Eaton's Botany of the Fortieth Parallel 1871, Rothrock's botany of the United States Geographical Surveys west of the one hundredth meridian in charge of G. M. Wheeler, Washington
1878, and the report by J. S. Newberry, entitled Notes on the Geology and Botany of the Country bordering the Northern Pacific Railroad 1884.

With the adoption of a forest policy and the creation of forest reserves, a renewed stimulus has been given to botanic survey of the far west in the interests of forest botany. Several voluminous reports each with numerous plates and maps have been issued. The nineteenth (1897—98), twentieth (1899), twenty first (1899—1900) contain a botanic description of the various forest reserves set aside by presidential proclamation.

The Rocky Mountain Region of the United States is fairly well known botanically. The botanists of the various great transcontinental surveys have visited it and plants have been collected in nearly all of the important ranges and mountain valleys. With the spread of civilization westward and the erection of several universities in the Rocky Mountain states, more attention has been paid to the mountain flora with the appearance of a class of the population interested in the study and preservation of the wild plants.

In addition to some of the reports and journeys mentioned above that touch upon Rocky Mountain botany should be mentioned the journey of Edwin P. James in the summer of 1820 to and from the Rocky mountains and his collection of plants determined by John Torrey. The plants, collected on the expedition led by Nathaniel B. Wyeth, were reported by Thomas Nuttall in a catalogue published in 1834 in the Journal of the Philadelphia Academy of Natural Sciences. — The expedition of Lieutenant John C. Fremont was most important and fruitful of results. He began his arduous enterprise, that of exploring the Rocky mountains and opening an overland route to the Pacific Ocean under authority of the government in May 1842. He examined the South Pass of the Rocky mountains, and ascended in August the highest peak of the Wind River mountains (13,570 feet) now called Fremont's Peak. In the autumn of 1842, he returned to Washington and published report of his discoveries with a catalogue of plants by John Torrey (p. 77—94) in 1843. In the summer of 1843 he conducted another expedition up the valley of the Platte and through the South Pass, explored Great Salt Lake, arriving in November at Fort Vancouver, near the mouth of the Columbia River and the next spring reached the Sacramento River in March 1844, returning through the Great Basin and the South Pass. In the spring of 1845, he conducted a third expedition to explore the Sierra Nevada and California and organized and conducted a fourth in 1848.

The next exploration of interest was by F. V. Hayden whose report to the Government is entitled, Catalogues of Plants collected during the Expedition of F. V. Hayden to the Headwaters of the Yellowstone River, in the Summer of 1871 with a Small Number by Dr. George Smith in August 1871, on Gray's Peak and near Georgetown, Colorado by T. C. Porter (The Mosses by L. Lesquereux and Lichens by E. TuckerMan) Washington 1871. The catalogue of plants collected by Hayden in Wyoming and Colorado during 1868, 1869 and 1870 is also by T. C. Porter, published in 1872.

The state floras have not been neglected. One of the first for the mountain region is entitled Enumeration of the Species of Plants collected by Dr. C. C. Parry and Messrs. E. Hall and J. P. Harbour during the Summer and Autumn of 1862 on and near the Rocky mountains in Colorado Terr. by Asa Gray published in the Proceedings of the Academy of Natural Sciences of Philadelphia in 1863.

The Synopsis of the Flora of Colorado by T. C. Porter and J. M. Coulter, printed as a government publication in 1874, is often referred to in the earlier works on the botany of the western United States. It, and the Flora of Southwestern Colorado by T. S. Brandegee (1876) are the most important of the early papers dealing with the botany of the State. Asa Gray and J. D. Hooker later in 1881 printed a paper in which they compared the vegetation of the Rocky Mountain Region with other parts of the world mentioning the more salient features of the mountain flora. — Two papers dealing with the phytogeography of the Rocky mountains are in line with the paper of Gray and Hooker. Reference is made to an article by T. D. A. Cockerell in Science (May 6th, 1898) on the Diverse Floras of the Rocky Mountain Region and to another by P. A. Rydberg entitled Composition of the Rocky mountain Flora also published in Science (1900).

The Yellowstone Region is now well represented by floras and papers on its botanic aspects. One of the first published by the government in 1882 is a List of Plants collected on Lieut. General P. H. Sheridan's Expedition through the Big Horn Mountains, Yellowstone National Park, etc. in 1881 by Surgeon W. H. Forwood. Tweedy's Flora of the Yellowstone National Park was printed in pamphlet form in 1886. The vegetation of the hot springs has also received a considerable share of attention and articles by Weed, Bay, Harshberger, Davis, Setchell and Tilden have appeared on the subject. The most voluminous work, however, is Rydberg's Catalogue of the Flora of Montana and the Yellowstone Park issued as the first volume of Memoirs of the New York Botanical Garden in 1900. In this work, the author gives an account of the herbaria consulted, the botanists engaged in field work and the localities visited. Besides these papers on the Flora of Idaho, Coeur d'Alene mountains, Big Horn mountains, Black Hills of Dakota, Bitterroot mountains, Teton mountains have been published as Contributions from the United States National Herbarium and as reports in the United States Geological Survey, Annual Reports 19th, 20th and 21st. Aven Nelson has contributed notes and has written a Flora of Wyoming. The only general work for the region is the Manual of the Botany of the Rocky Mountain Region from New Mexico to the British Boundary by John M. Coulter. The first edition, which only claims to be a compilation, an orderly arrangement of scattered material, was published in 1885. This work is in need of revision and P. A. Rydberg is at work upon a manual which will fill the long felt want of an
authoritative handbook on the flora of the Rocky Mountain Region, his preliminary work appearing as Flora of Colorado (1906).

The Great Basin Region has been mentioned incidentally in the accounts of the exploration of the west and the Rocky Mountain Region. One of the first reports on the Great Basin proper was printed at Philadelphia in 1852. It is an account by Howard Stansbury of the exploration and surveys of the valley of the Great Salt Lake, which includes a catalogue and description of plants by John Torrey. Torrey also elaborated the catalogue of plants collected by Captain L. Sitgreaves on an expedition down the Zuni and Colorado rivers about 1854. Durand later in 1860 contributes to the Transactions of the American Philosophical Society descriptions of the species constituting the flora of the Great Salt Lake Basin and Drs. Gray, Torrey, Thurber and Engelmann, a botanic report on the expedition of Lieut. J. C. Fremont in 1857—58 to the Colorado River of the West. A Catalogue of Plants collected in 1872 in Utah, Wyoming, etc. by J. M. Coulter is the title of a paper published by the U. S. Geological Survey of Montana, Idaho, Wyoming and Utah in 1873.

The work, however, which may be said to represent the flora of the region in the most comprehensive manner is the Botany of the Fortieth Parallel, Washington 1871, by Sereno Watson and D. C. Eaton. Several other works must be mentioned dealing with the flora of the arid region in completing this general survey, viz., Report of Explorations across the Great Basin of the Territory of Utah by J. H. Simpson 1876; Catalogue of Plants collected in Nevada, Utah, Colorado, New Mexico and Arizona, as volume V of the reports on U. S. Geological Survey west of the One Hundredth Meridian, (Lieut. Wheeler in charge) by J. T. Rothrock, Washington 1878 and Coville’s Botany of the Death Valley Expedition 1893, issued as volume IV of Contributions from the United States National Herbarium.

VI. Pacific Coast.

The finely equipped scientific expedition of La Perouse left France in 1785. On September 14th, 1786 the ship anchored in Monterey Bay where the botanists of the expedition Martinère and Collignon took advantage of the stop to collect California plants 1). The first one described by Lamarck was Abronia umbellata secured by Collignon. The next botanists to visit California were Thaddeus Haenke and Luis Nee who accompanied the Spanish expedition under Malaspina, which touched the coast at San Diego and Monterey in 1791. Between 1789 und 1817 Haenke botanized along the western side of the American continent from Patagonia to Bering Strait. His collections are in part at Prague and were described by Presl in Reliquiae and part in the herbarium of the Royal Garden at Madrid. Through a confusion of labels, some of his plants described as Chilian were probably col-

1) See Willis L. Jefson, Early Scientific Expeditions to California Erythea I: 185.
lected in California; while some credited to California were, with little doubt, really from the East Indies or elsewhere. — ARCHIBALD MENZIES, who had earlier visited the northwest coast in 1786, in November and December 1792, visited San Francisco Bay, Santa Clara and Monterey, touching the coast again in 1793 and 1794. A set of his collections is in the British Museum, another at Kew, and a portion of his earlier collections, particularly the cryptogams, are in the herbarium of the Botanical Society of Edinburgh. JOSEF MARIANO MOÇINO was on the coast in the year 1792. He afterward botanized in Mexico, especially in the northern parts, along with MARTIN SESSE. The large collection of drawings which Moçino brought to Europe after the death of Sesse contains delineations of Californian species, but most of them are Mexican. This collection of twelve hundred drawings (cited as Lc. Fl. Mex. ined., and on which a number of genera and species were founded) was left by Moçino in the hands of DECANOLLE and afterward suddenly reclaimed. It is said that the herbarium made by Moçino and Sesse went to Madrid; but a portion was certainly acquired by LAMBERT, and in the disposition of his collections is thought to have been acquired by the British Museum. GEORGE HEINRICH VON LANGSDORF visited California in the Russian ship Juno, and it is supposed again in 1824. His botanical collection was meagre. ADALBERT VON CHAMISSO, as botanist, and JOHANN FREDRICH ESCHSCHOLTZ, as surgeon and naturalist, were in the expedition fitted out by Count ROMANZOFF, under Captain KOTZEBUE visiting California in 1816. Descriptions of the plants were published by Chamisso and Schlechtendal in Linnaea, in ten volumes from 1825 to 1834, and by Eschscholtz in a paper entitled Descriptio Plantarum Novae Californiae in the Memoirs of the Academy of St. Petersburg in 1823. ESCHSCHOLTZ again accompanied Kotzebue on his second voyage to California, arriving in September 1824.

The English expedition under Captain BEECHEY (1825 to 1828) reached California late in 1827. ALEXANDER COLLIE, surgeon to the expedition and G. TRADESCANT LAY made a collection of about one hundred and seventy-five species. The specimens in a bad shape were studied by HOOKER and ARNOTT and the results of their labors appeared in their Botany of Captain Beechey's Voyage. DAVID DOUGLASS, a Scotch botanist, reached the northwest coast early in 1825. He botanized extensively in Washington and Oregon. On a second trip from England, he again reached the coast in 1830 and in December of that year came to California, where he botanized from Sonoma County to Monterey. In 1832 he went by way of the Sandwich Islands to the Columbia, back again to the Hawaiian group, where he lost his life a few months later. An indefatigable collector, a close observer and an enthusiastic traveller he added more to the knowledge of the botany than all the botanists who had gone before him. His Californian collections were chiefly described in the supplement to the Botany of Captain Beechey's Voyage, and those from Oregon and Washington in HOOKER's Flora Boreali-Americana. HOOKER's, LINDLEY's and BENTHAM's herbaria contain sets of his Californian plants and
many specimens are found elsewhere. Dr. Thomas Coulter, who botanized extensively in California, was the first botanist to reach the Colorado Desert and Gila regions. He collected more than a thousand species in Mexico and California.

Harvey of Trinity College, Dublin, distributed duplicate sets of Coulter's plants to the Hookerian herbarium and to those of Gray and Torrey. Thomas Nuttall, as previously stated, crossed the continent in an expedition under Captain Wyeth in 1834 to the Columbia River, thence to the Sandwich islands, returning to California, where he collected during part of the year 1835. His collections were very rich and many of them are in the Gray Herbarium at Harvard University and many in the Academy of Natural Sciences of Philadelphia. The names of Richard Brinsley Hinds, Wosnessensky, William D. Brackenridge, Charles Pickering, Duflot de Mofras, William Gambel, John C. Fremont, Norman Bestor and Theodor Hartweg, whose collections were enumerated by Bentham in Plantae Hartwegianae, are prominent in the botanic annals of Spanish occupancy. The plants collected by William Gambel were described by Thomas Nuttall in the Journal of the Academy of Natural Sciences for 1848. Plantae Fremontianae, or Descriptions of Plants collected by Col. J. C. Fremont in California by John Torrey appeared in 1850. This brings us to the second period beginning with the great immigration of 1849.

George Thurber of the Mexican Boundary Survey reached California late in 1851. Descriptions of some of his new species were published by Asa Gray in Plantae Thurberianae. J. M. Bigelow, Arthur Schott and Charles Wright collected plants on the Mexican Boundary Survey. Albert Kellogg came to San Francisco in 1849 and during more than thirty years he collected along the coast from Alaska to San Diego. Some of his specimens are in the herbarium of the California Academy of Sciences and others are scattered in various places. In passing the following botanists should be mentioned as identified with the botany of the Pacific Coast: J. D. B. Stillman, Henry Behr, George Gibbs, William Lobb, George Black, T. L. Andrews, G. E. Hulse, A. Wislizenus, N. J. Andersson, A. F. Beardsley, John Jeffrey, H. G. Bloomer, and William A. Wallace.

Many plants were collected within the State of California from 1853 to 1855 by botanists connected with the Pacific Railroad explorations. The largest of these collections was made by J. M. Bigelow, under Lieut. Whipple, the entire collection from Arkansas to California amounting to about twelve hundred species, of which over eleven hundred (excluding Cactaceae and Mosses) were enumerated in the fourth volume of the Pacific Railroad reports. These plants, as well as those of the other government expeditions, were determined chiefly by Torrey and Gray, and they are found in the herbaria at Cambridge, New York and Washington and in foreign countries at Kew and St. Petersburg. A. L. Heermann accompanied Williamson's Survey in 1853 and collected one hundred species noticed by Durand and Hilgard in volume
five of the Pacific Railroad reports. William P. Blake made collections in southern California described by Torrey in the same volume as the above. J. S. Newberry collected under Lieutenants Williamson and Abbott, mostly in Oregon and northern California. Over five hundred species were reported by him from this region. He also went with Lieutenant Jones in 1857—58 along the Colorado River and through northern Arizona. Thomas Antisell was connected with the party of Lieutenant Park and collected in 1854 between Salt Lake and the Sacramento River. Passing with a mere mention the labors of J. F. Hammond, Charles Wright, Amos B. Eaton, Thomas Bridges and L. J. Xantus de Vesey we come to the work done by the California State Geological Survey organized by J. D. Whitney in 1860. In connection with this survey were William H. Brewer, who collected from 1860 to 1864, Francisco Guirado in 1860 and 1861, Edward Palmer in 1861, Henry N. Bolander 1863 and for twelve years subsequent, George H. Horn, William Hillebrand of Honolulu and V. Rattan. The botanic results appeared in two volumes issued by the Geological Survey of California. The first volume by W. H. Brewer, Sereno Watson and Asa Gray appeared in 1876, the second volume by Sereno Watson in 1880. Besides the above named explorers, the west coast of the United States was visited by Horace Mann, John Torrey, Asa Gray, J. D. Hooker, Alphonso Wood and George L. Goodale. The names also of C. L. Parry, Edward Palmer, C. G. Pringle, J. T. Rothrock and W. K. Suksdorf are prominently identified with the botany of the Pacific Coast. In 1885 C. R. Orcutt published a Flora of Southern and Lower California. J. G. Lemmon, Mrs. Lemmon, Abbott Kinney and other botanists were connected with the publication of the First Biennial Report of the California State Board of Forestry for the years 1885—86 (Sacramento 1886), the Second Biennial Report for the years 1887—88 (Sacramento 1888), and the Third Biennial Report for the years 1889—90 (Sacramento 1890) in which is set forth a detailed account of the condition of the forests and a botanic description of the principal forest trees. J. G. Lemmon has also printed a work entitled Handbook of West American Cone-Bearers (third edition 1895), also in pamphlet form, Oaks of Pacific Slope (1902).

Numerous articles on the flora of the mainland and the coast islands of California have been published in Erythea, Zoë, Pittonia, Garden and Forest, Bulletin of the Torrey Botanical Club and Botanical Gazette. The following botanists have been prominently identified with the botany of California and the articles in the above mentioned journals have been largely contributed by them. E. L. Greene, W. L. Jepson, Alice Eastwood, W. R. Dudley, S. B. Parish, Carl Purdy, W. A. Cannon, F. V. Coville, T. S. Brandegee and (Mrs.) Katherine Brandegee. Chronologically arranged, the following books and papers deal with Californian phytogeography. Illustrations of West American Oaks, by Edward L. Greene appeared in 1889—90. Flora Franciscana by the same botanist, as its title page suggests, is an attempt to
classify and describe the vascular plants of middle California. Parts I, II, III appeared in 1891—92; Part IV was issued in 1897. Manual of the Botany of the Region of San Francisco Bay by EDWARD L. GREENE was printed in 1894. Under the auspices of the Division (now Bureau) of Forestry of the United States appeared in 1900, as bulletin 28, A Short Account of the Big Trees of California. WILLIS LINN JEPSON, assistant professor of botany in the University of California, published a Flora of Western Middle California in 1901. WILLIAM R. DUDLEY contributed to the Sierra Club Bulletin in June 1901 a paper on the Zonal Distribution of Trees and Shrubs in the Southern Sierra and ALICE EASTWOOD in the same journal in June 1902, a Flora of the North Fork of Kings River. The first volume of University of California publications (Botany) includes a paper of one hundred and forty pages entitled a Botanical Survey of San Jacinto Mountain by HARVEY M. HALL (1902). JOSEPH BURT DAVY, late of the University of California, now in South Africa, describes the stock ranges of northwestern California in one of the bulletins (No. 12) of the Bureau of Plant Industry U. S. Department of Agriculture. The Botanical Gazette for September and October 1903 contains a sketch of the Flora of Southern California by S. B. PARISH. The list is not completed with this enumeration; but enough has been given to show the character of the work done upon the California flora.

It only remains to describe the flora of the northwest Pacific Coast. The early explorations to this region have been previously mentioned. The more recent publications dealing with the botany of the northwestern United States are few in number. THOMAS HOWELL began the publication of a Flora Northwest America in 1897 with the first fascicle, Ranunculaceae to Rhamnaceae. The second appeared in 1898; the third in 1900; the fourth and fifth in 1901; the sixth in 1902 and the last fascicle (no. 7) of the first volume in 1902. The fifteenth bulletin of the United States Division of Forestry, issued in 1898, deals with the Forest Growth and Sheep Grazing in the Cascade Mountains of Oregon by F. V. COVILLE. W. L. JEPSON published in 1899 in Erythea a paper on the Vegetation of the Summit of Mt. St. Helena and F. V. COVILLE contributed to Mazama in 1900, one on the August Vegetation of Mount Mazama, Oregon. — The forest reserves of Washington, are described by H. P. AYRES and M. W. GORMAN in the 19th Report U. S. Geological Survey 1899. The Mount Rainier, Olympic Forest and Cascade Range Forest reserves receive attention in the 21st Report 1900. The Flora of the Palouse Region published by the Washington Agricultural College and School of Science in 1901 is by CHAS. V. PIPER and R. KENT BEATTIE. It contains descriptions of all the spermatophytes and pteridophytes growing wild in the area within thirty-five kilometers of Pullmann, Washington. One of the latest publications to deal with the flora of this region is entitled Forage Conditions and Problems in Eastern Washington, Eastern Oregon, Northeastern California and Northwestern Nevada by DAVID GRIFFITHS, issued as bulletin 38 of the United States Bureau of Plant Industry in 1903. Lastly must be mentioned a publi-
cation on the Algae of the Northwestern America by William A. Setchell and Nathaniel L. Gardner in University of California Publications Botany (Volume I: pp 165—418. 1903) and Chas. V. Piper published in 1906 a Flora of the State of Washington as Contributions from the U. S. National Herbarium, vol. XI.

The botanic centers on the Pacific Coast are three in number located at the University of California at Berkeley, at the San Francisco Academy of Sciences and at the Leland Stanford Junior University at Palo Alto. The botanists connected with the University of California are E. W. Hilgard, William A. Setchell, Willis L. Jepson with the San Francisco Academy as Curator of the herbarium, Alice Eastwood with the Stanford University, Douglass H. Campbell, William R. Dudley and George J. Peirce. A botanic garden is maintained at Berkeley and also experimental grounds in connection with the agricultural experiment station.

VII. Great Southwest.

In addition to the reports and papers issued by the government, which contain the results of the botanic survey of the great Southwest should be mentioned one by George Engelmann, on the Character of the Vegetation of Northwestern Texas printed in the Proceedings of the American Association for the Advancement of Science for 1851, and by the same botanist, Geography of the Cactus Region of the United States, published in the third volume of the Proceedings of the American Academy of Arts and Sciences. O. Loew published in the sixth volume of the report upon the geographic and geologic explorations and surveys west of the one hundredth meridian in charge of Lieutenant George M. Wheeler investigations upon mineralogic and agricultural conditions observed in portions of Colorado, New Mexico and Oregon in 1873 with an account of the geographic distribution of the plants of the region visited, and later in 1876 a Report on the Geographical Distribution of Vegetation in the Mohave Desert. George Vasey in the thirteenth volume of the Botanical Gazette gives an account of the characteristic vegetation of the North American desert. The most important work on the botany of the arid region of the southwestern United States up to the publication of J. M. Coulter's Manual of the Phanerogams and Pteridophytes of Western Texas, issued as volume II of Contributions from the United States National Herbarium 1891—94, is without question the Catalogue of Plants collected in the years 1871, 1872 and 1873 with Descriptions of New Species known usually as Rothrock's Botany of the Wheeler Survey, published by the government in 1874. As Contributions from United States National Herbarium were published by J. N. Rose lists of plants collected by Edward Palmer in New Mexico and Arizona in 1890, and J. W. Touney in the Botanical Gazette for 1892 contributes a List of the Flora of Central Arizona. The question of the bacterial content of the air of desert regions has received attention, John Weinzirl publishing in 1900 in the Proceedings of the
American Association for the Advancement of Science an account of the bacterial flora of the semi-desert region of New Mexico with special reference to the bacteria of the air. The ecologic aspects and phytogeography of the region under consideration have been provided for by William L. Bray in the Ecological Relations of the Vegetation of Western Texas, published in the Botanical Gazette for 1901 and the Tissues of Some of the Plants of the Sotol Region, printed in the Bulletin of the Torrey Botanical Club of November 1903.

Recently under grant of funds from the Carnegie Institution of Washington the continuance of botanic investigation is provided for in the establishment of a desert botanic laboratory for research at Tucson, Arizona. Much may be expected from this station in the way of elucidating the geographic distribution of desert plants from a physiologic-ecologic standpoint. Several illustrated reports have appeared as publications of the Carnegie Institution entitled: Desert Botanical Laboratory of the Carnegie Institution, dealing with the desert floras of North America, the first in November 1903 by Frederick V. Coville and Daniel T. MacDougal.

VIII. Mexico.

The most important books on the botany of Mexico will be listed in the bibliography which follows. It is advisable, however, at this place to give a brief historic resume of the botanic explorations in Mexico. Relaciones de Indias published by the authority of Phillip II, King of Spain, in the year 1568 and 1569 contains much of interest to the phytogeographer, but this work is rivalled by that of Francisco Hernandez, a Spanish physician and naturalist, who was commissioned by Phillip II to visit North America and to describe the plants, animals and minerals found therein. The results of his labors and travels, especially in Mexico, was a work in a Latin edition entitled Rerum Medicarum Novae Hispaniae Thesaurus seu Plantarum, Animalium, Mineralium Mexicanorum Historia 1649. William Houston, a student of Boerhaave at Leyden visited the West Indies and later Mexico about 1729. His collections found their way to Philip Miller and the plants are frequently referred to in the Gardener's Dictionary and also in John Martyn's Historia Plantarum Rariorum 1728—32. On the death of Houston, Joseph Banks collected his notes and published them in 1781 under title of Reliquiae Houstonianae. The specimens collected by him are in the British Museum. Luis Née accompanied the expedition of Malaspina and with Thaddeus Haenke visited Mexico. The collection of Née repose in the herbarium of the Botanic Garden at Madrid. Haenke's collections are scattered in the herbaria of Prague, Vienna and Kew. The results of his exploration appeared in five fascicles entitled Iter mexicanum and Plantae mexicanae. Presl who described his botanic collections published two volumes Reliquiae Haenkeanae in 1830—36.

The botanic expedition inaugurated by Charles III of Spain, was projected to explore the countries collectively called New Spain. Several scientists were engaged in the survey and among them may be named Martin Sesse, Juan
DIEGO DEL CASTILLO, JUAN CERDA, D. VINCENTE CERVANTES and D. MARIANO MOÇINO. MOÇINO explored the coasts of Tabasco and Guatemala and later the region inhabited by the Tarahumaras. During the years 1795 to 1804, the work of the scientific commission was most actively prosecuted. The fruits of the conjoint labors of the members of the commission were a good herbarium and a work in manuscript entitled Flora Mexicana. With a rich herbarium, an excellent collection of 1,400 colored drawings the work of ECHEVARRIA and CERDA and with their previous manuscript SESSE and MOÇINO departed for Spain with the idea of publishing the results of the expedition. Delays, fatal to the enterprise, discouraged the hopes of Moçino and Sesse, and it was not until long after their death in 1888 that the flora appeared as a publication of the Mexican Society of Natural History, as "Flora Mexicana Autoribus Martinus Sesse et Josephus Marianus Moçino".

ALEXANDER VON HUMBOLDT and AIMÉ BONPLAND passed nearly a year in the exploration of Mexico, debarking at Acapulco on March 13, 1803, visited the United States and returned to Europe in July 1804 with rich collections of plants, animals and minerals. BONPLAND was the virtual botanist of the expedition and he collected 6,000 species of plants which are preserved in the Museum of Natural History at Paris. He published Nova Genera et Species Plantarum (7 volumes, folio with 700 plates, 1815) and Equinoctial Plants collected in Mexico, Cuba, etc. (2 vols. folio 140 plates).

Passing over the names of TATE, LEXARZA, SARTORIUS and KARWINSKI, we come to that of JOHN LOUIS BERLANDIER, who collected in Tamaulipas, San Luis Potosi, Nuevo Leon and Coahuila during the years 1827–30. Part of his collections is in the Kew Herbarium. SCHIEDE and DEFPE visited Mexico about 1828 and collected near Jalapa, Orizaba and Cuernavaca. The results of their labors and those of HEGEWISCH and MUEHLENFORDT were contributed to Linnaea by SCHLECHTENDAHL and CHAMISSO. H. M. S. "Blossom" touched at Mexico in 1828 and Mr. LAY explored Tepic and Jalisco. HOOKER’s herbarium, DELESSERT’s herbarium and that of Kew contain the specimens collected by this expedition. THOMAS COULTER collected in Mexico for many years. During 1832 and 1833, he explored Alta California and Sonora. His collections were deposited in the herbarium of Trinity College, Dublin, where they were studied by W. H. HARVEY. G. ANDRIEUX, who visited Mexico for plants, sent his collections to DELESSERT, HOOKER and DE CANDOLLE. HENRY GALEOTTI, AUGUST B. GHIESBRECHT, JOHN J. LINDEN and NICHOLAS FUNCK extensively explored Mexico during the years 1836–40 and made large collections of plants. They ascended the peak of Orizaba, and Galeotti alone Popocatepetl, reaching the limit of vegetation at an elevation of 10,500 feet. Their plants were distributed to several of the large European herbaria.

THEODORE HARTWEG was sent by the Horticultural Society of London to Mexico in 1836 with the object of collecting living plants and seeds. He explored the mountains at Guanajuato, Leon, Lagos, Guadalajara, Aguas Calientes, Morelia and Oaxaca and left Mexico in 1839 for Guatemala. His
collections of plants both living and dry were described by George Bentham in his Plantae Hartwegianae, 1839—42. This botanist also described the plants gathered together by the botanists of the Voyage of H. M. S. Sulphur. John Parkinson, Frederick E. Leibold, Duflo de Mofras, John Potts, Carlos Heller, Audin Aschenborn and A. Wslizenus collected in Mexico. Frederick M. Liebmann, a Dane, was sent to Mexico to make botanic and scientific collections. He disembarked at Vera Cruz in February 1844. He explored various parts of Mexico and consigned to the herbarium in Copenhagen 40,000 plants and a notable zoologic collection. Subsequently he published a book in Danish called "Mexicos Bregner, en systematisk, plante-geographisk Undersøgelse 1849", and later with A. S. Øersted appeared Les Chênes de l'Amerique tropicale (1868). Berthold Seemann, as botanist of the expedition sent out in H. M. S. "Herald", collected plants in Panama and Mexico. These plants are at Kew. Botteri, Mueller, Hain, Schaffner, Ervendberg, Bougeau, Thiebaut, Bilemek and Villada are botanists identified with the progress of Mexican botany.

The botanists from the United States, who have visited and explored Mexico for botanic purposes, are the following: C. C. Parry, Edward Palmer, Cyrus G. Pringle, J. N. Rose, E. W. Nelson, Chas. F. Millsapough, William Trelease, John W. Harshberger, V. Havard, E. D. Holway, Angelo Heilprin, Witmer Stone, C. J. Chamberlain, D. J. MacDougall and Joseph Painter. C. C. Parry crossed the Mexican boundary for the purpose of collecting plants. His botanic explorations were confined mainly, however, to the southwestern United States. We owe our knowledge of Mexican plants very largely to the efforts of Dr. Edward Palmer and Cyrus G. Pringle, who have spent many years in Mexico. Palmer's collections have gone to the United States National Herbarium, and sets have gone to various of the leading herbaria. Pringle has done more than all the other botanists combined to explore and collect the plants of the Mexican Republic. For at least fifteen years, he has visited Mexico and has botanized in practically every state from the boundary south to Oaxaca. This work has been done with discriminating care, so that a majority of his plants have been described as new, or have enriched our botanic knowledge by the light they have thrown on the type specimens collected by the earlier botanists, or the localities where these types have been found. Pringle's plants have been described and named by the botanists at the Gray Herbarium of Harvard University. Sets of the several Mexican collections beginning with Asa Gray and Sereno Watson and continuing with B. L. Robinson and J. M. Greenman are to be found in all the large herbaria of the world. Pringle's private collections have lately been deposited in the herbarium of the University of Vermont. The published papers of this botanist on the Mexican flora have appeared in Garden and Forest.

E. W. Nelson has explored Mexico under the auspices of the Biological Survey of the United States Department of Agriculture. His work has been mainly along zoologic lines, but he has also made considerable collections of
dried plants for the U. S. National Herbarium. CHARLES F. MILLSPOUGH visited Yucatan making large collections, a report of which has appeared as Plantae Yucatanae, publications of the Field Columbian Museum. — J. N. ROSE has published extensively on Mexican plants. He has made at least three trips to the South and has returned enriched by botanic material. The results of these trips have appeared in the Contributions from the United States National Herbarium and elsewhere. — WILLIAM TRELASE has been in Mexico twice in the interests of the herbarium of the Missouri Botanical Garden and in the furtherance of his studies on the genus Yucca. A report of one hundred and thirty-three pages and ninety-nine plates on the Yuccae was published in the Report of the Missouri Botanical Garden for 1902. — J. HARSHBERGER accompanied C. G. PRINGLE for a month in the exploration of the Valley of Mexico and the ranges of mountains thereabouts during August and September 1896, his collections being distributed to herbaria in Philadelphia, Cambridge, Washington, while a paper on the flora of the Valley of Mexico appeared in the Proceedings of the Academy of Natural Sciences of Philadelphia for 1898. — ANGELO HEILPRIN and WITMER STONE collected in Mexico around and on the high volcanoes of Orizaba and Popocatépetl. Heilprin gave the results of the trip in a brochure entitled the Temperate and Alpine Floras of the Giant Volcanoes of Mexico, printed in the Proceedings of the American Philosophical Society in 1892. Their plants are in the Herbarium of the Academy of Natural Sciences of Philadelphia.

The coterie of Mexican botanists, who have been most active in extending the botanic knowledge about their country, are FERNANDO ALTIMIRANO, JOSE N. ROVIROSA, J. ELEUTERIO GONZALEZ, IGNACIO OCHOA VILLAGOMEZ, NICOLAS LEON, JOSÉ SEGURA, MARIANO BARCENA, ALFONSO HERRERA, JOSÉ RAMIREZ, MANUEL URBINA. Their papers have appeared in a number of journals prominently La Naturaleza and Anales Instituto Medico Nacional. A good herbarium is maintained in the building of the Medical Institute in the City of Mexico.

In concluding this short account of the history of Mexican botany mention of must be made of W. BOTTING HEMSLEY of Kew, who has published in four volumes the botany of the Biologia Centrali-Americana of Godman and Salvin; of ERNST STAHL of Jena and G. KARSTEN, who in 1894 explored parts of Mexico, returning to Germany by way of the United States.

IX. Central America.

A number of the botanists mentioned above in connection with the history of Mexican botany explored Central America. However, it is well to briefly refer to those naturalists who explored Central America and to whom we are indebted for our botanic knowledge of that region. The voyage of H. M. S. "Sulphur" under Captain Sir EDWARD BELCHER touched at Panama, the Island of Tobago, the Gulf of Nicoya, Costa Rica and Nicaragua. The collections of dried plants were afterwards studied by GEORGE BENTHAM. In 1839

Harshberger, Survey N.-America.
Emanuel Friedrichsthal performed journeys through a great part of Nicaragua and Costa Rica. — To Anders Sandoe Oersted, we owe much of our knowledge of the botany of Costa Rica. This botanist spent three years in the country (1846—48) exploring that country and Nicaragua, chiefly the great volcanic chain which includes the peaks of Irazu, Barba and El Viejo. — Julius von Warscewicz, who made collecting humming birds and orchids a specialty, also made collections of plants. In 1846, he first went to Guatemala, thence to Salvador, Nicaragua, Costa Rica, Veraguas and Panama. — Berthold Seemann during the voyage of H. M. S. Herald (1845—51) explored Panama, Veraguas and Mexico. The first set of Panamaian and Mexican plants are at Kew, where they were worked upon by Seemann, Joseph Hooker and A. A. Black, who conjointly elaborated The Botany of the Voyage of the Herald. — Ralph Tate collected at Chontales, Nicaragua and Hugh Cuming in Tobago Island, Pearl islands, Montijo Bay and along Chiriqui River in 1829, while Placide Duchassaing de Fontbressin visited Panama collecting many novelties that were described by Walfers and Grisebach. — Thomas Briggs visited Veraguas and Costa Rica in 1856 for plants, E. P. Johnson, Yucatan and Tabasco and Hermann Wendland in 1856 spent eight months in Costa Rica and Nicaragua. — August Fendler collected plants in Panama, Nicaragua and Trinidad, where he died in 1883. A good set of his Panama collections is in the Kew Herbarium. — Carl Hoffmann and Alexander von Frantzius left Europe for Costa Rica in 1853. Subsequently Hoffmann in Bonlandia 1858 published several papers on the vegetation of Costa Rica especially that of the Volcan de Cartago and Volcan de Barba. Sutton Hayes botanized in Panama from 1860—63. His plants are at Kew. Moritz Wagner traveled and collected in Panama and Costa Rica. —

The editors of Biologia Centrali-Americana Osbert Salvin and Frederick Du Cane Godman visited Guatemala on several occasions between 1857 and 1874. They made a collection of some 220 species of ferns in the region of Volcan de Fuego and Volcan de Agua. At Kew are two separate sets of flowering plants, 250 species, dated 1861, and 350 species, dated 1873—74, representing the labors of these two men. — E. Paul Levy collected in the neighborhood of Segovia, Granada, etc. and wrote some interesting descriptions of the vegetation. The list of plants published by H. Polakowsky represents the results of his botanical work in Costa Rica during 1875. Bernouilli collected in Guatemala during 1868—75. John Donnell Smith botanized extensively in Central America and as a result printed Enumeratio Plantarum Guatemalensium etc. in eight parts, the last in 1907.

It is advantageous here to name those collectors and scientists, who, having travelled through Costa Rica, or established themselves there, have especially contributed to the knowledge of the natural resources of the country. They are A. Pittier, A. S. Oersted, C. Hoffmann, H. Polakowsky, M. Wagner, Captain J. Donnell Smith, C. Warscewicz, A. Tonduz, P. Biolley, A. von Frantzius, Franc Kuntze, W. M. Gabb, Jose C. Zeledon, Anastasio
ALFARO, JUAN J. COOPER, and Bishop BERNARDO AUGUSTO THIEL. GUSTAVO NIEDERLEIN in a pamphlet entitled The Republic of Costa Rica issued by the Philadelphia Commercial Museum gives an account of the character of the vegetation. Finally to KARL SAPPER, we owe much concerning the geology, physiography and plant geography of the Central American region.

X. West Indies.

OVIEDO was apparently the first to describe the plants of the West Indies. Volumes VII—XI of his Primera parte de la historia natural y general de las Indias, Seville 1535, deal with the vegetation of the islands then known to the world. JOSÉ DE ACOSTA in the fourth volume of his Historia natural y moral de las Indias (Seville 1590) describes the natural history of the Island of Santo Domingo, Mexico and Peru. CATESBY follows with the Natural History of Carolina, Florida and the Bahama Islands published in two volumes at London in 1731—1743. The first important works were those of Sir HANS SLOANE 1696—1725 and of PATRICK BROWNE (1756) both on the flora of Jamaica. The collection of Sloane forms one of the treasures of the British Museum. PLUMIER’s works 1693—1760 refer chiefly to Haiti. Enumerated his works are these:

7. Botanographia americana, plantarum ex America icones 3 vol.
8. Antillarum insularum natur. icones bot. 1 vol.

NICOLAUS J. JACQUIN published a number of works on the botany of the West Indian islands, viz., Enumeratio systematica plantarum in 1760 and Selectarum stirpium americanarum historia in 1763. — The name of ÖLOF SWARTZ is also prominently identified with the history of West Indian botany. He is best known, as the author of Nova genera et species plantarum seu "Pro- dromus descriptionum vegetabilium, maximam partem incognitorum quae sub itinere in indiam occidentalem annis 1783—87 digessit" (1788); and Flora Indiae occidentalis, etc. 3 vols. 1797—1806. SWARTZ was in Jamaica, Haiti and in a few of the lesser Antilles 1784—89.

Much less important are the publications of the first sixty years of the nineteenth century. TUSSEAC’s Flora Antilarum (1808—27) contains 138 colored plates of plants, many were collected in Haiti, others in the Island of Jamaica. LUNAX’s Hortus Jamaicensis 1814 is a mere compilation and DESCOURTILZ’

3*
Flore Medicale des Antilles (1821—29) is of little scientific value. HAMilton's Prodromus Plantarum Indiae occidentalis (1825) is a pamphlet on certain new or doubtful species and Maycock's Flora Barbadensis (1830) is a compendious list of Barbado plants. The Flora of Jamaica by Macfadyen in two volumes appeared in 1837 and in 1850 respectively. A. Richard's Flora of Cuba (1838—53) compiled from Ramon de la Sagra's and Lindén's materials is incomplete. Ramon de la Sagra's Flora cubana, ó descriptio botanica, usos, y aplicaciones de Cuba, in four volumes Paris 1853 is an important work by the director of the botanical garden at Havana.

A. H. R. Grisebach, beginning with "Systematische Untersuchungen über die Vegetation der Karaiben" in 1857, published in English in 1864 his monumental work Flora of the British West Indian Islands, which has not been supplanted by any book up to the present 1908. Grisebach, also, is the author of Plantae Wrightianae e Cuba orientali 1860—62; Die geographische Verbreitung der Pflanzen Westindiens 1865 and Catalogus plantarum Cubensium exhibens collectionem Wrightianam, etc. 1866.

W. S. Sullivant published in the Proceedings of the American Academy of Arts and Sciences in 1861 his Musci Cubenses, or Mosses collected by Charles Wright in the Eastern Part of the Island of Cuba during the years 1856, 1857 and 1858. Histoire des Fougères et des Lycopodiaceées des Antilles Paris 1866 is by A. L. A. Féé in which a critical account is given of 722 pteridophytes. — The principal works of later date on the flora of the West Indies may be mentioned: Tomas Gonzales y Delgado published in the annals of the Academy of Havana from 1867 to 1869, Apuntes para la Flora Cubana, a revision of the Cuban plants, cited by Cavantes. Fungi Cubenses by M. J. Berkeley and M. A. Curtis appeared in the Journal Linnaean Society of London in 1869; the original specimens being deposited in the Kew Herbarium. F. A. Sauvalle published in 1873 at Havana his Flora Cubana of 324 pages and Alfred Bernard in an inaugural dissertation (Halle 1877) contrasts the flora of the west and east Indian archipelagos. The mosses of the French Antilles were described by E. Bescherelle in his Florule bryologique des Antilles françaises Paris 1876. Domingo Bello y Espinoso, who lived at Mayagüez from 1848 to 1878 published at Madrid in 1881—83, Apuntes para la Flora de Puerto Rico.

The name of Baron H. F. A. Eggers is prominently identified with the botanic explorations of the West Indies. He published at least ten or eleven brochures dealing with Santo Domingo, the Bahamas, Puerto Rico, St. Croix and Tobago, but his Flora of St. Croix and the Virgin Islands, issued as a Bulletin of the United States National Museum in 1879, is the most important. — Dr. A. Stahl, whose plants are in the herbarium of Krug and Urban at Berlin, published from 1883—88 Estudios sobre la Flora de Puerto Rico. Oswald Reade printed at Hamilton, Bermuda in 1883 a book entitled Plants of the Bermudas, or Somers' Islands, and in 1884 John Henry Lefroy, the Botany of the Bermudas, as a Bulletin of the United States National Museum,
founded upon material desposited later in the Gray Herbarium at Harvard University, Kew Herbarium, London. The same year the Report on the Botany of the Bermudas and various other Islands of the Atlantic and Southern Oceans by W. Botting Hemsley appeared as Volume I, Part I Botany of the Challenger Expedition; so that the flora of these islands is well provided for by the several publications above mentioned.

In 1885 Johow's special morphologic studies entitled "Vegetationsbilder aus West-Indien und Venezuela", and "Die chlorophyllfreien Humusbewohner West-Indiens", saw the light. Flora arboricola de Cuba, aplicada de 118 pages by Sebastian Alfredo de Morales was printed at Havana in 1887. — Two works of importance to our knowledge of the algae of the Antilles appeared in 1888. One by F. Hauck, published in Engler's Jahrbücher, is entitled Meeresalgen von Puerto Rico. The other is by George Murray, viz., Catalogue of the Marine Algae of the West Indian Region, printed in Britton's Journal of Botany.

The reports of the committees appointed for the purpose of reporting on the present state of our knowledge of the zoology and botany of the Bahamas and West India islands appeared in the several reports of British Association for the Advancement of Science beginning with 1888. The Provisional List of the plants of the Bahama Islands by John Gardiner and L. J. K. Brac arranged with notes and additions by Chas. S. Dolley was published in the Proceedings of the Academy of Natural Sciences of Philadelphia for 1889. William Fawcett in the Bulletin of the Botanical Department of Jamaica for 1889 gives a report on the flora of the Cayman islands and in 1893, he published a provisional list of the indigenous and naturalized flowering plants of Jamaica. Manuel Gomez de la Maiza published in the annals of the Society of Natural History at Madrid from 1890—94 his Catálogo de las Periantiadas Cubanas, espontáneas y cultivadas.

G. S. Jennman is the author of an important series of papers in the Bulletin of the Botanical Department of Jamaica 1890—98 entitled Synoptical List with descriptions of the Ferns and Fern-allies of Jamaica and of Ferns of the British West Indies and Guiana issued under the auspices of the botanic gardens at Trinidad. — List of plants collected in the Bahamas, Jamaica and Grand Cayman is the title of a report in the Fourth Annual Volume of the Missouri Botanical Garden (1893) of an expedition led by Joseph T. Rothrock to the West Indies. New Providence, Eleuthera, Cat, Watlings, Crooked, Fortune, Great Inagua, Jamaica and Grand Cayman islands were visited. The collected plants are in the herbaria at Philadelphia and St. Louis. — Robert Combs published in the Transactions of the Academy of Sciences of St. Louis for 1897 a brochure on Plants collected in the District of Cienfuegos, Province of Santa Clara, Cuba in 1895. Johns Hopkins University circulars (1897) contain a report by W. K. Brooks on the expedition to Jamaica in the summer of 1897 marked with fatality, for J. E. Humphreys and Dr. Conant died of fever, one in Port Antonio, the other in Boston. The plants of this expedition were collected by A. Fredholm and are deposited in the United States
National Herbarium at Washington. — F. BOERGENSEN and OVE PAULSEN explored the Danish West Indies from an ecologic and phytogeographic standpoint and published their joint labors in a paper entitled Om Vegetationen paa de Dansk Vestindiske Oeer in 1898. This appeared in 1900 in a French dress under title of La Vegetation des Antilles Danoises, as an extract from the twelfth volume of La Revue Générale de Botanique. The Algae of Jamaica by FRANK SHIPLEY COLLINS is a paper printed in the Proceedings of the American Academy of Arts and Sciences in November 1901.

CHARLES FREDERICK MILLSPOUGH in the first volume of the Botanical Series of the Field Columbian Museum 1902 contributes a paper (No. 7) on the Flora of the island of St. Croix. Flora of New Providence and Andros is the title of a paper by ALICE R. NORTHROP in the twelfth volume No. 1 of Memoirs of the Torrey Botanical Club issued December 1902. J. W. HARSHBERGER, who made a botanic visit to Great Inagua, Haiti and Jamaica during the summer of 1900, has written two articles that deal with the phytogeography of those islands, viz., An Ecological Sketch of the Flora of Santo Domingo in the Proceedings of the Academy of Natural Sciences for 1901 and Notes on the Strand Flora of Great Inagua, Haiti and Jamaica in Torreya for May 1903.

Symbolae Antillanae seu Fundamenta Florae Indicae Occidentalis by IGNATIUS URBAN, which began to appear in 1898 has been continued since. The first volume contains an almost complete bibliography of West Indian botany, a mine which has been drawn upon for many facts presented here. In June 1903, the Geographical Society of Baltimore fitted out an expedition to the Bahama Islands. The results, edited by George B. Shattuck with botany by WILLIAM G. COKER, appeared in 1905 in a volume of 630 pages entitled the Bahama Islands.

Unusual activity has recently been shown by American botanists in the study of the West Indian flora. D. H. CAMPBELL, D. T. MAC DOUGAL and DUNCAN S. JOHNSON have visited Jamaica. F. S. EARLE visited the islands of Jamaica and Puerto Rico where he went in the interests of plant mycology. G. V. NASH was sent to Haiti by the New York Botanical Garden. LUCIEN M. UNDERWOOD has been in Jamaica to study its fern flora, N. L. BRITTON has visited St. Kitts and the islands of Cuba, Jamaica and the Bahaman archipelago, and MRS. BRITTON has made large collections of Cuban mosses. FRANCIS E. LLOYD and MRS. LLOYD have botanized in the Island of Dominica and MARSHALL A. HOWE has been to the Bermudas and Puerto Rico to study the marine algae. A tropic research botanic laboratory has been established at Cinchona in the Blue mountains of Jamaica under the auspices of the New York Botanical Garden, which institution has begun the publication of a Flora of the whole of North America. Another research station has been started at Bermuda under the charge of the scientists of Harvard University and the University of the City of New York. The first session was held during the summer of 1903.

The above historic summary does not claim to be complete. The most salient facts have been chosen, which illustrate the development of knowledge.
of the several phytogeographic regions of North America. The title of the most important papers, named or omitted from the accompanying history, will be given in the bibliography which follows in list form with more complete bibliographic details, than has been possible in the historic account. The attempt has not been made to furnish a complete synopsis of the literature dealing with the phytogeography of North America 1).

§ 2. Plant Geography.

1. General.

No general work solely devoted to the plant geography of North America has ever been published. The only work of a general nature, which may be said to offer any satisfactory information on this important subject, is a recent pamphlet by A. ENGLER entitled: Die pflanzengeographische Gliederung Nordamerikas erläutert an der nordamerikanischen Anlage des neuen königlichen botanischen Gartens zu Dahlem-Steglitz bei Berlin, mit einer Verbreitungskarte und einem Orientierungsplan, issued in 1902 as Notizblatt des königlichen botanischen Gartens und Museums zu Berlin, Appendix IX. Several works, however, ought to be mentioned as of especial phytogeographic significance, viz., Statistics of the Flora of the Northern United States by ASA GRAY in American Journal of Science for 1856; The Botany of the United States Geological Exploration of the Fortieth Parallel under CLARENCE KING by SERENO WATSON and D. C. EATON 1871; ROBERT BROWN's article in the Proceedings of the British association for 1871 on the geographic distribution of the floras of northwest America; ROTHROCK's Botany of the Wheeler Survey 1874; Die Florengebiete Nordamerikas by BRENDEL, noticed in Botanischer Jahresbericht 1874; Die Waldungen von Nordamerika, by H. MAYR 1890.

In the Transactions of the Academy of Sciences of St. Louis for 1877 GEORGE ENGELMANN contributed a paper on the Geographical Distribution of the North American Flora. The following papers by ASA GRAY, collected by SARGENT in the Scientific Papers of Asa Gray, must be consulted by any earnest student of the American flora: Sequoia and its History; Forest Geography and Archaeology; The Flora of North America and Characteristics of the North American Flora, which appeared in Nature for 1885. In conjunction with J. D. HOOKER was issued the Vegetation of the Rocky Mountain Region, and a Comparison with that of other Parts of the World 1881. Tenth Census Report on the Forests of North America with volume of maps by CHARLES S. SARGENT 1884; In 1881 appeared an account in the Report of Canadian Geological Survey (1879—80) of the northern limit of American forest trees with map.

1) Auf besonderen Wunsch der Herausgeber hat Prof. Harshberger die ursprünglich ausführlicher gehaltene Liste der floristischen und pflanzengeographischen Literatur noch besehränkt, wie es auch in den anderen Bänden der V. d. E. gebräuchlich ist. (Drude.)
GRISEBACH's Die Vegetation der Erde in two volumes 1884 contains much of interest. Atlas der Pflanzenverbreitung by DRUDE contains a map of North American plant regions. DRUDE's Handbuch der Pflanzengeographie 1890 should also be consulted, as also ENGEL's Versuch einer Entwicklungs geschichte der Pflanzenwelt (1879). MERRIAM's Geographic Distribution of Life in North America printed in Annual Report Smithsonian Institution (1891) is historically important. The Metaspermac of the Minnesota Valley by CONWAY MACMILLAN 1892 is invaluable. COVILLE's Botany of the Death Valley Expedition 1893 is an important work for the desert region. Pflanzengeographie auf physiologischer Grundlage by the late Dr. A. F. W. SCHIMPER 1898 is a fine reference book for many interesting details. Life Zone and crop Zones by MERRIAM 1898 was issued as a bulletin of the United States Biological Survey. KEARNEY's Report on a Botanical Survey of the Dismal Swamp Region 1901 is important. The Phytogeography of Nebraska by POUND and CLEMENTS 1900, Plant Life of Alabama by CHARLES MOHR 1901 and Flora of Washington by C. V. PIPER 1906 about complete the list of the most important works on the phytogeography of North America.

2. Physiography and Soils.

The number of separate monographs papers and books on the physiography, soils and geology of North America is too vast to present even in an abbreviated form in this section. Only those publications will be mentioned which seem to be especially useful for consultation in connection with phytogeographic work. The study of North American physiography (physical geography) and geology has gone hand in hand, but a detailed and scientific study of the superficial soil formation is of comparatively recent date. The Geological Survey of the United States publishes both bulletins, monographs and annual reports and a series of topographic and geologic maps which are intended to cover finally the entire territory of the United States. These have been frequently consulted in the preparation of this volume. The variety of topics which must be considered by the plant geographer is indicated in the following titles. The causes which have led to the production of Cape Hatteras by N. S. SHALER in the Proceedings of the Boston Society of Natural History for 1872 is a sample. Lakes and Valleys in Northeastern Pennsylvania is the title of an article by WM. M. DAVIS, in first volume of the National Geographic Magazine. ROBERT T. HILL contributed to the American Geologist in 1890 (9, 65) a paper entitled Classification and Origin of the Chief Geographic Features of the Texas Region and an article on The Making of Pennsylvania is suggestive.

The first report of the United States Board on Geographic Names was printed by the government in 1891. E. W. HILGARD furnishes an account of the physical and industrial geography of California to the Geographical Journal of 1893. The National Geographic Magazine for 1894—95 contains a valuable contribution on the Geomorphology of the Southern Appalachians
by Charles W. Hayes and M. R. Campbell. However, the most important series of pamphlets on the physiography of North America appeared as National Geographic Monographs prepared under the auspices of the National Geographic Society in 1895. Ten of these monographs by J. W. Powell, N. S. Shaler, I. C. Russell, Bailey Willis, C. Willard Hayes, J. S. Diller, W. M. Davis and G. K. Gilbert have been issued and are replete with interest to the phytogeographer.

Three volumes of Stanford's Compendium of Geography deal with North and Central America. North America is represented by two volumes one on Canada and Newfoundland by Samuel Edward Dawson published in 1897 and a second by Henry Gannett on The United States (1898). — The second volume of two devoted to Central and South America deals with Central America and West Indies by A. H. Keane published in 1901. The handbooks dealing with the Central American countries issued under the auspices of the U. S. Bureau of American Republics have been found extremely useful, as reference texts, as also the publications of the Philadelphia Commercial Museum on Costa Rica, Nicaragua and Guatemala. — For the West Indies, Robert T. Hill's book Cuba and Porto Rico with the Other Islands of the West Indies 1898 has been frequently consulted. Gannett's Dictionary of Altitudes in the United States (third edition), published as bulletin 160 (United States Geological Survey) in 1899, is a useful compendium of important data and the second report of the United States Board on Geographic Names published in 1900 was at hand for reference. — The articles of Carl Sapper, as an authority on the physiography of the Central American States, are invaluable for the states of Guatemala and Honduras. These appeared in German journals in 1895 and 1902 respectively.

must be mentioned now which is destined to play an important part in advancing our knowledge of the physiography of the northeastern United States. Reference is made to The Physical Geography of New York State by Ralph S. Tarr published in 1902 in 307 pages and many illustrations. For the northern Appalachians and the region of the Great Lakes and glacier covered districts of North America this book is indispensable. Finally Fenneman’s Lakes of Northeastern Wisconsin published by the Wisconsin Geological and Natural History Survey throws important light on the lake district of Central North America.

As geologic reference texts the phytogeographer should consult two books. Manual of Geology Treating of the Principles of the Science with special Reference to American Geological History by James D. Dana (fourth edition 1895) and Text-Book of Geology by Sir Archibald Geikie (1893). These books do not exhaust the list of important works on American geology, which comprise bulletins, monographs and books of special import, such as Wright’s Ice Age in North America 1891. Nearly all of the eastern and southern United States have supported at one time or another an agricultural survey in which the general character of the soil has been recognized and described. This information is scattered through a great number of reports on agriculture and geology, many of them dating in the early part of the nineteenth century. Maps have been published also, representing the general distribution of soil types, but as the results lack cohesion and definite plan, they are not tangible. — The United States Department of Agriculture to meet the demand for a more accurate soil survey inaugurated the Division of Soils connected with which there is a laboratory of soil physics and a laboratory of soil chemistry for considering and investigating the many problems which press for a solution. Parties in the field supply the data with which maps are plotted. So far as possible, the topographic sheets of the United States Geological Survey are used as base maps for soil work. — The results of the laboratory and field work have appeared in a series of twenty-two bulletins 1895—1903 which give important material that can be utilized by the botanist. The maps are published in conjunction with the reports on the field operations of the Division of Soils. Reports beginning with that for 1899 have been printed, one volume of text and one of maps and plates. These are indispensable to the plant geographer and plant ecologist as well as vegetable physiologists. In addition to these useful reports and bulletins should be mentioned a paper in the Yearbook of the United States Department of 1895 on the origin, value and reclamation of alkali lands. Hilgard’s book on Soils 1906 with important chapters on soils and native vegetation supplements the earlier reports of Hilgard and Loughridge on the soils of the cotton region. The Vegetation of the Bay of Fundy Diked Marshes by W. F. Ganong appeared in the Botanical Gazette for 1903. The British Association committee report upon the depth of permanently frozen soil in the Arctic region has a direct bearing upon the flora of the northern tundras.
3. Altitudinal Distribution.

The papers that deal with the altitudinal distribution of plants in North America are comparatively few in number.

For the White Mountains, we have the List of Plants found in New Hampshire only on Alpine Summits by C. H. Hitchcock and published in his report on the geology of New Hampshire in 1874. J. W. Chickering contributed to Field and Forest (1876) a Catalogue of the Alpine and Subalpine Flora of the White Mountains and C. G. Pringle the same year, an article to the American Naturalist on the alpine and subalpine plants of Vermont. "Among the Clouds" for 1900 gives a list of alpine plants of Mt. Washington made by the Appalachian Club. The alpine flora of Mt. Katahdin has been investigated by the New England Botanical Club, L. H. Harvey, the results of whose labors appear in the fifth and third volumes of Rhodora, and by an ecologic party under the leadership of H. C. Cowles of the University of Chicago, while the ascent of the same mountain by J. W. Harshberger is described in the fifth volume of the Plant World. The Bulletin of the Torrey Botanical Club for 1890 gives an account of the flora of Mt. Monadnock by Walter Deane. Plants of the Summit of Mt. Marcy, one of the few alpine peaks in Adirondack mountains, is the title of an article by Charles H. Peck in the Bulletin of the New York State Museum for October 1899. For the mountains of the southern states, the list is even smaller, a paper by J. W. Harshberger on the ecology of mountainous North Carolina published in the Botanical Gazette for 1903, one by Pinchot and Ashe on the forests and one on the altitudinal distributions of ferns with several shorter papers by John K. Small practically completes the enumeration. The mountains of the western United States and of Mexico have been investigated to some extent. Thomas Meehan, T. S. Brandegee and Henry Gannett have contributed to the Botanical Gazette articles on the timber line of high mountains. As bulletins of the North American Fauna we have contributions of this subject in the results of a biological survey of Mount Shasta, California (1899) and of the San Francisco mountains (1890) by C. Hart Merriam.

The Rocky Mountain alpine region has been investigated by C. C. Parry and T. D. A. Cockerell the latter publishing a paper in the Bulletin of the Torrey Botanical Club on the flora of high altitudes in Custer County, Colorado. Zonal Distribution of Trees and Shrubs in the Southern Sierra is the title of a paper by William R. Dudley in the Sierra Club Bulletin for 1901, and a Botanical Survey of San Jacinto Mountain is a monograph by Harvey Monroe Hall, printed as one of the University of California publications for 1902. Vegetation sobre las Altas Montanas de Mexico published in La Naturaleza 1887 by H. de Saussure.

The Temperate and Alpine Floras of the Giant Volcanoes of Mexico by Angelo Heilprin 1892, Über die untere Niveaugrenze des Eichen- Kiefernwaldes am Vulkan von Colima by E. Kerber 1882, Vegetation des Piks von
Orizaba by LiebmAnn in Botanische Zeitung 1844 are publications dealing with the alpine summits of the high mountains of Mexico. Papers which are more or less physiographic in character throw important light on the subject here discussed. — Die Hochketten des nordamerikanischen Felsengebirges und der Sierra Nevada by Dr. Emil Deckert is one published in Zeitschrift der Gesellschaft für Erdkunde zu Berlin in 1901. Höhenmessungen im Colorado-Territorium und die Baumgrenze in den Felsengebirgen appeared in Peter-Mann’s Mitteilungen in 1866 and Observations on Popocatepetl and Ixta-chuatl is a bulletin of the Field Columbian Museum by Oliver C. Farrington, issued April 1897.

4. Phenology.

Phenologic observations have been pursued systematically abroad. Although the importance of the subject has long been recognized by American botanists the observations have been made sporadically so that American records lack that continuity and completeness which many European ones show.

Phenologic observations in Canada have been made by A. H. McKay, who brought them together in the Proceedings of the Nova Scotia Institute of Science for 1897 and in the eight volumes of the Canadian Record of Science. H. C. Irish published some valuable tabular and graphic records in the Fortieth Report Missouri State Horticultural Society 1898 in a paper, entitled Comparative Phenological Notes and later in the American Naturalist for 1900. Sporadic records have appeared in several of the earlier volumes of the Bulletin of the Torrey Botanical Club from the pens of N. L. Britton and L. H. Pammel the latter also writing a paper for the monthly Review of Iowa Weather and Crop Service, October 1891 on climate and plants. The Botanical Gazette in its earlier volumes should be referred to for phenologic data furnished by W. W. Bailey for Rhode Island, by T. S. Brandegee for Colorado, and others. Crozier published a pamphlet in 1885, called The Modification of Plants by Climate which has been frequently quoted. One of the earliest American expressions upon phenology was made by Frederick Brendel of Illinois, who, in comparing the late spring of 1857 with the very early spring of 1859, found in some species a striking coincidence of the sums of the mean temperature and of the number of days on which the temperature rose above freezing point. In his Flora Peoriana (1887) he extended his views. E. W. Hervey published at New Bedford in 1860 his Catalogue of the plants of New Bedford arranged phenologically. Halsted also has made observations on the data of blossoming of the early prairie flowers and has published them in the Popular Science Monthly (XXXI: 85). Meehan’s Monthly for June 1894 contains the phenologic records of Edwin Jellett. The Philadelphia Public Ledger for 1896 and 1897 contains lists of plants collected by members of the Philadelphia Botanical Club with dates of flowering and fruits. Although these lists are not primarily phenologic, yet they are useful in determining the approximate dates of two important phases of
plant development. In line with these is DARRACH'S Plants appearing in Flowers in the Neighborhood of Philadelphia February to November 1883.

The general works on American phenology are few. Modern Meteorology by WALDO, published in 1893, contains an important resumé. The Advent of Spring an article by MARK W. HARRINGTON, which appeared in Harper's Magazine in May 1894, describes the advance of the southern wave of 43.8° F. northward across United States, when Spring may be said to begin. CHARLES ROBERTSON contributes to the twenty-ninth volume of the American Naturalist, a paper entitled the Philosophy of the Flower Seasons and the Phaenological Relations of the Entomophilous Flowers and the Anthophilous Insect Fauna, and HENRY CLARKE to the twenty-seventh volume of the same journal (1893) the Philosophy of the Flower Seasons, while J.W. HARSHBERGER contributed to Science an article on the origin of the vernal flora. Instructions for taking Phenological Observations by L. H. BAILEY was abstracted from Monthly Weather Review for September 1896, while the same botanist devotes two chapters to a phenologic discussion in his book, the Survival of the Unlike. These Chapters were the outcome of a paper prepared for the Weather Bureau United States Department of Agriculture entitled Some Suggestions for the Study of Phenology. He gives speculative note on phenology the interrelations of climatology and horticulture while a chapter is devoted to acclimatization. The field work of the Division of Biological Survey of the U. S. Department of Agriculture is based on the publications of C. HART MERRIAM, who founded his system on the laws of temperature control of the geographical distribution of terrestrial animals and plants, essentially phenologic data. Finally should be mentioned the excellent records kept by members of the Botanical Society of Pennsylvania. These incorporated with those kept by RAND of Radnor, Pa. for a long series of years have been correlated and classified for future reference use.

It is clearly evident, therefore, that the American literature on phenology is very meagre and that the so called phenologic observations have been mere records of dates of blooming of flowers, leafing of trees, migration of birds, peeping of frogs and the like, without much correlative data respecting the local climate.

Chapter II. Bibliography.

The titles in the following lists are arranged first geographically and then alphabetically according to the names of the authors as the most convenient method of displaying the names of books and papers upon the North American flora. The titles of a number of works, or monographs, which deal with the physiography, geology and geography of the several regions are also included, so that the following enumeration, very restricted as it is, yet gives the more
important books which have been instrumental in the writing of this book. As this book is merely an introduction to the phytogeography of North America, many titles have been omitted purposely from the bibliography, because they will come naturally into prominence in the preparation of special volumes on North American flora, which are designed to follow the publication of this volume.

A. General works on North American botany and plant-geography.

AGASSIZ, LOUIS and CABOT, J. ELLIOTT: Lake Superior: its physical Character, Vegetation, and Animals. Boston 1850.

BIGELOW, JACOB: The comparative Forwardness of the Spring in different Parts of the United States. Cambridge 1818.

— A System of Nomenclature for Phytogeography, Engler’s Botanische Jahrbücher. XXXI. Heft 45/5. 1902.

— Formation and succession Herharia (Nebraska) University Studies No. 4, Oct. 1904.

EATON, AMOS and WRIGHT, JOHN: North American Botany; comprising the native and common cultivated Plants. North of Mexico. Troy 1840.

ENGLER, A.: Versuch einer Entwicklungsgeschichte der Pflanzenwelt, insbesondere der Florengebiete seit der Tertiärperiode, 1879—82.

GRAY, ASA: A Flora of North America: containing abridged Descriptions of all the known indigenous and naturalized Plants growing north of Mexico; arranged according to the Natural System by John Torrey and Asa Gray Vol. I, New York 1838—40; Vol. II, 1841—43.

— Notices of European Herbaria, particularly those most interesting to the North American Botanist. American Journal Science XL: 1—18. (1841.)

— Observations upon the Relations of the Japanese Flora to that of North America, and of other parts of the north temperate Zone. Memoirs American Academy Arts and Sciences, new ser. VI: 377—432. 1858—59.
— Address before American Association Advancement Science on Relationships of Flora of America and Asia. Proceedings American Association XXI.

HARVEY, WILLIAM HENRY: Neris Boreali-Americana. Smithsonian Contributions to Knowledge III Art. IV: 1—152; V Art. V: 1—262; X Art. II: 1—142.

HUMBOLDT, A. VON: Essai sur la Géographie des Plantes. 1805.
— Ideen zu einer Physiognomik der Gewächse. 1806.

— The North American Silva, or a Description of the forest Trees of the United States, Canada and Nova Scotia, not described in the Work of François André Michaux, etc. Philadelphia, three volumes 1842—54.

PATTERSON, Check-List of North American Plants including Mexican Species which approach the United States Boundary. Oquawka, Illinois 1887.

— Patterson’s numbered Check-List of North American Plants north of Mexico, Oquawka, Illinois 1892.

Harshberger, Survey N.-America.
PURSH, FREDERICK: Flora Americae septentrionalis, or a systematic Arrangement and Description of the Plants of North America. London two volumes. 1814.
— Specimen Floraee Americae septentrionalis cryptogamica. Raleigh 1821.
— Genera lichenum; an Arrangement of North American Lichens. Amherst 1872.
Underwood, Lucien Marcus: A preliminary Comparison of the hepatic Flora of boreal and

— Moulds, Mildews and Mushrooms. New York 1899 with detailed bibliography of papers
on American fungi.

— A descriptive Catalogue of the Grasses of the United States including especially the grass
Collections at the New Orleans Exposition. Washington 1885.

Warming, Eugenius: Lehrbuch der ökologischen Pflanzengeographie, eine Einführung in die

Whitney, Milton: Field Operations of the (Division) Bureau of Soils. First Report (Report
No. 64 of the department) 1889; Second Report 1900; Third Report 1901; Fourth Report
1902 (each with volume of maps).

Wolle, Francis: Desmids of the United States and List of American Pediastrums. Bethlehem
1884. (53 colored plates.)

— Fresh-water Algae of the United States (exclusive of the Diatomaceae) complimentary to
Desmids of the United States. Bethlehem 1887. (51 plates.)

— Diatomaceae of North America. Bethlehem 1890. (112 plates.)

B. Special works on the Territories.

Sect. I. Canada.

Science, IV: 146; V: 13.

Barnston, George: Remarks upon the geographical Distribution of the Order of Ranunculaceae
throughout the British Possessions of America. Canadian Naturalist II: 12.

— Collection of Plants from British Columbia, made by Mr. James Richardson in the Summer of (1874) Canadian Naturalist, new series VIII: 90.

Barton, Benjamin Smith: Geographical View of the Trees of North America between latitude

Bartram, William: Observations, etc., in Travels from Pennsylvania to Onondaga, Oswego and
the Lake Ontario in Canada. London 1751.

Bell, John: The Plants of the West Coast of Newfoundland. Canadian Naturalist new
series IV: 256; V: 45.

Bell, Robert: The natural History of the lower St. Lawrence, the Saguenay and Lake St. John
(1857); Catalogue with Notes of Animals and Plants etc. Geological Survey of Canada
1857, 1858.

— Catalogue of Plants collected on the south and east Shores of Lake Superior and on the
north Shore of Lake Huron; The Trees and Shrubs growing around Lake Superior and

— Recent Explorations to the South of Hudson Bay. The Geographical Journal X: 1. 1897.

— Chloris Melvilliana. A List of plants collected at Melville Island in the years 1819-20 by the Officers of the Voyage of the Discovery under Captain Parry. App. XI, Botany p. 261-310, London 1824. — German translation:

— Verzeichnis der Pflanzen, welche von den Offizieren der englischen Expedition zur Entdeckung einer nordwestlichen Durchfahrt auf der Melville’s Insel gesammelt wurden. [l. c. I. 357-464.]

— Plants of the shores of the Polar Sea (cfr. Sir John Franklin).

CORNUT, JACQUES PHILIPPE: Canadensium plantarum historia. Paris 1635.

DOUGLAS, DAVID: Sketch of a Journey to the northwestern Part of the Continent of North America during the years 1824-27; Summer Excursions to the Columbia River; Journey to Hudson’s Bay. Hooker’s Compendium to Botanical Magazine II. (1836.) p. 52, 103 and sqq.

Drummond, Andres Thomas: Distribution of Canadian forest Trees in its Relations to Climate and other Causes. Canadian Economies 1884.
— Our northwest Prairies, their Origin and Forests; Divisions of the Flora of the Dominion Canadian Record of Science II: 145. 467. 1886—87.
— The Distribution and physical and past geologic Relations of British North American Plants. Canadian Record of Science II: 412, 457; III: I.

Memoires de l’Académie, Paris 1746.

— Vegetation of the Bay of Fundy, salt and diked Marshes: an ecological Study. Botanical Gazette XXXVI, 1903.

Harvey, William Henry: Nereis Boreali-Americana, or Contributions to the History of the marine Algae of North America. Smithsonian Contributions III, 1852; V, 1853; X, 1858.

Hearne, Samuel: A Journey from Prince of Wales Fort in Hudson’s Bay to the Northern Ocean 1769—72. London 1796.

Hennepin, Louis: A new Discovery of a vast Country in America, extending about 4,000 miles between New France and Mexico; with descriptions of the Great Lakes, Cataracts, Rivers, Plants and Animals. London. 1698.

— Some account of a Collection of arctic Plants found by Edward Sabine during a Voyage in the Polar Seas in the year 1823. London. 1824.

— The Botany of Captain Beechy’s Voyage to the Pacific and Bering’s Strait in the years 1825–28. London. 1841.

— Remarks on the Flora of the northern Shores of America, etc. Transactions Royal Society Canada, V. sect. iv: 207.

Macoun, John: Catalogue of Canadian Plants, Geological Survey Canada. Part 1, Polypetalae 1883; Part 2, Gamopetalae 1884; Part 3, Apetalae 1886; Part 4, Endogens 1888; Part 5, Aerogens 1890; Part 6, Musci 1892 (by J. Macoun and Kindberg).

MACOUN, JOHN: Forests of Vancouver Island. Garden and Forest I: 46. 1888. The mountain forests of Vancouver Island; l. c. II: 525. 1889.

— List of Plants known to occur in the Labrador Peninsula. Annual Report Geological and Natural History Survey Canada 1895: 353.

— Contributions from the Herbarium of the Geological Survey. Canadian Record of Science VI: 23, 76 etc.

NUTTALL, THOMAS: The North American Sylva, or a Description of the Trees of the United States, Canada and Nova Scotia, not described in the work of F. A. Michaux, Philadelphia. 1842.

— A Review of Canadian Botany from the first settlement of New France to the Nineteenth Century part I. Proceedings and Transactions of the Royal Society of Canada IV: 75—1887. Part II A Review of Canadian Botany from 1800 to 1895; l. c. second series III. iv: 3. (1897)

— Nova Scotia Fungi; I. c.: V, VI, VII.

Sect. II. Northeastern, Northern Central and Central United States.

AUGHEY, SAMUEL: Catalogue of the Flora of Nebraska. University of Nebraska. Lincoln 1875.

BANISTER, JOHN: Catalogus Plantarum in Virginia observatarum [Raji Historia plantarum II: 1626, London 1688 fol.].

— Compendium Florae Philadelphicae, containing a Description of the indigenous and naturalized Plants found within a Circuit of ten miles around Philadelphia, two volumes. Philadelphia 1818.

— Botany of the northern and middle United States north of Virginia. Albany 1833.
Bennett, Jas. L.: Plants of Rhode Island being an Enumeration of Plants growing without cultivation in the State of Rhode Island. Providence 1888.

— Are the Trees Advancing, or Retreating upon the Nebraska Plains. Science, new series X: 768.

Bigelow, John M.: Florula Lancastriensis, or a Catalogue comprising nearly all the Flowering and Filicoid Plants Growing Naturally within the Limits of Fairfield County, etc. Proceedings Medical Convention of Ohio at Columbus. May 1841.

— Flora Peoria. The Vegetation in the Climate of middle Illinois. Peoria 1887.

— Studies on plant Distribution. Parts I, 2, l. c. II: 17. Parts 3—8, II: 137. (Jan.—July 1902.)

CHRISTY, MILLER: Why are the Prairies Treeless? Proceedings Royal Geographical Society XIV: 78. 1892.

CLARK, JOSEPH: Catalogue of the flowering Plants and Ferns observed in the Vicinity of Cincinnati. Cincinnati 1852.

CLUTE, WILLARD NELSON: The Ferns and fern Allies of the Upper Susquehanna Valley. 1898.

— Our Ferns in their Haunts. New York 1901.

— The physiographic Ecology of Chicago and Vicinity. Botanical Gazette XXXI: 73, 145. (1901.)

— Contrasts and Resemblances between the sand dune Floras of Cape Cod and Lake Michigan; l. c. XVII: 262. (1903.)

DARLINGTON, WILLIAM: Florula Cestrica, an Essay towards a Catalogue of the phaenogamous Plants, native and naturalized, growing in the Vicinity of the Borough of West Chester, in Chester County, Pennsylvania, etc. West Chester 1826.
Bibliography. — Northern etc. States. 59

EGGERT, HENRY: Catalogue of the Phanogamous and vascular Cryptogamous Plants in the Vicinity of St. Louis, Mo. St. Louis 1891.

—— Notes on the cryptogamic Flora of the White Mountains. Appalachia III, part 3: 232. (1884.)

—— Vascular Plants of Mt. Katahdin. Rhodora III: 166. (1901.)

—— The soil Preferences of certain alpine and subalpine Plants. Rhodora IX: 149—193. (1907.)

FITZPATRICK, T. J.: Manual of the flowering Plants of Iowa, Part I Polypetalae; Part II Gamopetalae.

— Manual of the Bot. etc., Second Edition; including Virginia, Kentucky and all east of the Mississippi; arranged according to the Natural System. (Mosses and Liverworts by Wm. S. Sullivant) with fourteen plates illustrating the genera of ferns, etc. 1859.
— Manual etc. Fourth revised Edition. To which is added Garden Botany, an Introduction to a Knowledge of the common cultivated Plants. With twenty-two plates, illustrating the grasses, ferns, mosses, etc. New York 1863.
— Manual of the Botany of the northern States, including the District east of the Mississippi and north of North Carolina and Tennessee, arranged according to the Natural System. Fifth Edition. With twenty plates, illustrating the sedges, grasses, ferns, etc. New York 1867 (a second issue in 1868 has four pages of addenda).
— School and Field Book of Botany, consisting of "Lessons in Botany", and "Field, Forest and Garden Botany", bound in one volume. New York 1881.

Grout, A. J.: A List of the Mosses of Vermont with analytical Keys to the Genera and Species. Contributions to Botany of Vermont I. Botanical Department University Vermont. 1898, with Supplement: Contributions IV, Botanical Department University Vermont. 1898.

— The Forest at the Natural Bridge, Virginia. Forest Leaves IX: 42. (1903.)
— The plant Formations of the Adirondack Mountains. Torreya V: 187—194. (1905.)
— The plant Formations of the Catskills. Plant World VIII: 276—281. (1905.)

Havard, V.: Botanical Outlines of the Country marched over by the seventh United States Cavalry during the Summer of 1877. Annual Report Chief of Engineers U. S. A. Appendix QQ, 1681—87. (1878.)

Hervey, E. W.: A Catalogue of the Plants found in New Bedford arranged according to the Season of Flowering New Bedford 1860.

— Catalogue of the Animals and Plants of Massachusetts. 1835.

Hitchcock, C. H.: List of Plants found in New Hampshire only on alpine Summits. Geology New Hampshire I: 571. (1874.)

— Observations on the Geology and Botany of Martha’s Vineyard; l. c. XIII: 8—22. 1893.

— Vegetation of Cape Cod; l. c. II; 381—407.

Howe, Clifton D.: A preliminary List of the Hepaticae of Vermont. Contributions to the Botany of Vermont III. Botanical Department University of Vermont. 1899.

— Catalogue of the flowering Plants, Ferns and Fungi growing in the Vicinity of Cincinnati. Journal Cincinnati Society Natural History I: 42—68. (1878.)

KALM, PETER: Beschreibung der Reise nach dem nördlichen Amerika. Göttingen 1754—64.

— Plants of Wisconsin. Transactions Wisconsin State Agricultural Society II: 375—419. (1852.)

LIVINGSTON, B. E.: Distribution of the upland-plant Societies of Kent County, Michigan. Botanical Gazette XXXV: 36—55. (1903.)

MACKENZIE, KENNETH K.: Manual of the Flora of Jackson County, Missouri Kansas City, Mo. 1902.

MARSHALL, HUMPHREY: Arbustum Americanum, the American grove, or an alphabetical Catalogue of forest Trees and Shrubs, natives of the American United States. Philadelphia 1785.

MARTINDALE, ISAAC C.: Marine Algae of the New Jersey Coast and adjacent Waters of Staten Island. Memoirs Torrey Botanical Club I: 87—111. (1889.)

— Histoire des Arbres forestiers de l’Amérique septentrionale, etc. Paris 1810.

MÜHLENBERG, G. H. E.: Catalogus Plantarum Americae Septentrionalis: huc usque Cognitarum Indigenarum et Cieorum, etc. Lancaster 1813.

PIKE, MAJOR Z. M.: An Account of Expeditions to the Sources of the Mississippi, and through the western Ports of Louisiana to the Sources of the Arkansas, Kansas, La Platte, and Pierre Juan Rivers. Philadelphia 1810.

Robinson, John: The flora of Essex County, Massachusetts. Salem; Essex Institute 1880.

—— Date of the Flowering of Trees and Shrubs in eastern Massachusetts. Transactions Massachusetts Horticultural Society 1880: 161—173; 1881: 348—358.

Roth, Filibert: Forestry Conditions and Interests in Wisconsin. United States Division Forestry, Bulletin 16.

—— Localization of Plants in the Feriger lake Region, etc. Torreya VII: 69—73.

—— Flora of the sand Hills of Nebraska. Contributions United States National Herbarium III No. 3: 133—204. (1895.)

Sears, J. H.: List of native and introduced Plants observed in Flower in the Vicinity of Salem during the Spring of 1886, on or before May ist. Bulletin Essex Institute XVIII: 95. (1886.)

Bibliography. — Northern etc. States.

SHIMEK, B.: The Distribution of forest Trees in Iowa. Proceedings Iowa Academy Sciences VII: 47—59 with map. (1899.)

SMYTH, BERNARD B.: Catalogue of the flowering Plants and Ferns of Kansas. Bulletin Washburn College Laboratory Natural History II: 163. (1889.)

SULLIVANT, W. S.: Musci Alleghanienses. Columbus, Ohio 1846.

TODD, J. E.: Distribution of Timber and Origin of Prairie in Iowa. American Naturalist XII: 91—96. (1878.)

TORREY, JOHN: A Catalogue of Plants growing spontaneously within thirty Miles of the City of New York. Albany 1819.
— Notice of the Plants collected by Prof. D. B. DOUGLAS during the Summer of 1820 around the Great Lakes and the Upper Waters of the Mississippi. American Journal Science IV: 56—69. (1822.)
— Flora of the northern and middle Sections of the United States, or systematic Arrangement and Description of all the Plants heretofore discovered north of Virginia. New York 1824.
— Compendium of the Flora of the northern and middle States, containing Descriptions of all the Plants exclusive of the Cryptogamia north of the Potomac. New York 1826.
— Flora of the State of New York, containing Descriptions of all Plants discovered in the State with their economical and medicinal Properties. 2 volumes. Albany 1843.

UPHAM, WARREN: Catalogue of the Flora of Minnesota, including its phaenogamous and vascular cryptogamous Plants, indigenous, naturalized and adventive. 12th Annual Report Geological and Natural History Survey Minnesota. Part VI.

UNDERWOOD, L. M.: List of Trees and woody Plants growing spontaneously in Madison and Onondaga Counties. Syracuse 1879.

Harshberger, Survey N.-America.

— The fresh water Algae of the Plains. American Naturalist XXIII: 1011. (1889.)

Sect. III. Southeastern and Southern States.

BARTRAM, WILLIAM: Travels through North and South Carolina, Georgia, east and west Florida, etc. Philadelphia 1791.
BOSSU, CAPT.: Travels through that Part of North America formerly called Louisiana. London, two volumes, 1771. (In volume II A Catalogue of the Known Plants, Shrubs and Trees in North America.)

— Distribution and Adaptation of the Vegetation of Texas. Publications University of Texas. No. 82. (1906.)

BUTLER, G. D.: List of some of the most interesting Plants collected in the Indian Territory. Botanical Gazette III: 65—68; 74—78. (1878.)

CATESBY, MARK: Natural History of Carolina, Florida and Bahama Islands. Two volumes. London 1731—43.

— An Enumeration of some Plants, chiefly from the semitropical Regions of Florida. etc. Botanical Gazette III: 2—6, 9—12, 17—21. (1878.)

— Botany of the southern States (in two Parts) New York, Savannah 1855.

ERNST, A.: The Plants common to the southern United States and Venezuela Journal of Botany, British and foreign V: 290. (1867.)

GRAY, ASA: Notes of a botanical Excursion to the Mountains of North Carolina, etc. American Journal Science XLII: 1—49. (1842.)

— Plantae Texanae: a List of Plants collected in eastern Texas in 1872, and distributed to Subscribers by ELIHU HALL. Salem 1873.

— Some noteworthy Stations for Pinus palustris. Torreya V: 55—60 (1905).

— Centers of Distribution of coastal plain Plants. l. c. VII: 42—45 (1907).

— The lower austral Element in the Flora of the southern Appalachian Region. Science, new series XII: 830. (1900.)
— List of the Phanerogams of Key West, South Florida, etc. Memoirs Manchester, Literary and Philosophical Society, third series, VIII: 138—154. (1884.)
— Distribution of the forest Trees in the Gulf Region. American Journal Forestry I: 78—88; 120—126; 179—184; 209—216. (1883.)
— Plant Life of Alabama, an account of the Distribution, modes of association etc., with a systematic catalogue. Contributions United States National Herbarium. VI. 1—921 with map. (1901.)
Nuttall, Thomas: A Journal of Travels into the Arkansas Territory during the year 1819, etc. Philadelphia 1821.
— Collections towards a Flora of the Territory of Arkansas. Transactions American Philosophical Society, new series, V: 139.

PORCHER, F. PEYRE: Sketch of the medical Botany of South Carolina. Transactions American Medical Association II. 1849.

—— Resources of the southern Fields and Forests, medical economical and agricultural. Charleston. 1869.

—— A List of the more common native and naturalized Plants of South Carolina. State Board Agriculture of South Carolina, Resources and Population, Institutions and Industries. Charleston 1883.

ROBIN, C. C.: Flore Louisienne ou Description des Plantes qui ont été observées par l'Auteur dans ses Voyages à la Louisiane. 1807.

ROOSEVELT, THEODORE: Message from the President of the United States transmitting a Report of the Secretary of Agriculture in Relation to the Forests, Rivers and Mountains of the southern Appalachian Region. JAMES WILSON, Secretary; 210 pp. with 78 plates. Washington 1902.

SHECUT, JOHN L. E. W.: Flora Carolinæensis; or a historical, medical and economical Display of the vegetable Kingdom according to the Linnaean, or sexual System of Botany. Charleston 1806.

—— Catalogue of native phænogamous Plants and Ferns of Kentucky. Lexington 1833.

TORREY, JOHN: Plants collected during Capt. MARCY's Exploration of the Red River of Louisiana in 1852.

Sect. IV. Rocky Mountains.

Bray, William L.: The ecological Relations of the Vegetation of western Texas. Botanical Gazette XXXII. (1901.)

— The diverse Floras of the Rocky Mountain Region. Science, new series VII: 623. (1898.)

ENGELMANN, GEORGE: Plants collected during the Exploration of the upper Missouri by F. V. HAYDEN. Transactions American Philosophical Society 1862.

FREMONT, BREVET CAPTAIN J. C.: Report of the exploring Expedition to the Rocky Mountains in the year 1842, and to Oregon and North California in the years 1843—44. Washington 1845.

MERRIAM, C. HART: Results of a biologic Reconnoissance of south-central Idaho. United States Department Agriculture, North American Fauna No. 5. (1891.)

— Catalogue of a Collection of Plants made chiefly in the valleys of the Rocky Mountains or northern Andes, toward the Sources of the Columbia River by Nathaniel B. Wyeth. Journal Academy Natural Sciences Philadelphia VII: 5—60.

— Descriptions of Plants collected by Mr. WILLIAM GAMBEL in the Rocky Mountains and upper California. Proceedings Academy Natural Sciences Philadelphia IV: 7—26. (1848.)

— Notes on the Grasses and forage Plants of Iowa, Nebraska and Colorado. United States Department Agriculture, Division of Agrostology Bulletin 9. (1897.)

— The xerophytic Vegetation of the Uintah Mountains. Science, new series XIV: 601. (1901.)

— Some ecological Notes on the Vegetation of the Uintah Mountains. Proceedings Iowa Academy Sciences X: 57—68. (1903.)

PARRY, C. C.: Summer Botanizing in the Wasatch Mountains, Utah Territory. Proceedings Davenport Academy Sciences I: 145. (1876.)

— Botanical Observations in Western Wyoming. American Naturalist VIII: 9, 102, 175, 211.

PORTER, THOMAS C.: List of Plants collected by Mr. THADDEUS A. CULBERSTON on an Expedition to the Manvaises Terres and upper Missouri in 1850. Fifth Annual Report Smithsonian Institution. 1850.

— Catalogue of Plants collected during the Expedition of F. V. HAYDEN to the Headwaters of the Yellowstone River in the Summer of 1871, etc. (Mosses by L. LESQUEREUX; Lichens by E. TUCKERMAN) United States Geological and Geographical Survey Montana and Adjacent Territory: 477—498. Washington 1871.

— Woody Plants of Boulder County; l. c. V No. 1: 47—63 (1907).

— Composition of the Rocky Mountain Flora. Science, new series XII: 870. (1900.)

— Flora of Colorado. Experiment Station of the Colorado Agricultural College, Bulletin 100; pages xxii—447 (1906).

RYDBERG, P. A. and SHEAR, C. L.: A Report upon the Grasses and forage Plants of the Rocky Mountain Region. Division of Agrostology, United States Department Agriculture, Bulletin 5. (1897.)

DE SCHWEINITZ, L. D.: Catalogue of Plants collected in Long’s second Expedition to the northwestern Territory by Mr. Thos. Say in the year 1823. (1824.)

SHANTZ, H. L.: A study of the mesa region east of Pikes Peak. Botanical Gazette XXII: 16—47. (1906.)

— A biological study of the lakes of the Pike’s Peak Region. Transactions Amer. Micros. Soc. XXVII: 75—97 (1907).

— List of plants collected on a military reconnaissance from Fort Leavenworth, Missouri to San Diego, California. Emory’s report of reconnaissance: 135—156. Washington 1848.

— Description of plants collected during the Marcy Expedition to the Red River of Louisiana. Washington 1854.

— A report upon the Grasses and forage Plants and forage conditions of the eastern Rocky Mountain Region. United States Department Agriculture, Division of Agrostology, Bulletin 12. (1898.)

Sect. V. Southwestern Arid States and Great Basin.

— The ecological Relations of the Vegetation of western Texas. Botanical Gazette XXXII: 99; 170. (1901.)

— Distribution and Adaptation of the Vegetation of Texas. Bulletin University of Texas No. 82. pages 108 (1906).

COCKERELL, T. D. A.: Life Zones in New Mexico. New Mexico Agricultural Experiment Station. Bulletin No. 24. (1897.)

— The native Vegetation and Crops of the Colorado Delta in the Salton Basin. California Agricultural Experiment Station. Bulletin 140. (1902.)

DURAND, E.: Description of the Species constituting the Botany of the Basin of the Great Salt Lake of Utah, as far as it is known. Transactions American Philosophical Society, new series XI: 155—180. (1860.)

Plantae Wrightianae Texano-Neomexicanae: an Account of a Collection of Plants made by CHARLES WRIGHT in an expedition from Texas to El Paso, New Mexico. Smithsonian Contributions III: 1—146 (1852); Part II, Smithsonian Contributions V: 1—119 (1853).

Report on the Botany of the Expedition (under Captain JOHN POPE), by JOHN TORREY and ASA GRAY. Pacific R. R. Surveys II: 157—178 with ten plates. (1855.)

Forest Conditions and Problems in eastern Washington, eastern Oregon, northeastern California and northwestern Nevada. Bureau of Plant Industry, United States Department Agriculture, Bulletin 38. (1903.)

LOEW, DR. O.: Investigations upon the mineralogical and the agricultural Conditions observed in Portions of Colorado, New Mexico and Arizona in 1873. (The geographical distribution of Plants.) Report upon geographical and geological Explorations and Surveys west of the 100th Meridian. Lieut. GEO. M. WHEELER Part VI, Vol. III.

— Delta and Desert Vegetation Botanical Gazette XXXVIII: 44—63. (1904.)

— The Flora of Snow Canon, California. Plant World IV: 227; Through Desert and Mountain in southern California; l. c. V: 121; San Jacinto Mountain; l. c. V: 236. (1902.)

Parry, C. C.: Botany of the Region along the Route of the Kansas Pacific Railroad through Kansas, Colorado, New Mexico, Arizona and California. 1869.

— Summer Botanizing in the Wasatch Mountains, Utah Territory. Proceedings Davenport Academy Natural Science I: 145—152. (1867—76.)

— Botanical Observations in southern Utah in 1874. American Naturalist IX: 14—21; 139—146; 199—205; 267—346. (1875.)

— Catalogue of Plants collected in Nevada, Utah, Colorado, New Mexico and Arizona, with Descriptions of those not contained in Gray's Manual of the northern States and Vol. V.

Sitgreaves, Captain L.: see under John Torrey.

Stansbury, Howard: see under John Torrey.

— Grasses of the Southwest. United States Department of Agriculture, Division of Botany, Bulletin 12, Part 1, 1890; Part 2, 1891.

Weinzirol, John: The bacterial Flora of the semi-desert Region of New Mexico with especial Reference to the Bacteria of the Air. Journal Cincinnati Society Natural History XIX: 211—242; Bulletin Hadley Climatological Laboratory University New Mexico III No. 1. (1901.)

Sect. VI. Pacific Coast States.

BIBLIOGRAPHY. — PACIFIC COAST STATES.

Chestnut, V. K.: Plants used by the Indians of Mendocino County, California. Contributions United States National Herbarium VII: 293—408. (1902.)

Coville, Frederick V.: The August Vegetation of Mount Mazama, Oregon. Mazama I: 170—203. (1900.)

— Forest Growth and sheep Grazing in the Cascade Mountains of Oregon. United States Division Forestry, Bulletin 15. (1898.)

Eastwood, Alice: General botanical Features of the Coast Mountains of California. Science, new series XIV: 600. (1901.)

— A Flora of the south Fork of Kings River. Publications Sierra Club No. 27. (1902.)

— The redwood Forest of the Pacific Coast. National Geographic Magazine X: 145. (1899.)

— Sequoia and its History. Proceedings American Association XXI: 1 with appendix of tables, etc. Presidential Address Dubuque Iowa, August 1872.
GRAY, ASA: Determination of a Collection of Plants made by Mr. ELIHU HALL in Oregon in the Summer of 1871. Proceedings American Academy Arts and Sciences VIII: 372—408. (1872.)

GREENE, EDWARD L.: Illustrations of west American Oaks, from Drawings by the late ALBERT KELLOGG, M. D. San Francisco 1889.
— The Botany of San Miguel Coast of California. Pittonia I: 74—93.
— The Vegetation of the Summit of Mt. Hamilton. Erythea I: 77. The Vegetation of the Summit of Mount Diablo; l. c. 1: 166.

HALL, ELIHU: Notes on the arborescent, arborescent and suffructicose Flora of Oregon. Botanical Gazette II: 85—89; 93—95. (1877.)

HOLDER, CHARLES F.: Trees and Plants of southern California. Scientific American LXXXIV: 149. (1901.)

HOWELL, THOMAS: A Flora of northwest America containing brief Descriptions of all known indigenous and naturalized Plants growing without Cultivation north of California, west of Utah and south of British Columbia. Portland: Fascicle I, Ranunculaceae to Rhamnaceae 1897; Fascicle II, Rhamnaceae to Garryaceae 1898; Fascicle III, Viburnaceae to Sene- cionidae; Fascicle IV, Liguliflorae to Hydrophyllaceae 1901; Fascicle V, Boraginaceae to Plantaginaceae 1901; Fascicle VI, Nyctaginaceae to Pontederiaceae 1902; Fascicle VII, Araceae to Pinaceae 1902.

LE CONTE, JOSEPH: The Flora of the coast Islands of California in Relation to recent Changes of physical Geography. California Academy Sciences V: 152; Bulletin California Academy II: 515—520.

NUTTALL, THOMAS: Descriptions of new Species and Genera of Plants in the natural Order Composite collected in a Tour across the Continent to the Pacific, a Residence in Oregon and a Visit to the Sandwich Islands and upper California during the years 1834 and 1835. Transactions American Philosophical Society VII: 283—453 (1841).

—— The Flora of Mount Rainier. Mazama II: 93—117. (1901.)

ROSENDAHL, C. O.: Observations on plant Distribution in Renfrew District of Vancouver Island. Postelia: 3—89. (1906.)

DE SCHWEINITZ, LEWIS D.: A Catalogue of Plants collected in the northwestern Territory by Mr. THOMAS SAY, in the Year 1823, in Major STEPHEN H. LONG's Expedition to the Source of the St. Peter's River, two volumes. Philadelphia 1824.

TORREY, JOHN: Plantae Fremontianae, or Descriptions of Plants collected by Col. J. C. Fremont in California. Smithsonian Contributions to Knowledge VI, Part I: 24. 1850.

—— On Darlingtonia Californica, a new Species of Pitcher Plant from northern California. Smithsonian Contributions VI: 1854.

Sect. VII. Mexico and Central America.

Acosta, P. José de: Historia natural y moral de las Indias en que se tratan las Cosas notables del Gelo, Elementos, Metales, Plantas y Animales de ellas. Madrid 1792.

Altamirano, Fernando: Catálogo de la Colección de Productos naturales indígenas remitidos por la Sociedad de Historia Natural a la Exposición Internacional de Filadelfia. México 1876.

—— Lista de los Nombres vulgares y botánicos de Árboles y Arbustos propios para reponer los Bosques de la República, etc. México 1894.

—— Calendario botánico del Valle de México. La Naturaleza first series V: 83. 1879. (1879.)

Barroso, Francisco: Apuntes sobre la Vegetación del Istmo de Tehuantepec Anales del Ministerio de Fomento de la República Mexicana III: 309—330. (1880.)

Bateman, James: Orchidaceae of Mexico and Guatemala. London 1837—43.

Brandegee, T. S.: The Plants peculiar to Magdalen and Santa Margarita Islands. Zoë II: 11. (1891.) Distribution of the Flora of the cape Region of Baja California; l. c. III: 223.

Bryant, Walter E.: The cape Region of Baja California. Zoë II: 185.

Candolle, A. de: Calques des dessins de la Flore du Mexique de Moñino et Sesse, qui ont servi de Types d'Espèce dans le Système ou le Prodromus. Geneva 1874.

Conzatti, C.: Los Géneros vegetales Mexicanos Entrega I, II Mexico Secretaría de Fomento 1903; Botanisches Centralblatt XCIII: 278. (1903.)

Bibliography. — Mexico and Central America. 83

ENGELMANN, GEORGE: Synopsis of the Cactaceae of the Territory of the United States and adjacent Region. Proceedings American Academy III: 259—311, 345—346. (1852.)

FRIES, ELIAS MAGNUS: Novae symbolae mycologicae (Fungi coll. in regno mexicano, etc.). Upsala 1851.

— List of Plants collected by Dr. EDWARD PALMER in the State of Jalisco, Mexico in 1886 (Gamopetalae). Proceedings American Academy XXII: 416—446. 1887.

— Fertile Crosses between Teosinté and Maize. Garden and Forest IX: 522; l. c. X: 48; Contributions Botanical Laboratory, University of Pennsylvania II: 231.

— Water Storage and Conduction in Senecio prae cox from Mexico. Contributions Botanical Laboratory University of Pennsylvania II: 100.

HAYES, C. W.: Physiography and Geology of Region adjacent to the Nicaragua canal Route. Bulletin Geological Society America X. (1899.)

— The temperate and alpine Floras of the giant Volcanoes of Mexico. Proceedings American Philosophical Society XXX: 4—22. (1892.)

Hernandez, Dr. Francisco: Rerum Medicarum Novae Hispaniae Thesaurus seu Plantarum Animalium Mineralium Mexicanorum Historia, etc. Rome 1649.

— The geologic History of the Isthmus of Panama and Portions of Costa Rica. Bulletin Museum Harvard University XXVIII. (1898.)

Leon, Dr. Nicolas: Biblioteca Botanico-Mexicana Catalogo bibliografico, biografico y critico. pages 372. Mexico 1895.

— Nachrichten über die Reise des Dänischen Botanikers Liebmman in Mexico. Flora XXVI: 108—118. (1843.)

— Botanical Features of the North American Deserts. Carnegie Institution of Washington, publication 99 (1908.)

— Contributions to the Flora of Yucatan. Field Columbian Museum, Botanical Series I No. 1 Chicago 1895; Contr. III Vol. I No. 4. (1898.)
Bibliography. — Mexico and Central America.

MOCHINO, JOST MARIANA ET MART. SESSE: Flora Mexicana. 1888.

MORRIS, D.: The Colony of British Honduras, its Resources and Prospects, with particular Reference to its indigenous Plants and economic Products. 1883.

OCHOA, IGNACIO VILLAGOMEZ: Vegetación espontánea y repoblación de los Medanos de la Zona litoral de Vera Cruz. Mexico. 1883.

— A Check-list of the flowering Plants and Ferns of southern and lower California. 1885.

RAMIREZ, Jose.: La Vegetación de Mexico. (Two maps and eight charts pp. 1—273.) Mexico 1899.

— Introducción para una Flora del Valle de Mexico. La Naturaleza Tome III Cuadernos Números 9 y 10. 1903: 696.

— List of Plants collected by Dr. EDWARD PALMER in 1890 on Carmen Island. Contributions United States National Herbarium I: 129.

— Report on a Collection of Plants made in the States of Sonora and Colima, Mexico by Dr. EDWARD PALMER in 1890 and 1891. Contributions United States National Herbarium I: 293—366.

— Studies of Mexican and Central American Plants. Contributions United States National Herbarium No. I, V: 109—154 (1897); No. 2 V: 145—200 (1899); No. 3 VIII: 1—55 (1903); No. 4 VIII: 281—339 (1905); No. 5 X: 79—132 (1906).

—— De Plantis variis Mexicanis. Halle 1854.

Seaton, H. E.: New and little known Plants collected on Mt. Orizaba in the summer of 1891.

Contributions Gray Herbarium Proceedings American Academy Arts and Sciences XXVIII: 116. (1893.)

Seemann, B. and PIM: Dottings on the Roadside in Nicaragua, Panama and Mosquito Bay 1869.

Shimek, B.: A botanical Expedition to Nicaragua. Bulletin Laboratories Natural History, State University Iowa II: 245. (1891—93.)

Smith, John Donnell: Enumeratio Plantarum Guatemalensium neenon Salvadorensium Hondurensium Nicaraguaensium Costaricensium. Oquawkae Illinois. Pars I 1889; II 1891; III 1893; IV 1895; V 1899; VI 1903; VII 1905; VIII Index 1907.

—— Botany of the Mexican Boundary. Report United States and Mexican Boundary Survey II: 27—270. pl. 61. (1859.)

—— Plants collected in 1889 at Socorro and Clarion Islands, Pacific Ocean. Proceedings United States National Museum XIII: 145—149. (1890.)

Velasco, Jose Maria: Flora del Valle de Mexico. Mexico 1869.

Villada, Manuel: Estudios sobre la Flora de Pachnca, Mineral del Chico, Real del Monte, Huasca y Barranca Honda. Mexico 1865.
Sect. VIII. West Indian Islands.

ACOSTA, José de: Historia natural y moral de las Indias, en que se tratan las cosas notables del cielo, y elementos, metales, plantas, y animales dellas, etc. Seville 1590.

BARHAM, Henry, Hortus americanus: containing an Account of the Trees, Shrubs, and other vegetable Productions of South America and the West-India Islands, and particularly of the Island of Jamaica. Kingston. 1794.

— La Vegetation des Antilles Danoises. Revue Generale de Botanique Tome XII. 1900.

Recent botanical Explorations in Porto Rico l. c. VII: 125—139 (1906); Recent Explorations in Jamaica l. c. VII: 245—250 (1906); Report on the Continuation of the botanical Exploration of the Bahama Islands l. c. VIII: 71—81 (1907); Further Exploration in Jamaica l. c. VIII: 229—236 (1907); Botanical Exploration in Jamaica l. c. IX: 81—90 (1908).

Catesby, Mark: The natural History of Carolina, Florida and Bahama Islands. Two volumes. London. 1731—43.

Comes, Robert: Plants collected in the District of Cienfuegos, Province of Santa Clara, Cuba in 1895—96. Transactions Academy Science St. Louis VII: 393. (1897)

— St. Croix Flora. Vidensk Meddel fra den naturalist. Foren. i Kjobenhavn: 33. (1876)

GIFFORD, JOHN C.: The Laquillo forest Reserve, Porto Rico. United States Bureau of Forestry 5: (1905.)

Flora of the British West Indian Islands; pages 789. London 1864.

Catalogus plantarum Cubensium exhibens collectionem Wrightianam aliasque minores ex insula Cuba missas. page 306. Leipzig 1866.

Plantae Cubenses. Leipzig 1866.

Notes on the Strand Flora of Great Inagua, Haiti and Jamaica. Torreya III: 67—70. (1903.)

The comparative leaf Structure of the sand dune Plants of Bermuda; Proceedings American Philosophical Society XLVII: 97—110 (1908).

HEMSELEY, W. B.: The Bermudas. Gardener's Chronicle XIX: 367; 431. (1883.)

Report on the Botany of the Bermudas and various other Islands of the Atlantic and southern Ocean. Reports on scientific Results of the Voyage of H. M. S. Challenger. Botany I, part I: 1—135. (1884.)

HILL, ROBERT T.: Cuba and Porto Rico with the other Islands of the West Indies. New York 1898.

— A Visit to the West Indies. Botanical Gazette XVI: 130.

JACQUIN, NICOLAUS JOSEPHUS: Enumeratio systematica plantarum, quas in insulis Caribaes vicinaque Americes continentae detexit novas, aut jam cognitas emendavit. Leyden 1760.

Selectarum stirpium americanarum Historia. Vienna 1763.

— Ferns of the British West Indies and Guiana. Bulletin Miscellaneous Information Royal Botanical Gardens Trinidad III. (1898.)

Kunth, Carol Sigismund: Nova generis et species plantarum. AMAT. BONPLAND ET ALEX DE HUMBOLDT. Lutetiae Parisiorum, Flora Cubae insulae VII: 369. (1825.)

Lindley, John: A List of orchidaceous Plants collected in the East of Cuba by Mr. C. Wright. Annals and Magazine Natural History London, third ser. I: 325. (1858.)

MacPadyen, James: The Flora of Jamaica, a Description of the Plants of that Island arranged according to the natural Orders. I London 1837; II, 1850.

— Plantae Utowanae. Plants collected in Bermuda, Porto Rico, St. Thomas, Culebras, Santo Domingo, etc. Field Columbian Museum Botanical Series II, No. 1. (1900.)

— Flora of the Sand keys of Florida I. c. Publication 118 Botanical Series II No. 5 (1907.)

— Botanical Exploration of the Inagua Islands, Bahamas I. c. VI: 1—19 (1905); Further Explorations in the Republic of Haiti I. c. VI: 170—191 (1905.)

Bibliography. — West Indian Islands. 91

OVIEGO, GONZALO FERNANDEZ DE Y VALDES: Primera parte de la historia natural y general de las Indias. Seville 1535.

— Botanicon americanum seu historia plantarum in Americanis insulis nascentium; vol. I—VIII. Paris 1697—1704.
— Filicetum americanum, etc. Paris 1703.

PLUMIER, CHARLES and BURMANN, J.: Plantarum americanarum fasciculus primes (-decimus), continens plantas, quas olim Carolus Plumierus detexit eruitque, atque in insulis Antillis depinxit. Amsterdam 1755—60.

— Flora Cubana, o descriptio botanica, usus, y aplicaciones. de Cuba. 4 volumes. Paris 1853.
— Icones plantarum in Flora Cubana descriptarum. Paris 1863.

READ, OSWALD A.: Plants of the Bermudas, or Somers’ Islands. Hamilton 1883.

REPORT OF THE COMMITTEE, consisting of Mr. THISELTON DYER, Professor NEWTON, Professor FLOWER, Mr. CARRUTHERS and Mr. SCLATER, appointed for the Purpose of Reporting in the present State of our Knowledge of the Zoology and Botany of the West India Islands. Report 58th Meeting British Association 1888.

SIMPSON, C. T.: Distribution of the land and freshwater Mollusks of the West Indian Region and their Evidence with regard to past changes of Land and Sea. Proceedings United States National Museum XVII. (1895.)

— A Voyage to the Islands of Madera, Barbados, Nieves, S. Christophers and Jamaica with the natural History of the Herbs and Trees, etc. London 1707—25.

SULLIVANT, WILLIAM S.: Musci Cubenses, or Mosses collected by CHARLES WRIGHT in the eastern Part of the Island of Cuba during the years 1856, 1857 and 1858. Proceedings American Academy Arts and Science Boston V: 273. 1861.
SWARTZ, OLOF: Nova Genera et Species plantarum seu Prodromus descriptionum vegetabilium, maximam partem incognitorum quae sub itinere in Indiam occidentalem annis 1783—87 digessit. Stockholm, Upsala, Abo. pages X—152. 1788.
—— Observationes botanicae quibus plantae Indiae occidentalis. Erlangen 1791.
—— Icones plantarum incognitarum, quas in India occidentali detexit atque delineavit. Erlangen 1794.
—— Flora Indiae occidentalis aucta atque illustrata sive descriptio plantarum in Prodromo recensitarum. 3 volumes. Erlangen 1797—1806.
TUSSC, F. R. de: Flora Antillarum, seu Historia generalis botanica, ruralis, oeconomica vegetabilium in Antillis indigenorum, etc. 4 volumes. Paris 1808—27.
URBAN, IGNATTUS: Additamenta ad cognitionem floris Indiae occidentalis in Engler's Botanischen Jahrbüeben. (1892—97.)
Part II.

Geographic, Climatic and Floristic Survey.

Chapter I. Geographic Character of North America.

1. General Survey of the Continent.

North America, excluding Greenland and Ellesmere Land, extends from Point Mariato on the Isthmus of Panama in 8° N. latitude to North Cornwall Island 77° N. latitude, and lies between 56° W. longitude, that of Cape Race Newfoundland, and 170° W. longitude, that of St. Lawrence Island, Pribilof islands and the island of the Four Mountains, belonging to the Aleutian Island chain, the westernmost of which west of the 170° of west longitude are excluded from consideration. The coast line of such a large portion of the earth's surface is most irregular and highly diversified. Some portions of it represent physiographically a raised shore line, other parts of it have been depressed and may be considered to be drowned, as evidenced by deep fjords and numerous outlying islands. The main continent, which is approximately rectangular, projects southward in three prolongations, viz., the Florida peninsula, the Mexican and Central American isthmus and the peninsula of Lower California. Each of these is different in its physiographic construction. Mexico and Central America are essentially continental, while the peninsula of California occurs, as a prolongation of a drowned coast, while Florida represents a part of a region of active land formation. Four coastal plains may be distinguished, viz., the Pacific, the Arctic, the Atlantic and the Gulf. These are drained by numerous rivers, some of great size, which rise inland and flow to the sea. The Pacific coastal plain is characterized by the short length of its drainage streams and the comparatively small volume of water carried by these, with the exception of the Columbia River, which empties into Puget Sound.

The principal physical features of the continent in addition to the plains mentioned are very simple. There are two systems of mountains, one near the eastern coast, the Appalachian system, which trends parallel to the coast, that is, nearly, north-east and south-west and is of little elevation and breadth compared with the other. The other is the Cordilleran system, which stretches from the Isthmus of Panama to Bering Sea and has its greatest
development in the United States. Between the two is a broad basin
drained by the Mississippi River, the Great lakes, the Mackenzie River and
streams that debouch in Hudson's Bay.

The Cordilleran system may be divided into the Rocky mountain ranges,
the Sierra Nevada ranges and the Coast ranges, which penetrates Mexico
reaching to the Isthmus of Tehuantepec. South of Tehuantepec, the mountain
system, although in part continuous with the cordilleras of the north, may yet
be looked upon as distinct, for it runs almost due southeast and east, and in
Yucatan the mountains trend in the same general direction, as those in the
greater Antillean islands, viz., Cuba, Jamaica, Santo Domingo and Puerto Rico,
and may be called the Antillean orographic system. East- and west-mountain
ranges of the Antillean type occur through the Greater Antilles, along the
Venezuelan and Columbian coast of South America, north of the Orinoco, in
the Isthmus of Panama, Costa Rica, and the eastern parts of Nicaragua, Guate-
mala, Honduras, Yucatan, Chiapas and southern Oaxaca. The two elongated
submarine ridges, separated by the deep oceanic valley known as Bartlett Deep,
which stretch across the Caribbean from the Antilles to the Central American
coast, from the west end of the Sierra Nevada range of Cuba to the coast of
Honduras, and from Jamaica to Cape Gracias a Dios, respectively, are similar
in configuration to the east-and-west mountain ranges of the Great Antilles,
and are, no doubt, genetically a part of them.

The Gulf of Mexico is an indentation into the North American continent,
the restricted survival of a great interior sea, which once extended over the
Mississippi plain region of the United States, which at one very old time,
amost, if not entirely, separated North America into two great continents, the
Appalachian and the Cordilleran. The basin of the Gulf is still filling up with
the material brought down by rivers, which drain nearly one fourth of the
area of the United States. With the single exception of its extreme south-
western indentation upon the coast of Mexico, the Gulf is surrounded by low
plains.

The Atlantic coast has, on the whole, a tolerably straight course in a
direction nearly south-west; but in detail, it is greatly indented with numerous
deep bays and harbors, and fringed by many islands. The north-eastern coast
is rocky with deep fjord-like bays, and islands formed by depression of a more
extended coast-line. South of and including Cape Cod, the character of the
coast changes to a low sandy shore, and this character is maintained thence
southward and around the Gulf. Along this part of the coast extends a line
of narrow, linear islands, which are sand-bars thrown up by the waves, behind
which are many shallow bays and salt marshes. The Pacific coast is much
less indented. It is very abrupt, rising from the shore for thousands of feet
to the summits of the coast mountains and descending beneath the surface
abruptly to great depths. It has few harbors San Francisco Bay, Puget Sound
and Gulf of California being the largest ones. The Alaskan coast resembles
in many ways that of New England, but its features are on a much larger
scale. It is rugged and rocky, fringed by thousands of mountainous islands with numerous fjords constituting excellent harbors.

North America, as a continent, is best considered in four divisions. The most southern consists of Mexico and Central America. East of this lies the second division comprising the Greater Antilles and the Bahama islands. The central division consists of the United States (3,022,980 square miles = 7,829,518 qkm). The northern division consists of the Dominion of Canada, Alaska and the island of Newfoundland (4,170,973 square miles = 10,802,820 qkm).

2. Northern Division.

The Northern Plains. The Barren Grounds is a region west of Hudson Bay. It is a treeless wilderness low and marshy interspersed with lakes, streams and mossy plains, the so-called arctic tundra. The soil is permanently frozen to a great depth and in summer it thaws out a foot, or two, to permit the grasses, sedges and other plants of the region to make a rapid vegetative growth. If a line be drawn from the western shore of Hudson Bay north of Fort Churchill, along the 60th parallel of latitude and curve to the north-west to cut off the eastern arm of Great Slave Lake, and, thence, northward through Great Bear Lake and down Lockhart and Anderson rivers to the Polar Sea, such a line will approximately inclose the Barren Grounds on the north. In general it includes the river valleys east of the Mackenzie River, which discharge directly into the Arctic Ocean and those north of the Churchill River, which discharge into Hudson Bay. This region drains mostly to the north by the Coppermine and the Great Fish (Back’s) rivers, consisting of strings of lakes connected by violent rapids, and flowing for the most part in rocky channels. The Barren Grounds for the most part occupy the area of Laurentian rocks.

The arctic coast always protected by masses of ice is uniformly low and is bordered by low cliffs of frozen clay and sand, or eastwards, as far, as Coronation Gulf by limestone. North of the continent is the immense arctic archipelago. All the islands consist geologically of late formations from Silurian to Carboniferous. Along the coasts of Melville Sound and M’Clure Strait are abundant deposits of bituminous coal close to the immovable barrier of ice. The coasts of them are high and often precipitous. Parry found that an impenetrable ice pack surrounded the islands to the north of the continent. The ice of the polar sea north of America is more formidable than that in the Spitzbergen. It is probably entangled in an archipelago extending far to the north. From accounts, it does not consist of bergs, the product of glaciers, but of immense fields of hard, blue ice, sometimes four miles in diameter with hummocks twenty to forty feet high and united by the action of the winds into packs of immense extent.

The coast of Alaska west of Demarcation Point is low with cliffs of frozen sand and clay. Point Barrow is low and the northern ice-pack rests against it for the greater part of the year. Not far inland, a chain of mountains follows the outline of the coast. Mackenzie Bay is one hundred and sixty miles (257 km)
across. The Mackenzie River discharges into it with a great volume through a
delta of intricate channels. Eastward along the arctic shore from the mouth
of the Mackenzie, the coast is low consisting of soft rocks of the Cretaceous
formation. An interruption of Devonian limestone occurs at Cape Parry from
whence a long stretch of Cambrian rocks follows the shore to the eastern end
of Coronation Gulf and Dease's Strait, excepting Cape Barrow, which is Lau-
rentian, and a cliff 1500 feet (456 m) high. This part of the coast is bold
and high.

With one exception (the Mississippi), the Mackenzie River is the largest
in North America. It rises on the eastern slopes of the Rocky Mountains in
the Yellow-head and Athabasca passes. The Peace and the Liard rivers are
two of its great tributaries, while on the east, it receives the waters impounded
by the Athabasca, Great Slave and Great Bear lakes. It is separated from the
basins of the Churchill and Saskatchewan rivers by narrow and low water-
partings. The Mackenzie valley is an alluvial plain bounded on the east by
a more or less wooded region drained by the Coppermine and Great Fish
rivers; on the west, it is limited by the Rocky Mountains and on the south by
the divide of the North Saskatchewan. The soil is deep and well suited to
the growth of crops wherever the climate permits. The elevation of the valley
is very slight. Lake Athabasca is 690 feet (210 m) and Great Slave Lake in
391 feet (119 m) above sea level.

The Mackenzie river basin forms the northern portion of the great
interior plain continuous with that of the United States. In the Dominion of
Canada, it comprises the provinces of Mackenzie, Athabasca, Saskatchewan,
Assiniboia, Manitoba and Alberta. The chief characteristic of the area is that
of an immense ocean-like plain, treeless at the south, but gradually becoming
forest-clad at the north. This plain slopes with a very gentle descent to the
north. The initial elevation is slight and the distance to the oceans, whether
of the north, or east, is great, hence the rivers flow over an almost level
peneplain with a tranquil current and the low divides between adjacent water-
ways is a feature of the country. Two lines of elevation divide the plain into
three parts called by physiographers the first, second and third prairie
steppes, ascending from Lake Winnipeg to the Rocky Mountains. The region
of the first steppe in quaternary time, geologists show, was covered by an im-
mense glacial lake designated "the glacial Lake Agassiz". It extended far
into Minnesota and included all the basin of the Red River of the North and
the basins of lakes Winnipeg, Manitoba, Winnipegoosis, Dauphin and Lake of
the Woods. The outlet toward the north was blocked by an ice cap and all
the water drained southward into the Mississippi River. As the ice melted,
outlets were opened to the north and the lake level was lowered. The water
withdrew into the lowest depressions and the existing lakes assumed their
present proportions.

The hard crystalline Laurentian rocks extend to the eastern shore of Lake
Winnipeg. These are bordered on the west by a belt of Silurian and Devonian
limestones. These limestone formations reach the Arctic Sea in a north-west direction, but form the western shore of Lake Winnipeg and extend along the other lakes to the west. Upon these rest the comparatively soft rocks of the Cretaceous and Laramie formations, which characterize the area of the great interior plain and these are in turn covered by thick deposits of glacial drift (clays, sands, silt and gravels) upon which the nature of the superficial soil depends.

The Red River of the North is an important stream flowing from its source in the State of Minnesota and falling into Lake Winnipeg through a swampy delta. Its chief tributary is the Assiniboine, which flows in its 350 mile (573 km) course through some of the most fertile land in the north-west. North of these flows the Saskatchewan with its affluents (1032 miles long = 1660 km) rising in the heart of the Rocky Mountains and emptying into Lake Winnipeg, which disposes of its surplus waters to Hudson's Bay through the Nelson River. The country is one of numerous lakes. Lake Winnipeg the largest is 260 miles (418 km) long, 5 to 65 miles (8—105 km) in breadth, and 42 to 90 feet (13—27 m) deep.

Hudson Bay is an immense navigable inland sea extending half way across the continent at its widest part. The depth of the water in the bay averages 70 fathoms, excepting near the strait, where it deepens to 100 fathoms. The water of James Bay is brackish, where as in Hudson's Bay proper, the water is as salt, as in the main ocean. The tidal wave enters at the strait and first strikes the western shore. It rises 11 to 12 feet (3—4 m) at Churchill and in the converging shores of the estuary of the Nelson River, it rises 15 feet (5 m), but as the tide passes round the coast to the south and east, it becomes lower. Cape Wostenholme is 2000 feet (608 m) in elevation and from it the land falls southward to a low and level coast, as far, as Cape Dufferin, where it again rises to 1000 feet (304 m) to continue round the entire basin in a coast line of low relief. The rivers draining into it from the east are the Nastapoka, Great Whale and Little Whale. The East Main River by one branch approaches Lake Mistassini and by another branch reaches far into the heart of Labrador.

The peninsula of Labrador, located between the Atlantic Ocean and Hudson Bay, may be described as a tableland having a general elevation of 1500 to 2000 feet (456—608 m) above the sea. The plateau rises abruptly from the Atlantic Ocean in stupendous cliffs increasing in height towards the north. The shore of Ungava Bay is low, but toward Cape Wostenholme, the shore again rises. The eastern shore of Hudson Bay is low excepting between Portland promontory and Cape Jones, where a range of mountains approaches close to the coast. The plateau is drained by a number of important rivers, which usually hurry down in swift continuous rapids and precipitous falls. The Laurentide Mountains mark the boundary of southern Labrador. The streams rising on the south slopes of these mountains flow into the St. Lawrence River and Bay. Another group of rivers empty into Hudson Bay, while still

Harshberger, Survey N.-America.
a third group drain northward into Ungava Bay and the fourth drainage area is represented by the basin of the Hamilton River 600 miles (965 km) long which debouches into the Atlantic Ocean. The largest lake of Labrador is Mistissini, very deep and 100 miles (161 km) long. — Geologically Labrador is an immense area of Archaean rocks. Ninetenths of the peninsula consists of Laurentian gneisses with instrusions of granite, basalt and syenite.

Newfoundland, southeast from Labrador, is an island one third larger than Ireland. The western coast of the island is comparatively straight, but the southern and eastern coasts are profoundly indented with deep fjords, providing safe harbors and numerous headlands, or promontories jut out into the ocean. The general character of the coast is very rugged and bold. A rampart of cliffs, 200 to 400 feet (61—122 m) high, resists the storms of the North Atlantic. The west coast, a few miles inland, is characterized by the presence of the Long Range Mountains, rising in places 2000 feet (608 m), and running far into the Petit Nord peninsula. The south coast of Newfoundland is studded with islands and islets. The most important rivers are the Humber, emptying into the Gulf of St. Lawrence, Exploits River, emptying into Notre Dame Bay, and Gander River, emptying into the Atlantic Ocean. Newfoundland geologically may be divided into an area of Huronian rocks occupying the south-east corner and the peninsula of Avalon, and an area of predominant Laurentian rocks found over the remaining two-thirds of the island. The Long Range mountains are entirely Laurentian. While the core of the island is Archaean, there are large areas of later formations, such as Carboniferous, Cambro-Silurian, Upper Silurian, and upon these are the agricultural and heavily timbered lands. A large part of the interior remains unexplored and no white man, since Cormack in 1822, is reported to have crossed the main island in its greatest extension on foot.

The Alaska coast of Bering Sea is mainly low and marshy, rising very gently inland, and consisting almost entirely of tundra. The Yukon, the great river of Alaska and one of the great rivers of the earth, has a delta which covers thousands of square miles and across which the forking ends of the river run. Where the Alaskan coast faces the Pacific, it is bold and rugged; where it faces Bering Sea, it is low and tundra-clothed. North of the Yukon most of the land is permanently frozen to a great depth, some-times not even thawing in July. The coast of south-eastern Alaska is a broken one, and is bordered by many large and small islands, forming an archipelago. The channels separating these islands are deep and tortuous and from them the shore rises precipitously. Deep fjords cut the coast-line and extend far inland. A chain of islands stretches westward to longitude 187° known as the Aleutian islands. Most of them are volcanic and are simply the tops of submarine mountains.

The Pacific Range. The Cordilleran system of mountains, which is broad in the United States, narrows northward, as it stretches through British Columbia, and enters Alaska very much contracted in breadth. Following the
Pacific coast in its windings, the main body of this mountain system occupies the Alaskan peninsula, disappearing in the sea at the extremity of the mainland. All of southeastern Alaska is a mountainous region, culminating in Mount St. Elias on the coast, at an elevation of 18,100 feet (5516 m), and the recently discovered Mount McKinley 20,467 feet (6238 m) high. Mount McKinley is of granite weighted down with not less than fifty disconnected glaciers with everywhere precipitous walls. The mountains of Alaska, especially those about Mount St. Elias and thence south-eastward, are covered with great glaciers prominent among which is the Malaspina, with its feeders Agassiz, Seward, Marvine and Hayden glaciers. Muir Glacier is also a noted one at the head of Glacier Bay. Volcanoes active and extinct also occur in Alaska, and the evidence of former volcanic activity is witnessed by portions of the entire peninsula. Northward from the higher ranges Alaska descends in a succession of lower ridges to the valley of the Yukon.

The Yukon River, 2000 miles (3218 km) in length, rises in British Columbia, flows north-west with a very sinuous course with rapids and deadwater to the Arctic Circle. There it is joined by the Porcupine, one of its largest branches and finally after many turnings, it empties into Bering Sea. It is a broad muddy stream full of shoals and rapids. Other large rivers drain the country. One of the characteristics of Alaska is the network of rivers that covers its surface. The Copper, the Tanana, the Sushitna, the White and Kuskokwim are prominent rivers. On the south, the Stikine is the first river of large size rising in British Columbia.

British Columbia including Vancouver Island is the Pacific province of the Dominion of Canada. The physiography of the country is exceedingly complex. The rivers, abrupt in their turns are swift and turbulent. The lakes are narrow and deep. Two great physical features make up the topography of British Columbia, viz., the Rocky Mountains and the Coast Mountains. The Rocky Mountains are continuous with mountains of the same name in the United States. Their elevation is greatly reduced at the Peace River, but as they run northward, they rise again and parallel the western edge of the Mackenzie River valley, until they run out as they approach the Arctic Ocean. The Coast, or Cascade range commences at Puget Sound and continues along the Pacific coast to the head of Lynn Channel. It is this range which gives the precipitous character to the sea coast with its deep fjords and land-locked harbors.

Rising from a region of foot-hills 20 miles (32 km) wide, formed by the folding of the strata, the Rocky Mountains present from the east an abrupt and serrated outline against the sky, revealing by their sharp summits their recent geologic age. This range is the latest formed of all the chains in British Columbia. The rocks are old, however, ranging in age from the Cambrian to the Carboniferous. Crystalline rocks are practically absent and many ridges are formed of limestone strata which perhaps underlie the eastern plains and

1) Stieler's Atlas, Karte von Canada, gibt 5900 m an. (Drd.)
are here turned up on their edges and folded. The range is 60 miles (97 km) wide, with an average height of 8000 feet (2450 m). Several peaks reach 10,000 feet (3050 m). Mount Murchison and Mount Hooker are 13,500 feet (4100 m) and Mount Brown is 16,000 feet (4880 m).

West of the Rocky Mountains proper, but physiographically in the above description included with them, and of much earlier geologic age, are three ranges of mountains. These ranges rise from narrow valleys. They are composed of crystalline, granites, schists and gneissed. Commencing at the east, they are denominated — the Purcell, the Selkirk and the Gold ranges. They probably do not rise much above 10,000 feet (3050 m). Mount Sir Donald for example is 10,645 feet (3236 m), Mount MacDonald 9440 feet (2870 m) and Mount Tupper 9030 feet (2745 m), all in the central Selkirk range. The Columbia River flows around the Selkirk range. Flowing from the Columbia lakes, it runs north along the eastern base of the Selkirks, where it bends around the head of the range in a sudden curve and flows in a diametrically opposite direction south between the Selkirk and Gold ranges. These ranges are more rounded than the Rockies, and the upheaval is more confused. The Selkirk range is about 80 miles (29 km) wide and enormous glaciers fill the upper valleys, reminding one of the mountains of Switzerland. West of the Gold range, the interior plateau, 100 miles (161 km) wide, intervenes and is bounded on the west by the Cascade range, an old system consisting of granite, gneiss and schists.

The river systems of British Columbia may be described under two heads. The Fraser River is the chief one, 740 miles (1191 km) long. It reaches out in all directions and accentuates all the peculiar twists and turns of the river systems of the region. It flows at first northwest, then south, until at Hope, it bends abruptly west after a turbulent rapid course through the eastern mountains; when at last, it bursts its way through the Cascade range by the stupendous canons, which bear its name. Secondly, the Columbia River and its chief tributary the Kootenay perform their eccentric evolutions in the south-east corner of the province.

British Columbia in addition to its system of mountains has one of the most remarkable sea coasts in the world, abounding in harbors and bordered by an archipelago of islands. Vancouver Island is the largest of these. It is 285 miles (459 km) long and 40 to 80 miles (64—129 km) wide and possesses a mountain range, which as a backbone, runs its entire length. North of Vancouver Island, the Queen Charlotte Islands are found. The Strait of Juan de Fuca and the Strait of Georgia are inland extensions of the Pacific Ocean of great importance in the future development of the country.

The Eastern Lakes and St. Lawrence. The drainage system of the St. Lawrence River also comprises that of the Great lakes and is unique among the river systems of the world. The river and its tributaries are drowned at the mouths, so that the salt water of the ocean enters to form the broad Bay of St. Lawrence with its irregular margin. The water area narrows as one
passes up stream and the water freshens though the tide rises, nearly as far, as Montréal. Above this place, the river becomes a series of rapids separated by quieter stretches of water. A maze of islands, the Thousand Islands, are at the outlet of Lake Ontario, itself one of the five Great Lakes which constitute the system. These lakes are connected by broad rivers and straits interrupted at one place by the greatest fall in the world, that of Niagara. The water area above the outlet of Lake Ontario is 95,275 square miles (245,762 qkm), but to this entire area there is no large tributary river. The divide of the system is generally close to the lakes, so that the entire drainage area is about 270,000 square miles (693,000 qkm).

The beds of all the lakes excepting Erie, are below sea level and even if their water surface were lowered down to sea level, there would still remain large bodies of water. TARR 1) says: "Whatever view has been prominently held concerning the preglacial history of this region, it has been uniformly agreed that during or immediately after the glacial period, the preglacial valleys have been transformed to basins. While we now know that most of these lakes are the result of irregular drift deposits, Ramsay advocated the view that many were due to ice erosion, and suggested that the Great Lakes themselves were rock basins carved out by ice erosion".

The valley of the St. Lawrence River is bounded on the north in its whole length by the Laurentian highlands. They are but a short distance from the north shore of the river until the Saguenay is reached, when they come out upon it. From thence, the mountains run parallel with the river to within 20 miles (32 km) of the city of Quebec. There at Cape Tourmente, they turn away from the river, but still follow it a distance running west until they strike the Ottawa River the chief tributary of the St. Lawrence, between Montreal and Ottawa City and follow along up its northern bank until they cross the river at Lake des Chats into the province of Ontario. The Laurentian country is full of lakes, the sources of perennial streams which flow down into the central valley in rapids and cascades. The tableland north of the valley is from 1000 to 1600 feet (304—486 m) high, and worn into rounded hills and eminences. Les Eboulements is 2547 feet (774 m) high and north of Montreal. Trembling Mountain 2380 feet is another high point. The central plain of the St. Lawrence extends from Quebec, its gateway, westward, gradually widening to Lake Ontario. A line of completely detached hills cross this level and fertile plain at distances varying from 15 to 25 miles (24—41 km). These hills with but one exception are of igneous rock rising sharply out of the level fields. Mount Royal behind the city of Montreal is one of the most noted of these.

South of the St. Lawrence, the Appalachian chain known in Vermont as the Green Mountains crosses the border and continues north-easterly, as the Notre Dame Mountains, a series of ridges of no great altitude. A few peaks in the range, as Sutton Mountain, reach an elevation of 4000 feet.

1) TARR, The physical Geography of New York State. 1902: 232.
North of Lake Ontario, which finds its outlet in the St. Lawrence River, is an undulating plain without any prominent elevations to mark its surface and sloping down gradually to Lakes Huron, Erie and Ontario on the south and west and to the Ottawa River on the north. The northern shores of lakes Huron and Superior are high and bold, but the shores of lakes Erie and Ontario are low. The province is drained by numerous streams, such as the Ottawa and the Trent. Lakes abound, large and small. Lake Erie finds its outlet into Lake Ontario through the Niagara River on which is situated Niagara Falls. Detroit River, which enlarges into Lake St. Clair, connects lakes Huron and Erie. Lake Huron is connected with Lake Michigan by the Strait of Mackinaw and with Lake Superior by River St. Mary. Lake Superior, 420 miles (676 km) long and 80 miles (129 km) wide, is the largest sheet of fresh water on the globe, encircled by steep rocky cliffs of Archaean age, interrupted by immense masses of granite and basalt. The water is clear and deep, 900 feet. St. Louis River falls in at the head of the lake. — Few rivers of importance drain into the Great Lakes from the United States, or south side. The Maumee drains from the State of Ohio into Lake Erie, while St. Joseph River and the Grand empty into Lake Michigan on its eastern side.

3. Central Division.

a. Eastern Section and Appalachian System.

The eastern coast of the United States, north of the 35th parallel, is a broken one. That of Maine emphasizes this statement, as it may almost be called a fjord coast, so frequent are the embayments. Massachusetts Bay is formed by the projecting arm of Cape Cod. Narragansett Bay is a large and deeply indented arm of the ocean projecting into the southern part of New England. Long Island, which encloses the sound of that name, is 120 miles (193 km) in length and extends east and west protecting part of New York Bay, the most important harbor in the United States, from the fury of the Atlantic Ocean. Smaller islands Martha’s Vineyard, Nantucket and Block Island lie to the eastward and on the seaward side of Long Island. South of New York Bay, there are two indentations of importance Delaware and Chesapeake bays. This part of the coast is protected by sand islands and sand bars, which enclose shallow bays and extensive salt marshes. This character of coast extends south to the southern extremity of Florida and the sounds formed behind the sand barriers are even more accentuated on the coast of North Carolina, while on the Pacific side of the United States, there is only one important bay, that of San Francisco between Puget Sound and San Diego.

The peninsula of Florida, forming the eastern boundary of the Gulf of Mexico, is in a considerable part of its surface low, consisting of sand, coral rock and rocks of recent geologic age. The Everglades and Lake Ocheechobee are prominent physiographic features of the southern portion of the
Florida peninsula which on its west coast is lined with extensive mangrove swamps. The Gulf of Mexico is of large dimensions and its coasts are usually low. The region of the Mississippi delta is flat and consists of the material brought down by that stream.

The Piedmont plateaus are west and northwest of the central portion of the Atlantic plain. The rocks which enter into the formation of them are mainly Archaean and are all more or less of metamorphic character. During Cretaceous time, these plateaus which extend southwest from New York Bay stood at sea-level and formed a peneplain. When the land was upheaved finally, the upheaval included the Piedmont region and this kind of disturbance has continued with intermission until the present time. A fall line separated the Piedmont plateaus from the coastal plain. The Susquehanna River, which enters Chesapeake Bay, is well marked by rapids at the fall line near its mouth and swift waters cross the Piedmont area and continue up into the mountain region. The Delaware, James, Roanoke, Yadkin, Savannah and Santee rivers, the latter formed by the junction of the Catawba, Broad and Saluda rivers, drain the Piedmont region and are characterized by rapids, or by more or less swift water, when they cross the fall line. The region is characterized, then, as a rolling country, with the plateau surface crowned by the ancient hills of granite, quarzite, slates and schists and cut into gorges and valleys with meandering channels and flood plains.

The most important fact in the topography of the central portion of North America is the existence of a central comparatively low plain sloping towards the Gulf of Mexico from a watershed in close proximity to the Great Lakes. Eastward of the Mississippi valley is the Appalachian range of mountains and along the ocean the Atlantic coast plain. Westward of this central plain is the Cordilleran mountain system comprising three parallel ranges, named respectively the Rocky Mountains, Sierra Nevada Mountains and Coast range.

The Appalachian ranges belong to an ancient system of uplift. Volcanic materials have not since Mesozoic times invaded this region, which is in sharp contrast to the mountainous Cordilleran region where eruptive dikes and overflows of Tertiary and post-Tertiary age are found. The Appalachian system comprises the entire complex of mountains, valleys and tablelands which extends from northern New England generally southwest to the Gulf of Mexico. One very important break in the system occurs, occupied by the Hudson and Mohawk rivers. A depression of 152 feet (46 m) would be sufficient to permit the ocean to connect with the St. Lawrence valley via Lake Champlain. No other break in the Appalachian system is as complete as this and by this fact we are compelled to recognize that there are essential points of difference between the mountain complex to the northeast in New England and that lying to the south and southwest of the Hudson River valley.

The New England mountain system is most irregular in its topography. Two great elevations are distinguishable, the Green and the White Mountains.
These are separated by the Connecticut River, which drains south into Long Island South. In Maine, the White Mountain system has little coherence. Isolated peaks are the rule. Mount Katahdin is the dominating elevation 5215 feet (1590 m), rising abruptly from the surrounding country filled with enumerable ponds and lakes. In New Hampshire, the White Mountains are grouped around various central points, Mt. Moosilauke, 4810 feet (1462 m), Mt. Lafayette, 5290 feet (1602 m) and Mt. Washington, 6290 feet (1918 m).

With the exception of a narrow belt of Mesozoic rocks in the Connecticut valley, and a limited deposit of late Tertiary age on the eastern boundary of Lake Champlain and on the Atlantic Coast, there are, so far as known, no rocks in the New England district more recent than the Palaeozoic. Western Vermont and Massachusetts have rocks of lower Silurian age. Upper Silurian rocks occur in the Connecticut valley, New Hampshire, eastern Massachusetts and a large part of Maine. In northern Maine, traversing the state in a wide belt, rocks of Upper Silurian and Lower Devonian age are found.

The Adirondack Mountains are topographically separated from the rest of the Appalachian ranges and belong to a geologically older system. The rocks are all eruptive, gabbro and granitic in character. Sedimentary beds occur along the edges of this system especially the eastern margin. Mt. Tahawus or (engl.) Mt. Marcy, 5344 feet (1638 m), is the dominating peak of a region noted for its lakes, lying at an elevation of 1500 to 2000 feet (456—608 m).

Beginning with the Catskill mountains, the orographic and geologic peculiarities of the Appalachian system of Mountains begin to be more clear. In Pennsylvania the characteristic features of the range are developed. The first feature is the collection of eastern ridges known as the Blue Ridge. The second is the central valley variously folded and in which the sequence of the sedimentary deposits is discernible, and third, a system of mountains and tablelands to which the name of Alleghany has been given.

The Great Valley is an important feature in both Pennsylvania and Virginia and its drainage is complicated. The streams of the northern Appalachian ranges are not controlled by the mountains. Two rivers rising in the Alleghany plateau far west of the Alleghany front join in the heart of the mountains of Pennsylvania to form the Susquehanna which empties into Chesapeake Bay. The headwaters of the Potomac lie in the plateau west of the Alleghany mountains and its principal tributary, the Shenandoah, is the largest river north of Tennessee, flowing in the direction of the length of the Appalachian valley. New River, which rises in North Carolina, chooses a difficult way to the Ohio River across the Great Valley and the Alleghany plateau.

These features are accentuated in the South, notably in North Carolina, where the Appalachian system is not a unit, but is a complex containing features of nearly equal topographic importance. These are 1. the Blue Ridge, 2. the eastern Monadnocks and Piedmont valleys, 3. the Unaka range, 4. the
central mountain groups and intermontane valley'). — The Blue Ridge may be regarded as forming the extreme eastern range of the Appalachian Mountains, carrying the main divide between the Atlantic and Gulf drainage. It reaches the greatest height in the southern states in Grandfather Mountain, with an altitude of 5964 feet (1817 m). The most striking topographic feature of the Blue Ridge is the great difference in slopes on its opposite sides, for it is steep on the eastern and gradual on the western slopes. The eastern Monadnocks in the south form several groups of mountains along the extreme eastern border of the mountain belt, which have been more or less completely isolated by the erosion of eastward-flowing streams. The Unaka range may be divided into a northern and southern division. The northern division unites in the region of Grandfather Mountain with the Blue Ridge. Compared with the Blue Ridge, the Unaka range reaches a considerably greater average altitude. Not only are these mountains higher, but their slopes are steeper, and their outlines more angular and rugged.

From a commanding position somewhere on the Unaka range, there may be seen stretching to the east and south a confused aggregation of peaks, ridges and domes. The cultivated valleys are generally hidden from view, and except for an occasional clearing and the grassy "balds" on a few of the higher domes, the whole region is covered by a forest mantle. The interior mountains rise to considerable elevations. A large number of summits reach altitudes between 4000 and 5000 feet (1200 and 1520 m) and a few culminate above 6000 feet (1830 m). The Black Mountains contain the highest peaks of the Appalachian Mountains, culminating in Mount Mitchell, 6711 feet (2045 m), 425 feet (129 m) higher than Mount Washington. Between these groups and forming a sort of platform above which they rise are many broad valleys, commonest toward the head of the streams. Only the smaller streams are flowing at the level of these valleys. Down stream toward the northwest, the broad valleys are found to be more and more deeply cut, until they occupy deep narrow gorges.

The history of the Appalachian region, as far as it concerns this book begins with the Cretaceous period. At least two great cycles of erosion are recorded in the southern Appalachians, in which the surface of an old continent was worn down from a considerable altitude nearly to base level. Shortly after the close of the Carboniferous period the entire Appalachian province was finally lifted above sea level, and its subsequent history is recorded in the land forms. Following this uplift was a long period, during which the region was subjected to the physiographic processes constituting gradation. Finally, toward the close of the Cretaceous period, the whole province was reduced to a nearly featureless plain, relieved only by a few groups of hills, where the highest mountains now stand. After the processes of base leveling

2) Monadnocks is a name applied to a peculiar type of rounded hills.
were nearly completed, that is, toward the close of the Cretaceous period, the region was again uplifted, but unequally, so that at the same time its surface was warped. The streams had become sluggish, but the effect of the uplift was to stimulate them to renewed activity, so that they began cutting upon the last-formed peneplain, a process in which they are still engaged.

The drainage streams of this region find their way either eastward to the Atlantic, southward directly to the Gulf, or to the Mississippi and thence to the Gulf. Those which drain westward into the Mississippi River leave the Blue Ridge with its gentle slopes and low gaps and flow northward in deepening channels directly toward the higher and more rugged Unakas, which they cut through in narrow gorges. Emerging upon the Appalachian valley, those south of New River are intercepted by trunk streams, and led off toward the southwest. From New River to Georgia, the trunk stream is the Tennessee, which leaves its southeastward course and at the same time the broad Appalachian Valley by an abrupt bend at Chattanooga traversing the Cumberland Plateau in a narrow gorge much younger than other portion of its valley. Southward from the Georgia line, the trunk stream is the Coosa, which flows directly to the Gulf, and there is evidence, that the divide separating the Tennessee from the Coosa is extremely young and that until comparatively recent times all the waters flowing west from the Blue Ridge found their way directly to the Gulf across the present Tennessee-Coosa divide.

b. Western Section; Rocky Mountains.

The Cordilleran System comprises the following six regions beginning in the east: 1. the Rocky mountains; 2. the Great ranges; 3. the Northern or Columbian plateau; 4. the Southern or Colorado plateau; 5. the Sierra Nevada and Cascade range; 6. the Pacific Coast range 1).

The southern or north and south trending division of the Rocky Mountains is extremely well marked in its eastern edge, the ranges rising abruptly from a very gently sloping plateau. Here is a double range of Mountains quite distinctly marked in Colorado which enclose a system of high plateau-like valleys, known as the North, Middle, South and San Luis parks, elevated from 6000 to 10,000 feet. These parks are at the headwaters of the Platte, Colorado, Arkansas and Rio Grande rivers. Long's Peak 14,271 feet (4350 m) and Pike's Peak 14,147 feet (4312 m) are in the Colorado Range proper and are visible from the plains as conspicuous landmarks.

The Sawatch range lies west of the head of the Arkansas River and its dominating peaks exceed 14,000 feet. Mount Harvard 14,375 feet (4380 m) is the highest peak, while the most noted summit to travellers, is the mountain of the Holy Cross 14,176 feet (4320 m) in altitude. The Elk Mountains next succeed on the west of the Sawatch range to be followed by the plateau region, which is characterized by the parks. Directly west of North Park is

the Uintah range having an east and a west trend, and thus forming a connecting link between the eastern ranges of the Rocky Mountains and the western, or Wahsatch range, which borders the Great Basin on its eastern side. The Rocky Mountains in Montana and Idaho are more irregular than the Park Mountains. An important range is the Bitterroot which forms the main divide between the Missouri River and Columbia river drainage basins. The Coeur d'Alène ranges lie west and northwest of the Bitterroots. The Big Horn Mountains lie to the east and still farther in that direction are the Black Hills, which are separated from the main Rocky Mountain system.

The Great Basin without an outlet to either ocean lies between the Wahsatch Mountains on the east and the Sierra Nevada mountains on the west. It is an area containing great ranges of mountains with broad valleys between them threaded by few streams, as the region is essentially an arid one. Salt lakes abound, usually found in the smaller basins of which the Great Basin consists. Great Salt Lake, which receives part of the drainage of the Wahsatch mountains, is in the east an inland sea of about 2000 square miles (5180 qkm) and strongly saline through the action of the enormous evaporation of this region.

Two valleys in the Great Basin lie below the level of the sea. One of these is called Death Valley and is found in eastern California. It is a desert lying between the Amargosa and Panamint ranges. The second depressed basin is in southern California and is denominated the Colorado Desert from 100—200 feet below the sea. A low water-parting shuts it off from the Gulf of California and the Colorado River. In times of freshet in the latter, the river overflows and forms a shallow lake in this depression, known as Salton Lake. — Two rivers of the Great Basin merit attention. The Humboldt River rises in the Humboldt Range and flows south-westward, to disappear in the Humboldt sink. This river waters a narrow belt in each valley, which it crosses, and this is true of the Sevier River, which after a long sinuous course empties what little water remains in its channel into Sevier Lake.

Great Salt Lake is the remnant of a much larger lake which geologists tell us covered a large part of the area of the Great Basin. The shore-line can be easily traced high up on the mountains that surround the Basin. This former lake has been called Lake Bonneville and it had its outlet northward into Snake River. The Basin ranges extend far down into Mexico, and have a north-and-south direction. The mountains are never high and are often destitute of large trees, and sometimes are mountain deserts. The blocks out of which the ranges are carved are uplifted abruptly, so that the rocks dip gently away to the other side. These ranges have been modified by vulcanism and the volcanic material is often piled up in peaks and small plateaus. The Colorado River of the West naturally divides the region into a northern and a southeastern portion 1).

c. Columbia Plateau.

West of the Rocky Mountains is a great plateau region which is drained by tributaries of the Columbia River. Hence it is called the Columbia Plateau. It is a complex of tablelands of diastrophic and volcanic origin, relieved by a few great mountains and with many beautiful valleys. The region in Cretaceous time had extensive plains, broad valleys high mountains and some portions were under the sea. Granite, quarzite, and mica-schist were the rocks with those of later age on their flanks. Extensive diastropism occurred in the Eocene and with it volcanic activity by which mountain cones were erected. Later than this in geologic time (Neocene), the more fluid lavas broke out in many new places forming thin coulees and frequently filling, or obstructing valleys. These eruptions continued for a long period, until the old topography was completely changed. Lakes were formed by the damming of valleys and some of the best agricultural land occurs where these lakes were subsequently drained. The streams of the region have cut narrow canons. Snake River runs for several hundreds of miles through a canon carved in the lavas and is the most important stream of this district. The walls of the gorge are often precipitous and late lava coulees, stretching across the river bed, are the cause of waterfalls of which Shoshone Falls is the most notable example. The region of the Columbia Plateau comprises large portions of the present states of Washington, Oregon and Idaho with a small extension into the northern edge of Nevada and Utah.

d. Colorado Plateau.

The Colorado Plateau, or system of plateaus was covered by a shallow sea during the Cretaceous period. This great extension of the ocean stretched far to the east, northeast and southeast nearly to a line drawn east of the present Mississippi River. The Park Mountains formed an archipelago of islands during this time. At the close of the Cretaceous and in the early Eocene periods, the sea water gradually retreated by an irregular upheaval. The drainage waters were impounded by this upheaval and great basins were formed which became great inland lakes. The slow upheaval continued through Eocene time with frequent vulcanism. Great plateaus were also formed to be subsequently modified and dissected by the rains and the streams. The rocks forming beneath the sea were in a horizontal position and when the upheaval occurred, they became dry land and were inclined at an angle to their former position. As the elevation of the region continued, all the lakes were drained by the cutting of outlet channels and the whole region became arid. In late Neocene time, when the lakes were drained, their bottoms became valleys which were occupied by streams running into the Colorado and the Rio Grande del Norte. Thus, this plateau region is dissected by a vast network of streams. The streams usually have deep channels. Rills born of showers have often cut deep but larger gorges and the rivers have cut mighty canyons.
Thus with cliffs, terraced and buttressed, with towers, pinnacles, minarets and cut with deep reentering angles, the entire region is one of picturesque grandeur.

While every stream in this region flows in a canyon, the most remarkable succession of canyons is that on the main stream of this region, the Colorado, and its principal branch, the Green. The Green River, on leaving the Wind River Mountains traverses southward a great plain, or valley, known as the Green river basin and meets the Uinta range at right angles to its course. This range it cuts through in gorges of enormous depth and enters the Uinta basin, crossing it to enter a canyon in the sedimentary rocks. Passing through three such canyons, the Green River joins its forces with the Colorado River in the gloomy depths of the Stillwater Canyon. The Colorado River buries itself deeper and deeper until at the mouth of the Colorado Chiquito, it is 3800 feet (1158 m) below the surface. This is Marble Canyon, and the river turns to the west to enter the gorge known as the Grand Canyon, where the canyon is at its maximum depth 7000 feet (2134 m). To the north of the Colorado Plateau is a plateau known as the Uinta Mountains having its greatest length in an east-and-west direction. Others lie to the southeast, such as Santa Fe, San Francisco and Pecos plateaus.

e. Pacific Mountains.

West of the Great Basin are found the Sierra Nevada Mountains, which extend along the eastern border of the State of California from Tejon Pass northward to Lassen Peak, a distance of 450 miles (724 km). South of Tejon Pass, the height of these mountains decreases and they become topographically identified with the Coast Range. North of Lassen Peak, the metamorphic rocks which make up the Sierras disappear beneath a volcanic plateau with Mount Shasta at its southern base. The average breadth of the Sierra Nevada Mountains is 80 miles (129 km). The highest peaks are the following:

- Mount Whitney . . . 14,898 feet (4530 m; 4410 m earlier maps).
 - Shasta 14,380 > (4382 m).
 - Corcoran . . . 14,093 > (4296 m).
- Kaweah Peak . . . 14,000 > (4267 m).
- Mount Lyell 13,042 > (3984 m).
 - Dana 12,992 > (3960 m).
- Castle Peak . . . 12,500 > (3950 m).
- Mount Shasta . . 12,433 > (3800 m).
- Clark Peak 11,295 > (3443 m).
- Stanislaus Peak . . 11,202 > (3415 m).
- Mono Pass 10,765 > (3280 m).
- Lassen Peak . . . 10,437 > (3181 m).
- Arnot Peak 10,036 > (3058 m).

The Yosemite Valley is a feature of the Sierra Nevada range which merits a passing mention. The valley is a nearly level area, 6 miles in length and from half a mile to a mile in width. It is a gigantic trough with precipitous, almost vertical walls, which are noted for their great height compared
with the width of the valley itself. Very little talus has accumulated at the foot of these cliffs, which further accentuates their height. The objects which arrest the attention are the great granite cliffs and crags rising, 3000 to 4000 feet above the floor of the valley and the grand and beautiful waterfalls by which the many tributaries of the Merced River join that river in the level below by falling over the cliffs from great heights. Chief of these is the Yosemite Fall, (2462 feet), the Bridal Veil Fall (630 feet), while the Vernal Fall 350 feet and the Nevada Fall 600 feet in height are of scarcely less importance.

Small residual glaciers abound in the high Sierras1). Muir found sixty-five in that portion of the range lying between latitude 36° 30' and 30°. The largest of these glaciers on Mount Shasta descends to within 9500 feet of the level of the sea, which is perhaps the lowest point reached by any glacier within the bounds of California, the average height of all being not far from 11,000 feet (3350 m). Traces of the vanished glaciers abound on the Sierra, as far south, as latitude 36°. The polished rock surfaces, the most evanescent of glacial records, are still found in a perfect state of preservation on the upper half of the middle portion of the range.

Glacial lakes also abound in this region. All the upper branches of the rivers are provided with lakes. They lie embosomed in deep woods, in the bottoms of canons, high on bald table-lands and around the base of icy peaks. The whole number in the Sierra can hardly be less than fifteen hundred and two thirds, or more of these, lie on the western flank of the range. Lake Tahoe 22 miles (35 km) long by about 10 wide and from 500 to over 1600 feet in depth, is the largest of all the sierra lakes. It lies just beyond the northern limit of the higher portion of the range between the main axis and a spur that puts out on the east side from near the head of the Carson River. Donner Lake, three miles long lies about ten miles to the north of Tahoe, and a few miles farther north lies Lake Independence about the same size as Donner. Muir states: “In the basin of the Merced River I counted 131, of which 111 are upon the tributaries that fall so grandly into Yosemite Valley. Pohono Creek, which forms the fall of that name, takes its rise in a beautiful lake, lying beneath the shadow of a lofty granite spur that puts out from Buena Vista Peak. This is now the only lake left in the whole Pohono basin. The Illilouette has sixteen, the Nevada no fewer than sixty-seven, and Tenaya eight, Hoffmann Creek five and Yosemite Creek fourteen. There are but two other lake-bearing affluents of the Merced, viz., the South Fork with fifteen, and Cascade Creek with five, both of which unite with the main trunk below Yosemite.”

Upon the filling up of these lakes either by the action of vegetation, or the deposit of eroded material, glacier meadows are formed. These are smooth, level, silky lawns, lying imbedded in the upper forests, on the floors of the

1) Muir, John: The mountains of California, p. 20. 1901.
valleys, and along the backs of the main dividing ridges, at a height of about 8000 to 9500 feet (2440—2900 m) above the sea. Besides these lake meadows several other forms may be distinguished, viz., hanging meadows, found lying asland upon moraine-covered hillsides; bog meadows formed by the damming of some perennial stream and small pot-hole meadows found along the banks of the main streams, on the summits of rocky ridges or on glacier pavements.

North of Lassen Peak, an isolated volcanic cone, 10,437 feet in height, the range is broken through transversely by a great fault, or great depression comparatively level. Seventy miles north-west of Lassen Peak rises Mount Shasta, 14,380 feet (4382 m), standing in remarkable isolation on a base between 10,000 and 11,000 feet. North of Mount Shasta the mountain mass becomes the Cascade range. The ridge is comparatively low and on it at irregular intervals rise great volcanic cones. Mount Pitt, 9760 feet (2975 m), is a well-defined cone. Mount Jefferson is of a similar character and between Pitt and Jefferson occur five sharp peaks known as the Three Sisters. All through this portion of the range are evidences of recent volcanic activity in the form of craters and outflows of lavas. The Columbia River breaks through the Cascade range 100 miles (161 km) north of Mount Jefferson, where the volcanic masses have been cut through at the Dalles, which are great, broad flat sheets of lava. Near this point rise three well-defined volcanic cones: Mount Adams 12,470 feet (3799 m), Mount St. Helens 10,000 feet (3048 m) and Mount Hood, 11,225 feet (3421 m). Mount Rainier 14,526 feet (4400 m) lies apart from these snowcapped peaks 75 miles over against Puget Sound, while north of Rainier, or Mount Tacoma, is Mount Baker, 10,827 feet.

The Coast ranges of California and Oregon are west of the Sierra Nevada and the Cascade range. The Coast ranges are newer geologically and of less elevation. The upheaval of the Sierra Nevada Mountains took place according to Whitney at the close of the Jurassic epoch, whereas, that of the Coast ranges was the result of agencies operating during the latter part of the Tertiary and continuing down to the post-Pliocene. The portion south of San Francisco Bay is Miocene. These coast ranges are severed, where the San Joaquin River from the San Joaquin valley joins the Sacramento River from the valley of the same name and flows through the Golden Gate into the ocean. In the vicinity of San Francisco Bay, their altitude ranges from a few hundred to 3000 or 4000 feet. Prominent points near that bay are Mount Diablo, 3849 feet, Mount Hamilton, 4209 feet, and Mount Helena, 4343 feet. Mount Bally 150 miles (241 km) north of San Francisco has an elevation of 6246 feet. Finally near the southern end of this chain of mountains are found the San Bernardino and San Jacinto Mountains, each rising to about 11,000 feet (3350 m). Here this range joins the Sierra Nevada Mountains, which make a turn to the west, while in the southern part of Oregon and in northern California, they become confused with the Cascade Range.
f. The Great Valley.

The Great Valley between the Appalachian and the Cordilleran mountain systems is mainly drained southward to the Gulf of Mexico by the Mississippi River and its tributaries the Minnesota, Des Moines, Missouri (and its affluents), Arkansas and Red river, flowing from the west, besides the Illinois, the Ohio (and its branches the Wabash, Cumberland and Tennessee rivers) and Yazoo rivers emptying into it from the east. This valley is a great level plain, except where scored by streams. In the east, small prairies existed, while beyond the Mississippi, the prairies were interrupted only by the groves that border the streams. This great prairie sweeps around the Ozark hills in Missouri, Arkansas and Oklahoma and extends southward to the Rio Grande del Norte. The great ice sheet covered this prairie down to the mouth of the Ohio River, and wherever it was spread, beds of clay, sand, gravel and glacial hills are found. The prairies merge imperceptibly on the west into the region known as the “Great Plains”, but which are really topographically speaking great plateaus. Below the Ohio River on either side of the Mississippi River, occur the Gulf plains named by Powell, the east Gulf plain, the west Gulf plain, the flood plain of the Mississippi and coastal marshes and the submerged plain, extending into the Gulf. The most interesting of these is the Mississippi flood plain, which starts at the foot of the great glacial deposits in Illinois and at the Gulf end expands into a great delta built by sediments brought down by that great river. The outlines of this flood plain are marked by high bluffs of loess. This great plain seems to have been somewhat more depressed during glacial time, than at present, and the water from the glacier gathered into a great basin which emptied into the Gulf.

The Ozark Mountains extend southward and westward from the Iron Mountains of Missouri. The region north of the Arkansas River has been a great plateau, but it is now deeply trenched by numerous winding streams. The rocks of this region in the southern district bend in a synclinal fold and are eroded into long parallel mountain ridges with intervening valleys. The streams in the most southern portion of the region are transverse to the rock structure.

The Great Plains, or plateau region, extends from British America to the Rio Grande River. The Missouri district is deeply cut by the Missouri River and its tributaries. The Platte plateau is drained by rivers that flow in a general easterly direction into the Mississippi River, while the Arkansas plateau is drained by the Arkansas, the Cimarron and two of the Canadian rivers. The Pecos tableland in Texas is drained by the Pecos and the tributaries of the Red, Brazos, Neuces and Colorado rivers, and is known also as the Llano Estacado, or Staked Plain.
4. Southern Division.

a. Mexico.

Mexico lies between 14° 30' 42" and 32° 41' north latitude and 86° 46' 8" and 117° 7' 31" longitude west from Greenwich. It is approximately in the form of an inverted cornucopia with the waters of the Gulf of Mexico on the east and those of the Pacific Ocean on the west. Its greatest length is about 1900 miles (3157 km), and its greatest width 750 miles (1204 km), and its least width at the Isthmus of Tehuantepec about 100 miles (161 km).

Mexico is clearly divided by the low-lying Tehuantepec Isthmus into two distinct geographic regions. The section to the south belongs partly to the Central American mountain system partly to the limestone plateau formation of Yucatan. The section north of the Tehuantepec is a plateau flanked on the east and west by two great mountain chains. Rising rapidly by a succession of terraces from the low sandy coasts on the east and west, it culminates in this central plateau, running in a northwesterly and southeasterly direction, and having an elevation ranging from 4000 to 8000 feet (1200—2400 m) above the sea. High above this plateau, which was raised in Cretaceous times and has stood undisturbed by depression since then, tower the snow-capped summits of several volcanoes, as Popocatepetl: 17,540 (17,500, 17,748) feet (5450 m), Orizaba or Citlaltepetl: 18,250 (17,362, 17,373) feet (5580 m), Ixtaccihuatl: 16,076 (16,900) feet, Toluca: 15,091 (14,950) feet, Colima (Nevado de): 14,363 (14,100, 14,120) feet (4378 m), Volcan de Colima: 12,750 feet, and Ajusco: 13,628 feet.

Two mountain ranges traverse Mexico, the Sierra Madre Oriental, parallelling the Gulf coast and Sierra Madre Occidental, the Pacific coast. The eastern range runs from 10 to 100 miles (16—160 km) from the coast and its eastern slopes are terraced from the Gulf to the level of the tableland above. In the Nuevo Leon and Tamaulipas sections, it is scarcely more than 6000 feet high and several passes are less than 5000 feet. "North of the Cofre de Perote Volcano in Vera Cruz, the eastern Sierra Madre skirts the shores of the Gulf of Mexico without any break, as far, as the Rio Panuco on the frontier of the State of Tamaulipas. In this section it slopes somewhat gently seawards, and much more abruptly westward down to the Anahuac plateau. Beyond the Panuco the main range having thrown off several spurs and ridges towards the central plains, begins to diverge gradually from the coast-line taking a normal north-westerly trend along the eastern edge of the plateau for the rest of its course to the Rio Grande".\(^1\)

The western Sierra Madre mountains approach much nearer the coast. They are loftier and more continuous and maintain with little interruption a

Harshberger, Survey N.-America.
mean altitude of from 10,000 to 12,000 feet (3050—3660 m) for two thousand miles from Oaxaca far into Arizona. This range has several branches running in different directions, the most continuous being the Sierra Madre of the Pacific with which runs parallel the Sierra de la Giganta in Lower California which has a mean height of about 4000 feet (1220 m).

Between these two ranges and the central Cordillera to the south is the great Mexican tableland, next to those of Tibet and Bolivia, the loftiest and most extensive on the globe. From the lacustrine Valley of Mexico, it stretches at a nearly uniform elevation of 7500 feet (2300 m) to the Rio Grande del Norte. In a total distance of 1225 miles (1971 km), the absolute incline is only 3632 feet (1107 m), from 7350 (2240 m) at the capital to 3718 (1133 m) at El Paso. With this may be compared the drop of 7350 from the City of Mexico to Vera Cruz at sealevel, a distance of about 264 miles (425 km). Barrancas, or deep canyons, however, break the uniformity of the tableland. The most remarkable of these is the Barranca de Mochititla between Guadalajara and Tepic and that of Beltran between Guadalajara and Colima.

The central Cordilleran mountains form cross ridges which culminate in Popocatepetl and Ixtaccihuatl. The volcanoes and Orizaba, Jorullo, Colima, however, belong to a more recent upheaval, as they are nearly at right angles to the main axis of the central plateau. Nearly parallel to these are the sierras of Guerrero and those of Oaxaca and Chiapas toward the frontier of Guatemala.

The eastern coast of Mexico, bathed by the Caribbean Sea and the Gulf of Mexico is flat, low and sandy except near the mouth of the Tabasco River, where at some distance from the coast appear the heights of San Gabriel. The coast on the Pacific side, through generally low, is here and there broken by spurs extending from the cordilleras to the ocean. Few bays worthy of note are found on these coasts, which lack prominent indentations.

The largest lake in Mexico is Lake Chapala measuring over 80 miles in length by 30 in breadth. The Valley of Mexico has seven lakes, one fresh and six salt water, the three largest being Chalco, Xochimilco and Texcoco. The other lakes worthy of mention are Catemaco in the State of Vera Cruz, Cariel and Carpintero in the State of Tamaulipas; Encantado, in Tabasco; Bacalor, in Yucatan; Alczague, in Colima; Cuitzeo and Patzcuaro, in Michoacan; Yuriria, in Guanajuato, and Mezitlan in Hidalgo.

A large number of islands lie off the Mexico coasts. Among the most prominent are Carmen, the largest in the Gulf of Mexico: Guadalupe, about 75 miles (121 km) from the west coast of Lower California, Tres Marias, a group of the same coast; the Revillagigedo group near the Colima coast and Alcatraz Island not far from the coast of the State of Michoacan.

The principal rivers of Mexico are the Rio Grande, 1500 miles (2414 km) long forming, from El Paso, Texas to the Sea, the boundary line between the United States and Mexico; the Lerma, or Santiago, 540 miles (869 km) long; the Mescala or Balsas, 426 miles (685 km) in length; the Yaqui, 390 miles
(628 km); the Grijalva, 350 miles; the Fuerte, 340 miles (547 km); the Usu-
macinta 330 miles (531 km) and several others. The topographic conditions of
the country are such as to cause these streams, in their progress toward
the sea, to be continually precipitated in the form of cascades).

The isthmus of Tehuantepec is narrow and low averaging little over
400 feet (128 m) above sea level, and rising to scarcely 3000 feet (914 m)
even in the ridge which, on the Pacific side, forms a sort of connecting link
between North and Central America. From this ridge the country clipes
northward to the Gulf of Mexico through a series of terraced cretaceous
formations, which were deposited when a sound connected the Atlantic and
Pacific Oceans in Mesozoic time. Later when the marine deposits had been
upraised the chalk cliffs became overlaid in several places by Tertiary material.
East Mexico which comprises the four states of Chiapas, Tabasco, Campeche
and Yucatan consists of two distinct physiographic division, viz., the Central
American orographic system (Chiapas, Tabasco) and the marine limestone
division of Campeche and Yucatan. Chiapas has its Sierra Madre on the Pacific
coast, which forms a northern continuation of the Guatemalan system. With
an average altitude of 5000 feet (1524 m), two volcanic peaks Tacana and
Xoconocho rose respectively 11,500 (3,300) feet (3505 m) and 7900 feet
(2408 m). East of the Sierra Madre is an undulating plain, well watered and
wooded. — Yucatan possesses no mountains except a ridge 400 to 500 feet
(120—150 m) high. The country is a tableland of blunt peninsular shape
consisting of limestone rocks, which abound in caverns of which Loltun per-
haps is the most famous. The Great Bank of Yucatan is a submarine ex-
tension of the peninsula and is being constantly added to by the activity
of coral.

In the Peninsula of California, the central Sierra de la Giganta forms
a series culminating in a peak about 8000 feet high, consisting of a granite
mass which shows signs of glacial action in the form of moraines, especially
on the side facing the Gulf. Here the ranges are separated by the San Jose
del Cabo valley from a non-fossiliferous limestone ridge, beyond which volcanic
stratified red rocks prevail on the shores of the Gulf of California.

"The Geology of Mexico has been but imperfectly studied. In the higher
ranges the prevailing formations are granite, which seem also to form the
foundations of the plateaus, above which rise the traps, basalts, mineral-bearing
porphyries, and more recent lavas. Hence Lyell's theory that Mexico consisted
originally of granite ranges with intervening valleys subsequently filled up to
the level of the plateaus by subterranean eruptions. Igneous rocks of every
geologic epoch certainly form to a large extent the superstructure of the cen-
tral plateau. But the Mexican table-land seems to consist mainly of meta-
morphic formations which have been partly upheaved, partly interpenetrated
and overlaid by igneous masses of all epochs and which are chiefly represented

by shales, greywacke, greenstones, silicious schists and especially unfossiliferous limestones”). Heilprin believes that “much of this plateau has been formed by a progressive and long continued accumulation of detrital material, representing in part the distribution products resulting from mountain destruction and in greater part the discharges from an almost endless number of volcanic openings. These have, as it were, filled the original valleys to their tips, and it is thus upon the new surface that the more recent existing valleys have been imposed”.

The history of Mexico in pre-Cretaceous times is very obscure. Probably it was covered by sea, as is also assumed by Neumayr, in the Jurassic, at least in part (Hill 1898). But it seems to be well established that in the lower Cretaceous (Hill 1893) almost all of Mexico was submerged from the Atlantic to the Pacific side. In the middle of the Cretaceous period a large part of Mexico became land forming a southern prolongation of the western part of North America, which was separated in the upper Cretaceous from the eastern. The mountains raised in Cretaceous times have not been disturbed by depression, but the valleys have been filled up with detritus from them and filled in by volcanic action, so that a plateau has been formed which has been only slightly eroded because of arid conditions and because it consists of valleys which have no outlets, but collect in their depressions the material eroded from all sides.

The highest ranges are formed mainly of plutonic and volcanic rocks, such as granites, syenites, diorites, mineral-bearing trachytes, basalts, porphyries, obsidian, pearlstone, sulphur, pumice, lavas, tufa and other recent volcanic discharges. The most valuable rocks are the argentiferous porphyries and schists of the central plateau and of Sinaloa. Horizontal and stratified rocks, of extremely limited extent in the south, are largely developed in the northern states and chalk becomes very prevalent toward the Rio Grande and Rio Gila valleys. The sandy desert tracts, which cover north Mexico, probably owe their physiographic character to this chalk and sandstone. Thus the Bolson de Mapimi, a vast rocky wilderness, occupies and area perhaps 50,000 square miles in Coahuila and parts of other states.

b. Central America.

The Central American states are Guatemala, Honduras, Belize, San Salvador, Nicaragua, Costa Rica and Panama. A large part of Central America may be said to be mountainous. The main, or central chain, the Cordilleras, run along the Pacific coast in a general northwest-southeast direction through Guatemala, San Salvador, Honduras, Nicaragua, Costa Rica and Panama. In Guatemala, the range keeps on the whole parallel with the Pacific coast, at a distance of 40 or 45 miles. Its mean elevation is about 7000 feet, (Peak of Tajomulco 13,800 feet [4210 m]). Forming the main watershed between the

Pacific and Atlantic coast drainage-systems, it is pierced here and there with rivers. It enters the Mexican state of Chiapas as the mountains of Istatan. The Sierra de Chama strikes eastward from the Sierra Madre towards Belize where it is denominated the Cookscomb, and one or two other mountain chains follow the same general course. The general relief of the country is of the most varied description, the mountains descending in all kinds of terraces. No true plateaus are found. The number of volcanic summits, according to Bernouilli is 14 or 15, while Foledo makes the number no less than 31. Volcan de Fuego is perhaps the most important 12,821 (12,655, 12,578) feet (3835 m), while Volcan de Agua 13,108 (12,311) feet (3995 m) is famous for the fact, that it destroyed the city of Old Guatemala by a deluge of water.

The single states. Guatemala has many streams and rivers. The streams which drain the Pacific coast are small and rapid, while the eastern drainage plain is supplied with a number of good sized rivers. The Motagua, 250 miles (400 km) long, forms a delta on the south of the Gulf of Honduras. The Polochic is about 180 miles (290 km) in length, while the Guadalupe, the Rio de la Pasion and Chisoy unite to form the Usumacinta, which, passing through Mexican territory, empties into the Bay of Campeachy. Lake Peten is an irregular basin about 27 miles long with an extreme breadth of 13 miles. Lake Izabal is the head of the Polochic River and Lake Atitlan is a land-locked basin in the mountains at an elevation of 5300 feet (1615 m). Thus in Guatemala, three orographic regions are distinguishable: 1. A northern district which is relatively low comprising the larger part of the department of Peten. 2. A central district composed of mountain ranges, running generally east to west and divided into chains of Cretaceous and Tertiary formations in the north, and chains of Paleozoic and Archic formations. 3. A southern district formed chiefly of eruptive mountain chains which culminate in volcanoes, such as Tacana, Fuego and Agua.

The main chain of mountains in Honduras does not approach the Pacific coast closer than 50 or 60 miles. It makes several turns on itself, thus enclosing valleys, or interior basins. These mountains may be said to form a continuation of those in Guatemala. The Omoa range with its culminating peak, 10,000 (Bates 8,000) feet towers above Amatique Bay, while the Congrehoj and Poyas ranges are near the Atlantic coast their crests rising 6000 to 8000 feet. The ranges run in the same general direction as in Guatemala, but they are interrupted by a great transverse plain, the plain of Comayagua having an extreme length of about 40 miles. From this valley extending due north to the Atlantic Ocean is found the valley of the Humuya River and due south to the Pacific Ocean, the Goascoran River Valley which thus completes a depression which extends from the Atlantic to the Pacific oceans and at one time formed a marine channel connecting the two oceans. The rivers of this region are numerous. The Ulua River is the largest, draining nearly one-third of Honduras. It discharges a larger amount of water into the sea than any other Central American river. Rio Tinto is a considerable stream,
while the Rio Segovia is the longest rising withing 50 miles of the Bay of Fonseca and flowing into the Caribbean Sea at Cape Gracias à Dios.

San Salvador with the exception of a comparatively low alluvial coast plain, is a plateau 2000 feet in elevation diversified by a large number of volcanic cones more recent than the Cordilleras themselves. The Rio Lempa rises in Honduras, crosses a corner of Honduras, enters San Salvador and draining Laguna de Guija, it flows through a magnificent valley and reaches the Pacific.

The low swampy Mosquito Coast of Nicaragua is broken by two lagoons and is fringed by cays and reefs. Parallel with the shore extends an almost continuous fringe of coral reefs and islands. The reefs are continually closing up the gaps by which they are broken, so that a new coast line will be formed when the lagoon behind is filled in. The coast in the past has been formed by the seaward growth of the land, by the combined action of coral polyps, and deposits of sediment washed down by the streams. Impenetrable mangrove swamps are found, which further contribute to this upbuilding and the water is deep close to the shore. The great geographic feature is the depression at a mean elevation of scarcely 100 feet above the sea occupied by two great lakes Nicaragua and Managua into which the drainage of the western provinces discharges and through the Rio San Juan to the Atlantic. This river pierces the main chain of the Cordilleras de los Andes composed of andesites, trachytes, greenstone and metalliferous porphyries which sweeps around the lake basin at a mean elevation of 4000 to 5000 feet (1279—1524 m). Two-thirds of Nicaragua is occupied by the terrace-lands of the north. Towards the low plains of the lakes, they end abruptly, and their escarped face appears as a great mountain wall with deep valleys cut through it. Towards the north, they merge gradually with the mountains and plateaus of Honduras. Towards the east, they slope down to the Atlantic coast, with a number of spurs lying between the rivers. Llanos, such as Jinotega, Esteli and Ocotal, have an average height of 3000 feet. The lacustrine depression is traversed throughout its entire length by a series of isolated volcanic cones. North of the lakes the chain takes the name of Maribios comprising Coseguina (3835, 2777 feet), El Viejo, 6000 (6266, 5839) feet, Santa Clara (4506), Telica (3409), Axusco and Momotombo 7000 (6121, 4128) feet and Corongo 9908 feet. Two twin peaks in Lake Nicaragua are named respectively Ometepec, 4100 feet, and Madera, 4190 feet. Barren lava fields (malpais) extend for miles in that portion of Nicaragua between the lakes and the Pacific Ocean, where the Coast Range comprising the mountains of Managua, Granada and Rivas seldom rising above 2000 feet, merges northwards in the plains of Conejo and Leon and forms a continuation of the system in Salvador and Costa Rica. The Pacific coast of Nicaragua has no rivers of any size, while Lake Nicaragua, 110 miles long and 40 broad, is drained by the Rio San Juan, 128 miles (206 km) long. Several unnavigable streams in the little known region of rugged plateaus and savannas between the lacustrine depression and the Mosquito coast drain eastward to the Atlantic.
The Atlantic coast land of Costa Rica is generally low and is characterized by lagoons which have been formed by the action of currents opposite the river mouths. The Pacific coast rises higher. The interior of the country is diversified by mountains, plateaus and valleys. A great volcanic range extends from north-west to south-east from between Lake Nicaragua and the Pacific Ocean to the center of Costa Rica, separating a narrow Pacific slope from the broader descent to the Atlantic. The summits of this range are the peaks of Orosi, 5200 (6000, 5055) feet; Rincon de la Vieja, Miravalles, Poas, 8845 (8895) feet; Barba, 9335 feet (2845 m); Irazu, 10,850 feet (11,000, 11,200 feet) (3414 m); and Turrialba, 10,330 (10,900, 11,350) feet. — The form of the southern half of Costa Rica is determined by the great range called Montaña Dota, 7000 to 9000 feet in elevation, which extends from west to east nearly across the country and from which two branches extend south-eastwards, the one close along the Pacific coast, the other through the center of the country rising in the Cerro Chiriquí 11,850 (10,150, 11,970) feet and Pico Blanco, 11,740 (9650) feet above the sea. — These mountains, as far, as they have been examined, are found to be of eruptive origin, basalts and trachytes predominate, but extensive sedimentary rock formations are also found upon their slopes, as well as vast deposits of boulders earth and volcanic material. — The broad tablelands of San Jose and Cartago, elevated 3000 to 4000 feet, are between the northern and southern masses of these ranges and this central plateau is the most important and as yet the only cultivated region of Costa Rica. The Atlantic Slope is drained by the Río Frio, San Carlos and Colorado tributaries of the Río San Juan and in addition by the rivers Reventazon, Chirripo and Chiriquí. The chief streams on the Pacific side are the Tempisque, Río Grande, Waranjo and Río Grande de Terraba.

It is clear that the Caribbean Sea once joined the Pacific Ocean through the Valley of the Reventazon River and that in Mesozoic times the high lands of Costa Rica once formed part of a vast archipelago extending from Panama to Tehuantepec, the islands of which possessed volcanic cones, which by their activity filled up and connected the islands to form a mainland. Prof. William M. Gabb in his geologic sketch of the Talamanca Mountains says that the nucleus of the great Cordillera of the interior is formed by the granites and syenites, which, like the sediment that covers them, are broken through here and there by dikes of volcanic origin identical with the eruptive material found on a greater scale in the northern part of Costa Rica. Along the Talamanca coast, calcareous deposits are found in horizontal layers and are probably elevated coral reefs, a rock with Professor Gabb calls "antillite" and which is developed in the entire Caribbean region. It belongs to the post-Pliocene formation, the last of the Tertiary series. The Costa Rican orographic system passes into Panama through the Cordillera de Chiriquí which traverses the entire isthmus. Low passes break this cordilleran system into a number of loosely connected spurs and ridges. It seems certain that here the two oceans were formerly connected through a number of channels and that Panama like
other parts of Central America constituted a chain of Islands which have since been united by volcanic and meteoric agencies into a continuous landmass separating the oceans. The Central American igneous system is continued in the Panamanian highlands by the Cordillera de Chiriqui (11,850 feet), Rovalo 7020 feet (2140 m), and Cordillera de Veragua. At Culebra Pass, 290 feet, the isthmus contracts to a width of about 34 miles and here the United States government is digging the isthmian canal. Several of the streams in Panama have a somewhat lengthy course in descending from the central uplands. Their basins are narrow and the volume of the streams is not great except during heavy rains, when they become swift and turbulent. Such is the Rio Chagres which flows through the canal strip and empties into the Atlantic near Colon, where its mouth is obstructed by a bar. Rio Bayano on the Pacific coast presents fewer obstacles to the engineers of the canal, because the western slopes of the country are drier.

General remarks. — Central America and the West Indies including the Gulf of Mexico and the Caribbean Sea are largely individual in their aspects, although more nearly related to one another and to the northern coast of South America, than they are to the main bodies of the larger continents.

The trends of the great North and South American mountain systems, the Rocky and Andean, if protracted would not connect with each other, but would pass nearly two thousand miles apart. The Andean trends would pass through Jamaica and eastern Cuba and continue in the direction of Nova Scotia. A similar extension of the Rocky Mountains would carry them into the Pacific far west of the South American continent. Between these two great systems of uplift occurs a third to which the name of Antillean may be applied. "East-and-west mountain ranges of the Antillean type occur through the great Antilles, along the Venezuelan and Columbian coast of South America, south of the Orinoco; in the Isthmus of Panama, Costa Rica, and the eastern parts of Nicaragua, Guatemala, Honduras, Chiapas and southern Oaxaca. The two elongated submarine ridges, separated by the deep oceanic valley known as "Bartlett Deep", which stretch across the Caribbean from the Antilles to the Central American coast, from the west end of the Sierra Maestra range of Cuba to the coast of Honduras, and from Jamaica to Cape Gracias a Dios respectively are similar in configuration to the east-and-west mountain ranges of the Greater Antilles, and are, no doubt, genetically a part of them"). The mountains and submarine banks described above form thus a perimeter to the depressed Caribbean basin, which sank to great depths when the mountains were elevated.

Central America, the West Indies and the northern margin of South America formed in the Mesozoic period (certainly during Jurassic and Cretaceous) a continental mass (Antillean continent), which was bounded by sea to the north

1) Hill, Robert T.: Cuba and Porto Rico with the other Islands of the West Indies. p. 4. 1898.
and south). This continent broke up at the end of the Cretaceous, the chief factor in its destruction, being the formation of the Caribbean Sea, which connected with the Pacific Ocean during the lower Tertiary period across the submerged Isthmus of Panama. (See the geologic survey-maps in Part III, chapter I, Fig. 1—4.) The northern remnant of this continent, consisting of the Greater Antilles and parts of present Central America, probably remained a unit up to the Eocene for during the Eocene elevation, there was probably a landway from Cuba across the Bahama banks to the Floridan area, as evidenced by the fact that certain groups of Antillean land mollusks crossed that bridge. But at the end of the Eocene and during Oligocene and Miocene, the connection between the Greater Antilles and the mainland was severed. But it was reestablished toward the end of the Tertiary for before the close of the Tertiary period, the West Indian lands were much more extensive than now, and the Greater Antilles were once continuous. Geologists have proved that during this time the Gulf Stream flowed out of the American Mediterranean as now, but through a passage across the northern half of Florida, so that at one time southern Florida was West Indian. Furthermore, the great banks of the western Caribbean Sea were at that time projections of land probably connecting Central America with Jamaica and possibly Cuba, and in the Miocene a land connection was established between North and South America by the elevation of the Isthmus of Panama, which was previously in existence and connected with the Cordilleran part of the northern continent when the West Indian islands during the upper Cretaceous period were in great part beneath the sea.

5. West Indies in general.

The geologic history of the West Indian islands has been marked by remarkable up and down oscillations, so that the land and water areas have undergone marked changes in their relative positions. During the end of the Cretaceous and the beginning of the Tertiary period, when the great Cordilleras of North and South America were elevated to approximately their present outlines, the known geologic history of the West Indies was just beginning, for the oldest determined rocks belong to the Cretaceous, Tertiary and Pleistocene ages. The Greater Antilles at the close of the Cretaceous period formed a region of volcanic activity for vast heaps of land-derived gravel and the conglomerate which make the great thicknesses of old sedimentary rock in the Antillean mountains lead to the conclusion that at the beginning of Tertiary time there were land areas in the West Indies. A great revolution followed. The pre-existing lands were depressed beneath the sea to great depths, in places five miles, or more, until only the high land re-

mained above the sea to form a series of small islands during the second quarter of Tertiary history. In the third quarter, another revolution occurred by which the floor of the ocean was corrugated into land, and the old sediments with the deep sea muds and chalks were folded into the gigantic Antillean mountain systems, which at this time probably reared their summits to an elevation of twenty thousand feet and over, connecting all the Antilles into a single body of land. Another general subsidence followed in the last quarter of Tertiary time. It was sufficient to break up the Antillean land mass into the present island groups. During this the island of Jamaica, as the character of the land-snail fauna shows, as well as the depth of the channel between it and Haiti was first to be isolated, then Cuba, and afterwards Santo Domingo and Puerto Rico were separated. The connection between the Antilles and the mainland was broken and the Bahaman region was submerged. The subsidence continued until only the summits of the Antillean Mountains remained above water. Then followed another period of elevation which has lasted until the present. The Bahamas have emerged above the sea, either by elevation or growth, and have been tenanted by forms drifted from Cuba and Santo Domingo, while some have colonized recently in south Florida. There is, however, no reason to suppose that the two great basins the Gulf of Mexico and the Caribbean Sea, at any time lost their general integrity, or connection with the ocean, although their limits were altered and although at times the Pacific probably invaded.

Collectively the Greater Antilles, from a physiographic standpoint, consist of a disconnected chain of mountains with an east-west trend. The highest peaks of this system in Haiti, Cuba and Jamaica are 10,300, 8000 and 7000 feet respectively. The higher mountains above 2000 feet are composed of non-calcareous clay and conglomerate, largely the debris of unknown lands of pre-Tertiary time, which were buried beneath the sea in early Tertiary time to be lifted up later covered by a vast accumulation of oceanic sediments, which compose the white limestones which constitute the chief formations of the islands and occur in horizontal benches or terraces. Intrusions of igneous rocks, granite porphyry and basalt are found.

A more or less continuous chain, the Antillean Mountains, extend in a westward direction from St. Thomas through Puerto Rico, Santo Domingo, the northwest cape of Haiti, the Sierra Maestra range of Cuba to run beneath the sea in the Misterosa Bank of the Caribbean Sea. Santo Domingo is the center of the island chain reaching in Mount Tina an altitude of 10,300 feet (3140 m). The Sierra de Cibao is the principal range in the island. It is flanked on the north by the Monte Christi range with an outlier toward the southwest and by a fourth mass of tall mountains which from the axis of the southwestern peninsula in Haiti. The latter extends toward Jamaica and is continued through that island as the Blue Mountains in Honduras. The north branch is a part of the main, or axial range which is represented in Cuba by the lofty summits of Sierra Maestra, bordering on the Santiago coast of
the east end of the island. Although apparently it ceases at Cape Cruz, it is continued as the Misterosa Bank, which barely reaches the surface of the water, but yet rises precipitously 18,000 feet from the bottom of the sea. — The islands of the Greater Antilles are not exclusively mountaneous. There are numerous valleys, plains and plateaus, often of wide extent and great fertility, which will be mentioned in our description of the various islands.

a. Virgin Islands and St. Croix.

East of Puerto Rico stretches a group of islands known by the name of Virgin islands. The principal islands are Vieques and Culebra belonging to the United States, St. Thomas and St. John belonging to Denmark, Tortola, Virgin Gorda and Anegada belonging to England. The islands of the group are mountainous and project above the water like submerged peaks, which they actually are, representing a submarine prolongation of the mountains of Puerto Rico. The submarine bank of which these islands form the upper projections is only 6 to 20 fathoms deep between the various islands of the chain. The total area of the islands hardly aggregates two hundred square miles, the largest island, St. Thomas having a superficial extent of only thirty-seven square miles (96 qkm). The highest point on St. Thomas is 1550 feet (472 m), on Tortola 1780 feet (543 m), whilst hills in Vieques and Culebra are only 500—600 feet high, while Anegada (Spanish inundated) is elevated only a few feet above sea-level. The central islands present the appearance of a steep ridge, precipitously sloping to the north and the south, and cut by ravines, which during heavy rains are the beds of small torrents which are dry in ordinary weather. The lower ends of these streams beds widen into level tracts on the sea-coast forming a lagoon on the sandy shore. The coast between these level plains is generally bold and rocky, forming picturesque promontories.

These islands are all of the same general geologic composition as the Greater Antilles consisting of a foundation of rocks of probable Paleozoic origin, covered by masses of Cretaceous and Tertiary conglomerates, and clay derived from the vanished West Indian-Central American continent. These rocks are superficially covered by oceanic chalky-white limestones, which are in turn fringed by coral-reef rock, while dikes of ancient volcanic material penetrate the older rocks. The soil with the exception of that of Vieques is a red heavy clay.

St. Croix lies to the south of the Virgin islands and is separated from them by an immense chasm more than 2000 fathoms deep. The island is 83 square miles (215 qkm) in area and has a high sharp configuration, with deep cliffs near the shore and many low hills in the interior. The northern and southern shores approach each other toward the eastern end, where the meet in a rounded point. The north side is hilly and broken, with one well-defined valley, that of the Salt River. The eastern end has hills 600 feet high and is surrounded by a shoal five to eight fathoms deep. Hills are found
also at the north-western end, which is steep too, while the south-western point forms a low sand spit with shallow water for some distance from the shore. Along the coast line of the island occur alluvial formations often enclosing lagoons, which are gradually being filled with vegetable matter.

b. Puerto Rico.

Although this island nowhere attains the elevation of the mountains of Haiti and Jamaica, it is practically the eastern extension of the Antillean series of uplift. It rises from a submerged bank which borders it for a few miles and is continued across to the other islands. On the north slope, this bank descends almost precipitously to a depth of nearly 30,000 feet (9140 m) into what is known geographically as the Brownson Deep. The outline is nearly that of a parallelogram and the coast-line is almost perfectly straight, although there are a few headlands. The island landscape is a composite consisting of hills, fertile plains watered with numerous gently flowing streams. The mountains, generally low, rise to El Yunque in the Sierra Luquillo (3609 feet)\(^1\), the highest peak in the island. The extension of these mountains southward is known as Sierra de Cayey, while westward outlying ridges have various names. The south-western end is a heaved-up area of mountains, hills, spurs, valleys, from which run down the many streams and rivers of the island, such as the Bayamon, Plata, Cibuco, Arecibo, Camuy which flow north, and the Culebrinas, Anasco, Guanagibo and Mayaguez, which flow west. The Portuguese, Jacaguas, Coamo rivers flow west and the Humacao, Naguabo and Fajardo to the east.

The geology of Puerto Rico is very little known. The hills according to Cleve a Swedish geologist are fragments of a very thick series of limestone strata which have been much denuded. The summits of the mountains are capped by the Antillean limestone formations. The presence of fossils shows that these limestones are identical in age with the Tertiary rocks, of the other Antilles. A core of older rocks, conglomerates, etc. are similar to the older rocks of Jamaica. The rocks of the littoral are probably coral and great reefs exist today on the east and south coasts of the island.

c. Santo Domingo (Hispaniola).

Santo Domingo excels Puerto Rico, Cuba and Jamaica in altitude, diversity of configuration, picturesque aspect and natural fertility \(^2\). It is continental in its topographic make-up, being the radiating center of the great Antillean uplift. The outline of Hispaniola is the most irregular of all the Greater Antilles, its periphery being nearly a thousand miles (1600 km), its length 400 miles (644 km), and its breadth 160 miles (257 km). The great Gulf of

1) The maps indicate 1520 m near the west coast. (Drd.)
Gonaives is enclosed by the western peninsulas, and is an immense semicircular bay with a coast line of two hundred miles. Samana Bay on the northeast, Barahona Bay on the south coast and Manzanilla Bay on the north are also conspicuous indentations. Approached from the ocean, the island presents a huge mass of mountains rising precipitously from the sea, extending in all directions and apparently jumbled up in hopeless confusion. The mountains consist of lofty forest-covered peaks, resembling the Alleghanies, and Alps or the Pyrenees, but with this difference, that they are always without snow. There are four ranges of mountains which run in a general east-and-west direction, as follows: The northern fragment is the Monte Cristi Range; the main orographic section, the Sierra Cibao, consists of lofty mountains, with the third range as an outlier toward the south-west and the fourth mass is formed by the tall mountains of the southwestern peninsula. Between these ranges lie extensive fertile valleys, threaded by streams of limpid water. Many of these streams debouch on the plains which fringe the sea-coast, and irrigate those coastal areas which are more or less arid in condition, being shut off from the prevailing winds and rains by lofty mountain summits. There are many central valley plains in the island. The largest of these, lying between the Monte Cristi Range and the Cordillera Cibao, extends from the sea at the Haitian border to Samana Bay, its eastern prolongation. The western portion, watered by the Yaque, is an arid region covered by chaparral, where arborescent opuntias and cereuses abound. The windward area, or eastern division, watered by the Yuna, is covered by beautiful deciduous plants. South of the Cibao Range is the extensive plain of Seylo, covered in part by open prairie and forest. The terraced Caribbean coast supports a belt of forest averaging twelve miles in width. The tension line between coastal forest and inland prairie is park-like in aspect, carpeted by green grass and dotted by clumps of trees. At Azua, the whole neighborhood is barren, dry and thorny. The only lakes Assue and Enriquillo are salt, occupying the east-and-west depression which separates the southern peninsula of Haiti from the main portion of the island. This basin, formerly an oceanic inlet, is said to be inhabited still by sharks, porpoises and even crocodiles.

The configuration of the Haitian division of the island appears an agglomeration of mountains, hills and valleys most irregular in form. There are precipices, deep hollows, vales apparently without outlet, but with water glistening below. The whole of the republic is more or less mountainous. The Hotte Mountains are most noted and they form a continuation of the great axial sierra of the island. There are many beautiful slopes and valleys. Those of Port-au-Prince, Gonaives, Artibonite, Arcahaie, Port Margot, Leogane, Aux Cayes are the most famous. Some large islands are attached to the coast, viz., Tortuga, L'Ile-a-Vache, Gonaive, Beata and Saona. — The coast of Santo Domingo is fringed in many places by coral reefs, that are developed inside the bays. Samana Bay is more than half filled by them, while Gonaive Island is connected on both sides with the shore by reefs broken by a number of passages.
The rivers of Santo Domingo are many. The Rio Yaque, Chico descends from the Cibao highlands southward to the Caribbean Sea. The Rio Yaque flows from the same heights northward to the Vega Real and then traverses that depression to Manzanilla Bay. The Manai or Yuna River empties into Samana Bay. They are exceeded in length and volume only by the Artibonite which rises in the central highlands and flows westward through Haiti into the Gulf of Gonaives. Smaller rivers drain every portion of the island. One of the most copious of these streams is the Ozama upon which the City of San Domingo is founded.

The geology of the island is similar to that of Cuba and Jamaica, more especially according to Hill, the western ends which are composed of four principal formations: the older mountain rocks, of Cretaceous and Tertiary age, made up of igneous rocks and clays, mantled by gravels and crystalline limestone; the white limestones of Tertiary age; recent alluvial formations; and the coast limestone of elevated reef rock. No recent volcanic rocks are known.

d. Cuba.

The island of Cuba is long and narrow being 730 miles (1170 km), while the breadth averages 80 miles (130 km). The Cuban coast is generally low and flat, and is surrounded by numerous coral reefs and islands, which shut off from the sea a large number of salt lagoons, which are in some cases used to obtain salt by the process of evaporation. Its eastern end is mountainous with the summits standing high above the adjacent seas extending from Cape Maysi to Cape Cruz. These mountains form a chain, known as Sierra Maestra, with such prominent peaks as Pico del Turquino: 8400 feet (2560 m, very near to the southern shore), Gran Piedra: 5200 feet (1585 m), and Ojo del Toro: 3500 (5190) feet, to break the general elevation of the range. A much smaller ridge of less elevation than the main chain follows westward the central line of the island and may be considered as the backbone of it. The central and western parts of the island possesses two formations of compact limestone, one of clayey sandstone and another of gypsum, while caverns are found in the limestone formations. The Sierra Maestra Mountains are composed of non-calcareous conglomerates and shales of Mesozoic and Eocene age, intruded, says Hill, by great masses of dark-colored mid-Tertiary, igneous rocks, the debris of which makes a clay and gravel soil, the whole covered on the seaward face by white limestones to an elevation of 2000 feet or more. The lower slopes are terraced and represent the successive series of elevations which the island has undergone. The Sierra de los Organos occupies the western province of Pinar del Rio extending northeast and southwest and culminates in the Pan de Guajaibon at an altitude of 2532 feet (772 m). Geologically, it is composed of deformed sedimentary rocks of supposed Palozoic, Triassic, Jurassic and Tertiary age.

The rivers of Cuba are short, and flow north and south. The Cauto River is the largest and empties into the Bay of Buena Esperanza on the southern
coast. Sagua la Grande, the North and South Jatibonico, the Cuyaguateje, Zaza, Agabama and Guanabana are also notable streams. The distinct types of relief, then, include regions of high mountains, low hills dissected plateaus, level plains, valleys and coastal swamps. The southern coast produces the extensive cienaga, or swamp, known as the Zapata on the coast opposite Matanzas and continues out into the sea toward the Isle of Pines, which occupies the concave depression of the south coast of the island.

The island from a geologic standpoint consists of an older basement of pre-Tertiary sedimentary rocks in which fossils of Cretaceous and probably Jurassic age occur. Above this are littoral beds, then a thickness of white limestones, as distinguished from true reef rock of late Eocene and Oligocene age. The island was reclaimed from the sea and assumed its present physiographic condition by the great mountain uplift of late Tertiary time, following the deposition of the oceanic limestones. Subsidences and elevations occurred in the Pliocene and Pleistocene, which altered the coastal borders, producing eroded cliffs and elevated reef rock.

c. Jamaica.

The island of Jamaica is an elevated portion of the submerged bank which extends southward from Santo Domingo. Between this island and Cuba occurs the eastern lobe of the great Bartlett Deep, three thousand fathoms. The relief is mountainous, and at a distance from the east the island presents a group of mountain summits rising above the sea in a confused mass without regular ridges or secondary types of relief. Upon a nearer approach, four distinct physiographic types are recognizable. These are (1) the interior mountain ranges constituting the nucleus of the island; (2) an elevated limestone plateau, which surrounds the mountains and ends abruptly toward the sea; (3) the coastal cliffs, or back coast border of the oceanic margin of the plateau; and (4) a series of low level coastal plains around the edge of the island, between the sea and the back coast border.

The plateau is a shelf built out from the mountain masses through which the higher summits project. In the west of the islands, where the limestone becomes dominant, occasional views of the buried mountain formations may be seen, where running water has etched away the superficial limestone deposits. The Blue Mountain ridge found in the eastern interior dominates the topography of that end of the island. It extends in an irregular manner one-third the length of the island culminating in Blue Mountain Peak, 7360 feet (2240 m) high. The elevation of the range decreases west of this peak, until the mountain rocks sink below the limestone hills. West of St. Catherine Peak, 5036 feet (1530 m), the main range forks, the southern branch continuing through St. Andrew Parish. The mountains consist of loosely consolidated shales, conglomerates and clays with occasional limestone beds and dikes of igneous rock. The old formations are seen in some of the great central valleys, where they are exposed by the wearing away of the limestone.
The materials of the marginal table-land are soluble limestones which were formed as calcareous oceanic sediments. The configuration of the hilly country in the western side of the island owes its character largely to the solution of the limestone rock. The summit surface of the plateau is a hilly country filled with sink-holes, or cockpits, which represent deep basin-shaped valleys with deep drainage to the sea. The cockpit country, which has never been crossed, owes its topography to these cockpits, which are separated from each other by rounded conical hills rising above them. The seaward margin of the plateau, according to Hill\(^1\), presents a sloping mountainous front rising to an average altitude of 1200 feet along the north coast. At Montego Bay, it is finely shown in a series of six benches which rise above the sea. The highest of the old benches is John Crow ridge (circa 2100 feet) separated from the Blue Mountains by the deep gorge of the Rio Grande. The next level (1500 feet) is seen in Long Mountain east of Kingston. A third step has an altitude of about 1000 feet and is found on the north side of the island, as a great dissected plain. A lower group of levels are found at 650, 300 and 200 feet, respectively, which have been cut out of the old limestone matrix during a later period of emergence followed by a subsidence.

The lowland of the coast consists of three types of formations, such as elevated reefs, marginal sea debris and alluvial deposits. Liguanea Plain is one of the most important topographic low land features. It is over 25 miles long by 6 miles wide and has an area of 200 square miles (518 sqkm). This plain is comparatively bare and sterile, presenting in its xerophytic flora a striking contrast to the flora of the rest of the island. Such a plain, as Liguanea, is a record of four distinct events according to Hill: (1) the original cutting out of the matrix during a period of base leveling; (2) the filling in of the material constituting the present surface; (3) the elevation of the plains into their present position above the sea; and (4) the cutting of the modern streamways across them.

Jamaica abounds in streams of which two hundred have been described. The Rio Cobre drains the beautiful valley of St. Thomas-in-the-Vale by ten affluents which unite in a single trunk stream to flow through the Bog Walk Canyon. Wag Water River drains the northern slopes of the Blue Mountain range. Montego River, Great River and Black River drain the marginal slopes of the Cockpit country. The Minho River is an important stream draining into the Caribbean Sea near Portland Point. Salt River and the Cabaritta on the south side are navigable to barges, while many of the streams are roaring and turbulent in their flow from the highlands of the interior.

In geological conclusion the Blue Mountain series of rocks are of Eocene and Upper Cretaceous age. The older white oceanic limestones are perhaps

Oligocene, formed by foraminiferous deposits, while the later are Pliocene, Pleistocene and recent age laid down as littoral, or reef material on marginal terraces, which prior to their submergence were probably wave-cut. The first definite evidence of the existence of Jamaica and the other Antillean islands is found in the eruptive rocks of late Cretaceous times, and the land debris constituting the strata of the Eocene testifies to the pre-existence of extensive Cretaceous land areas. A profound subsidence in later Eocene and early Oligocene times submerged all but the summits of the highest Antillean mountains, and this movement extended to the margins of the surrounding continents. A tremendous uplift in late Oligocene, or Miocene times connected many of the islands and perhaps these with Central America without, however, bridging the interval between the North and South American continents. The islands were again severed in the last quarter of Tertiary time by submergence and assumed their present forms, which have been affected subsequently by only secondary modifications. Since then there have been intermittent periods of elevation without serious deformation, but not sufficient to restore the islands to the heights of mid-Tertiary time.

f. The Bahamas.

This group of islands represents a vast marine bed, or submerged plateau parts of which raised above the surface of the sea as dryland, form an archipelago stretching through a total distance of 780 miles (1255 km) from the eastern coast of Santo Domingo. The archipelago consists of over 690 islands and islets and 2387 rocks. The islands are not composite in construction but according to Professor A. Agassiz, they represent wind-blown piles of shell and coral sand rather than coral-reef rook. More extensive in the past their areas have been restricted by a general regional subsidence of some three hundred feet, so that much of their former surface exists as submarine banks covered by shallow water. The sand, which enters into their constitution, is white shell-sand, the particles formed by the breaking of shells and corals into fragments. Reefs encircle these islands where the coral polyps are still active. The principal islands are grouped together in several natural groups. Thus in the north, we find Great Bahama Island, Great and Little Abaco islands with several cays forming one division. Andros Island, the largest of the Bahamas, with New Providence, Eleuthera, Cat, Great Exuma and Long islands form another group, while Crooked, Acklin, Mariguana, Great and Little Inagua, Turk and Caicos islands form the most southern division of the series. Watling Island, the first land fall of Columbus in 1492, stands by itself in the Atlantic Ocean east of Cat and Long islands. The islands are all low in relief, the highest hill in the whole range of islands is only 230 feet high. The soil, although thin, in very fertile. From the sea, the Bahama islands appear as low stretches of verdure covered land bordered by a strip of white beach before which lies in the open bays water of transparent beauty, so clear, that the socalled sea-gardens of coral and seaweed can be seen at the bottom.

Harshberger, Survey N.-America.
Low rounded hills are seen, typic sand dunes, more rugged on the leeward side. The rock is honeycombed by the weather and is called eolian, and is extremely porous the rain water rapidly percolating through. The Bahamas with the exception of Andros island are destitute of springs, or running streams, the water collecting in underground reservoirs.

g. The Bermudas.

This small group of islands stands on a marine bed 25 miles long in latitude 32° 20’ N. and longitude 64° 50’ W. about 600 miles (965 km) E. by S. from Cape Hatteras on the American coast. All are of coralline formation and the Bermuda archipelago marks the northern limit of the coral building polyps. The reefs encircling the islands are still growing and leave a few intricate passages where ships can enter. The largest of these islands is Long Island enclosing on the east Harrington, or Little Sound and on the west Great Sound, studded with islets. Boaz, Somerset and Ireland islands protect Great Sound on the north. St. David’s, Smith’s, Cooper’s, Nonsuch, St. George’s and Paget’s islands lie to the east and form a crescent about Castle Harbor.

White granular limestones of various degrees of hardness with caves eaten into them constitute the geologic material of these islands. The rocks have been formed from wind blown calcareous sand heaped into dunes, which have been consolidated into a porous limestone by the cementing action of rain-water, containing carbon dioxide. By subsequent erosion, soil has been formed from these rocks (usually of a red character), as a one percent residue left after the removal of the limy salts. It represents peroxyde of iron, silica and earthy phosphates, sparingly soluble in water. Stream and wells of fresh water are entirely wanting and the people are dependent on the rain water, which they collect and preserve in tanks.

Chapter II. Climate of North America.

General remarks. In dealing with the climate of North America in general, we must consider it from the continental aspect. It is important, therefore, to give a brief summary of the peculiarities of the climatology of large continents before the tables and data of temperature, precipitation and other meteorologic phenomena are presented.

A common feature of continental climates in all latitudes is their large range of temperature. Marine climates, including those of oceanic islands, on the other hand are characterized by a small annual range. A continental climate is, therefore, considered to be severe as regards its temperature conditions, while a marine climate is mild by contrast. The annual temperature curve of continental and marine climates is of a different type. In continental climates, the maximum temperature comes about one month after the date of the sun’s maximum altitude, while the minimum temperature is similarly, though to a
less marked degree delayed after the sun's lowest altitude. In marine climates on the other hand, the delay in the time of maxima and minima is much greater. The lowest temperature does not occur until two, or even three, i.e., in February and March. The highest temperature is similarly delayed after the greatest altitude of the sun, although to a less degree, the warmest month being August.

The covering of snow in the northern part of North America has an important influence on climate, because it alters the effect which land has upon the temperature of the air by substituting its own influence for that of the ground which has then no control over the temperature of the air. Snow during the season of frost increases radiation and at the same time prevents the flow of heat from the ground by conduction, and in this respect, it is very beneficial. For this reason, says Hann, radiation from a snow surface under the clear sky of a continental winter considerably reduces the winter temperatures and increases the annual range of temperature. The increase of temperature in the spring is much retarded by the presence of snow, because the heat of the sunshine and of the warmer currents of air is almost wholly expended in melting the snow and ice.

The diurnal range of temperature increases with an increase of distance from the ocean, as does the annual range. The greater and more rapid warming of the land surface, and the stronger insolation, increase the daily temperature maxima; while on the other hand the dry air and clear sky at night favor rapid radiation and cooling of the earth's surface, and produce low nocturnal minima. Thus, there is a large diurnal and a large annual range. The diurnal range is greatest on deserts, and especially on dry plateaus. In Death Valley, California, the mean diurnal range of temperature in August, 1891, was 64.2° F. (36° C.) and the greatest daily range in the same month was 73.0° F. (41° C.). The variability of the monthly means of temperature is greater in a continental than in a littoral, or insular climate. Thus in the interior of North America in February, the mean departure is 36.6° F. (26° C.), in August, 33.9° F. (19° C.) and for the year, 35.0° F. (19.5° C.).

With respect to temperature, it may be stated as a general rule that the temperatures in a littoral, or an insular climate possess a greater uniformity than a continental one. This is due, in the first place, to the influence of neighboring large bodies of water and secondly to the moist atmosphere, the effect of which is to minimize the influence of cooling agencies by causing a condensation of water vapor and thus by means of the latent heat liberated diminishing the fall of temperature, which would otherwise take place.

The influence of continents upon humidity, cloudiness and precipitation is marked. As the water vapor of the atmosphere is supplied by evaporation of the ocean waters, the amount naturally decreases toward the interior of the large continents, not considering the local sources of supply such as rivers, lakes and vegetation. The lowest mean annual relative humidities in the United States for instance are in the dry southwest. Yuma, Arizona,
has a mean annual relative humidity of 42.9 per cent. in June. Santa Fe, New Mexico, has a mean annual of 44.8 per cent., with a mean monthly minimum of 28.7 per cent. in June. Pueblo, Colorado, has a mean annual of 46.2 per cent., with a mean monthly minimum of 37.6 per cent. in April while Death Valley, California, has a mean relative humidity of 23 per cent. during five months (May—September) of the year 1891. The atmosphere is very dry, absolutely, over the continents of middle and higher latitudes in winter, on account of the severe cold which then prevails, but it is relatively very moist and near saturation. Under these conditions, the relative humidity does not decrease inland, there it actually increases.

The greater relative dryness of the continental interiors naturally involves also a smaller amount of cloudiness, especially in summer. The maximum of cloudiness in the United States is found on the northwestern Pacific coast (65 per cent). The lake region has a mean annual cloudiness of 60 per cent, while the greater part of the middle and south Atlantic coast has a percentage of 50 and over the Mississippi and Missouri valley the average cloudiness is between 45 and 50 per cent. The mean annual cloudiness in southern Nevada, southeastern New Mexico, most of Arizona is 30 per cent. — The amount and frequency of precipitation as a rule decrease inland, but this decrease is so irregular and depends so much upon topography; upon the position of the mountain ranges with respect to the rain-bearing winds that no general statement can be made.

The influence of continents upon winds is of the great climatic importance. Land and sea breezes are local phenomena limited to the seacoasts. With the change from day to night, the relative temperature conditions of land and water are reversed followed by a reversal of the winds. In countries where there is no real winter, these periodic winds blow throughout the year. Thus on the south coast of southern California the sea breeze blows throughout the greater part of the year, weak in winter and strong in summer. In higher latitudes, they occur almost exclusively in the warmer months. Thus on the New Jersey coast of the United States, according to the observations of the writer, the sea breeze begins first over the open ocean, as shown by the sails of ships and the smoke of steamers and gradually works in toward the coast, which it reaches on very warm quiet mornings at about 9 o'clock. Frequently, however, the arrival of the sea breeze is delayed until eleven o'clock, or noon. On several days during one summer, the temperature in the early morning stood at 90° F. (32.2° C.), but with the arrival of the sea breeze, a drop of from 10—15 degrees F. was recorded with in a period of a little over ten minutes. Lake breezes are also of frequent occurrence. An excellent example is described by Hazen. During the summer of 1882, observations were made at the lake crib, a water-tower station, three

1 Hazen, H. A.: Report on wind Velocities at the Lake Crib and at Chicago. United States Signal Services Notes; No. VI. 1883.
miles east of Chicago, in Lake Michigan, and at Chicago, with a view to determining the relation of the wind at the two stations. It appeared that the mean hourly direction of the wind at Chicago, during July of that year, indicated a change from almost due east at 1 P. M., through southeast to almost south at 10 P. M.

The subject of continental winds now concerns us. The warming of the atmospheric strata over an extended land surface is influential in the production of winds. The ascending currents of warm air and descending currents of cool air are established and there results a continuous interchange of air between the upper and lower strata. This play of air currents is interrupted at night, when there is a rapid cooling of the surface of the ground by radiation, while the higher strata of the atmosphere are not correspondingly cooled. A difference of atmospheric pressure results and a movement of air from the ocean toward the continent takes place in a direction opposite to the movement aloft. The air flows from the region of higher pressure to that of lower pressure and deflected in consequence of the earth's rotation, we may expect the following winds around the margins of the continents in summer.\footnote{HANN, JULIUS: Handbook of Climatology. Engl. transl. 1903: 165.}

<table>
<thead>
<tr>
<th></th>
<th>West Coast</th>
<th>North Coast</th>
<th>East Coast</th>
<th>South Coast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Hemisphere</td>
<td>N.W.</td>
<td>N.E.</td>
<td>S.E.</td>
<td>S.W.</td>
</tr>
<tr>
<td>Southern Hemisphere</td>
<td>S.W.</td>
<td>N.W.</td>
<td>N.E.</td>
<td>S.E.</td>
</tr>
</tbody>
</table>

Such a circulation of air, as we have described for the larger continents, is known as cyclonic. Cyclonic circulation briefly consists then in the formation of two eddies, an up-draught eddy, the center of low barometric pressures into which and about which the winds circulate spirally; the focus of storm phenomena, called in consequence of the inward motion of its winds, the cyclone and on the other hand, a down-draught eddy, the center of high barometric pressures from out of which and about which the winds move spirally; the focus of clear-weather phenomena, called in contradistinction to the cyclonic eddy, the anti-cyclone. When it is remembered that by reason of cosmic causes the permanent relations of the atmospheric circulation arrange themselves more or less in the form of a belt of anti-cyclones lying over the oceans on or near the tropics, a belt of cyclones near the poles, and in the middle latitudes an eastward drift of migratory cyclones and anti-cyclones, changing in latitude and intensity with the seasons, some idea of the mechanism of the circulation that produces weather and conditions of climate is given. The only additional important fact to bear in mind is that the winds of summer are different from those in winter in consequence of the fact that the land is colder than the ocean, and that the air from the oceans flows in aloft towards the continents. The so-called cold and hot waves of the United States are a result of the cyclonic and anticyclonic movements of the atmosphere. For example, the
location of the center of extreme heat will be found generally on the northern and western outskirts of the area of high pressure. The longevity of the hot wave, which is so detrimental to vegetation, seems to depend upon a slacking up in the general circulation. Aside from the direct heating from the sun, dynamic heating and lack of radiation have an important influence in maintaining the temperature at an abnormal figure. Hot waves according to Professor Bigelow come from two sources. They originate in a mass of heated air on the Rocky Mountain plains and gradually move eastward from thence; on the other hand, a high area settling over the South Atlantic and Gulf states has the effect of charging the stagnant air with heat, as if the eastward circulation in the upper air was suspended for quite long intervals of time 1).

The cold wave is remarkably well developed in the winter storms of the central and eastern parts of North America. When supplied by an area of strong high pressure in the northwest, it sweeps down from the cold plains of farther Canada and brings with it the low temperature of that bleak region. Its movement, obliquely towards the cyclonic center that it follows, is accelerated by the winter high pressure characteristic of its source in the continental center and it is nowhere impeded by transverse mountain ranges. Near the track of the cyclone, the cold wave arrives suddenly and in almost fully-developed strength displacing the antecedent warm spell in a few hours and causing an abrupt fall of temperature. This fall of temperature in the spring is especially destructive to all kinds of vegetation. The deforestation of Michigan is said to have given more ready access to cold waves, hence the peach crop has nearly disappeared from that state.

The advent of spring in northern latitudes is dependent on the relative distribution of the cyclonic and anticyclonic areas. The advent of spring is due to the heat that causes the snows to disappear and external manifestations of life to appear in the plant. The temperature of 60°C., or 42.8°F., is that at which the protoplasm of most plants becomes inactive. The advent of spring is considered as taking place at the advent of an isotherm one degree higher 43.8°F. (6.6°C.). The progress of the mean isotherm of 43°F. (6.1°C.) may therefore be considered to represent the average advent of spring. — Along the Gulf of Mexico there is no advent of spring which we find in the north, for on February 1st, the isotherm in question is found crossing the United States from the vicinity of Cape Hatteras on the east to the north of El Paso, then going westward and reaching the Pacific coast at some distance north of San Francisco. In the interval between February 1st and March 1st, however, it begins a rapid advance, and by April 1st, it passes over central New Jersey nearly westward to the vicinity of Denver, here it makes a bend southward in crossing the mountains and passes abruptly northward to the

Pacific Ocean. By May 1st the whole territory of the United States is covered by spring and spring has advanced by May 1st into Ontario and Quebec in Canada. Various fluctuations occur due to the progress of cold waves across the continent, when according to ancient cult the ice saints Sts. Pancras, Servatius and Boniface may be said to reign and frost may be expected in the month of May. From observations extending over a period of fifteen years, the southern limit of probable frost is represented by a line which begins at Cape Cod, passes down the coast to about central New Jersey, thence westward and southwestward, leaving the city of Cairo to the south, thence obliquely through Arkansas into Texas, crossing the Rio Grande and bending abruptly northwestward disappears in the Pacific Ocean. With this brief but comprehensive review of the continental climate of North America the particular climate of the country will be presented.

1. Canada.

The climate of Canada is characterized by great heat in summer and a much lower temperature in winter than in corresponding European latitudes. The severity of the winter, as tested by the thermometer, leads to a very exaggerated impression of the subjective climatic conditions. Owing to the dry, clear, bracing atmosphere which generally prevails, the sense of discomfort is rarely experienced in a Canadian winter. There are indeed, every winter, a few days of intense cold, as in the summer there are brief periods of equally intense heat. But throughout the greater part of the winter season in the Dominion, the sky is bright and clear and the weather thoroughly enjoyable. Snow brings with it all the pleasures accompanying sleighing, k snee and skating, while the farmer hails the snow as highly beneficial and protective to his crops. In the province of Quebec, the snow begins to lie early in November, in Ontario it is fully a month later, and it differs correspondingly at various localities throughout the country. According to the meteorologic records, January and February are the coldest months of the year. Throughout the whole of Canada steady sleighing is reckoned upon during these months. Snow finally disappears in Quebec about the middle of April and in Ontario about a month earlier. In Nova Scotia, New Brunswick, and Prince Edward Island and on the Pacific slope, the climate is controlled by nearness to the open sea. Spring passes rapidly. Harvest begins before the end of July and with the rapidity of growth under the warm Canadian skies other crops follow in rapid succession until the autumn sowing of wheat is followed by the early oncoming of winter. In this way the Canadian climate is marked by the striking contrast of two seasons, summer and winter and this characteristic seems to be general for Manitoba presenting no marked diversity from Quebec, or Ontario. Spring glides insensibly into summer, summer into fine autumn weather, which, during the equinox, breaks up in a series of heavy gales of wind accompanied by rain and snow. Then follows Indian summer and the long steady winter of the Canadian year.
Data Furnished by the Canadian Meteorologic Service, 1913¹

April

<table>
<thead>
<tr>
<th>Stations</th>
<th>Temperature (F.)</th>
<th>Precipitation</th>
<th>Precip, May</th>
<th>Precip, June</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>St. Johns, N. F.</td>
<td>35.1 + 0.6 41.6 26.6</td>
<td>+0.91 3.5</td>
<td>+2.17</td>
<td>-1.66</td>
</tr>
<tr>
<td>Sydney, C. B. I.</td>
<td>37.0 + 5.0 44.5 29.5</td>
<td>+2.59 3.5</td>
<td>+2.17</td>
<td>-2.11</td>
</tr>
<tr>
<td>Halifax, N. S.</td>
<td>40.6 + 2.8 48.6 32.5</td>
<td>+2.59 3.5</td>
<td>+2.17</td>
<td>-2.11</td>
</tr>
<tr>
<td>Grand Manan, N. B.</td>
<td>41.2 + 5.0 48.5 34.0</td>
<td>+2.59 3.5</td>
<td>+2.17</td>
<td>-2.11</td>
</tr>
<tr>
<td>Yarmouth, N. S.</td>
<td>41.6 + 2.8 48.6 34.0</td>
<td>+2.59 3.5</td>
<td>+2.17</td>
<td>-2.11</td>
</tr>
<tr>
<td>Charlottetown, P. E. I.</td>
<td>36.5 + 1.4 43.7 29.5</td>
<td>+4.77 10.3</td>
<td>+0.83</td>
<td>+0.28</td>
</tr>
<tr>
<td>Chatham, N. B.</td>
<td>37.9 + 5.4 47.9 27.9</td>
<td>+4.77 10.3</td>
<td>+0.83</td>
<td>+0.28</td>
</tr>
<tr>
<td>Cape Breton, Que.</td>
<td>39.2 + 7.0 42.7 21.7</td>
<td>+4.77 10.3</td>
<td>+0.83</td>
<td>+0.28</td>
</tr>
<tr>
<td>Quebec, Que.</td>
<td>41.4 + 4.4 53.1 31.5</td>
<td>+4.77 10.3</td>
<td>+0.83</td>
<td>+0.28</td>
</tr>
<tr>
<td>Montreal, Que.</td>
<td>44.1 + 4.4 53.1 31.5</td>
<td>+4.77 10.3</td>
<td>+0.83</td>
<td>+0.28</td>
</tr>
<tr>
<td>Bisset, Ont.</td>
<td>46.3 + 5.0 54.7 35.9</td>
<td>+4.77 10.3</td>
<td>+0.83</td>
<td>+0.28</td>
</tr>
<tr>
<td>Ottawa, Ont.</td>
<td>47.3 + 5.0 54.7 35.9</td>
<td>+4.77 10.3</td>
<td>+0.83</td>
<td>+0.28</td>
</tr>
<tr>
<td>Kingston, Ont.</td>
<td>47.3 + 5.0 54.7 35.9</td>
<td>+4.77 10.3</td>
<td>+0.83</td>
<td>+0.28</td>
</tr>
<tr>
<td>Toronto, Ont.</td>
<td>43.9 + 5.1 52.7 35.0</td>
<td>+4.77 10.3</td>
<td>+0.83</td>
<td>+0.28</td>
</tr>
<tr>
<td>White River, Ont.</td>
<td>31.2 - 1.8 43.5 18.9</td>
<td>+2.48 13.8</td>
<td>+4.99</td>
<td>+0.30</td>
</tr>
<tr>
<td>Port Stanley, Ont.</td>
<td>44.2 + 5.2 51.2 37.1</td>
<td>+4.77 10.3</td>
<td>+0.83</td>
<td>+0.28</td>
</tr>
<tr>
<td>Saugeen, Ont.</td>
<td>45.3 + 5.8 51.8 33.2</td>
<td>+4.77 10.3</td>
<td>+0.83</td>
<td>+0.28</td>
</tr>
<tr>
<td>Parry Sound, Ont.</td>
<td>49.1 + 4.5 53.4 30.8</td>
<td>+4.77 10.3</td>
<td>+0.83</td>
<td>+0.28</td>
</tr>
<tr>
<td>Port Arthur, Ont.</td>
<td>35.7 + 1.7 43.5 26.6</td>
<td>+4.77 10.3</td>
<td>+0.83</td>
<td>+0.28</td>
</tr>
<tr>
<td>Winnipeg, Man.</td>
<td>40.0 + 6.3 57.6 27.4</td>
<td>+4.77 10.3</td>
<td>+0.83</td>
<td>+0.28</td>
</tr>
<tr>
<td>Minnedosa, Man.</td>
<td>39.6 + 3.6 52.1 27.1</td>
<td>+4.77 10.3</td>
<td>+0.83</td>
<td>+0.28</td>
</tr>
<tr>
<td>Qu'Appelle, Assin.</td>
<td>40.2 + 5.8 53.9 26.5</td>
<td>+4.77 10.3</td>
<td>+0.83</td>
<td>+0.28</td>
</tr>
<tr>
<td>Medicine Hat, Assin.</td>
<td>44.1 + 0.4 58.9 20.0</td>
<td>+4.77 10.3</td>
<td>+0.83</td>
<td>+0.28</td>
</tr>
<tr>
<td>Swift Current, Assin.</td>
<td>49.3 + 1.0 54.7 29.8</td>
<td>+4.77 10.3</td>
<td>+0.83</td>
<td>+0.28</td>
</tr>
<tr>
<td>Calgary, Alberta</td>
<td>37.5 - 2.1 49.1 35.9</td>
<td>+4.77 10.3</td>
<td>+0.83</td>
<td>+0.28</td>
</tr>
<tr>
<td>Banff, Alberta</td>
<td>39.3 - 3.0 48.7 27.2</td>
<td>+4.77 10.3</td>
<td>+0.83</td>
<td>+0.28</td>
</tr>
<tr>
<td>Edmonton, Alberta</td>
<td>32.7 - 2.4 46.3 21.2</td>
<td>+4.77 10.3</td>
<td>+0.83</td>
<td>+0.28</td>
</tr>
<tr>
<td>Prince Albert, Sask.</td>
<td>33.7 + 5.1 48.5 27.2</td>
<td>+4.77 10.3</td>
<td>+0.83</td>
<td>+0.28</td>
</tr>
<tr>
<td>Battleford, Sask.</td>
<td>36.2 + 3.5 46.8 26.5</td>
<td>+4.77 10.3</td>
<td>+0.83</td>
<td>+0.28</td>
</tr>
<tr>
<td>Kamloops, B. C.</td>
<td>47.0 + 1.0 57.6 24.1</td>
<td>+4.77 10.3</td>
<td>+0.83</td>
<td>+0.28</td>
</tr>
<tr>
<td>Victoria, B. C.</td>
<td>49.3 + 0.4 59.2 20.0</td>
<td>+4.77 10.3</td>
<td>+0.83</td>
<td>+0.28</td>
</tr>
<tr>
<td>Barkerville, B. C.</td>
<td>31.3 + 1.8 41.7 30.8</td>
<td>+4.77 10.3</td>
<td>+0.83</td>
<td>+0.28</td>
</tr>
</tbody>
</table>

¹ For stations the rainfall is given in inches and tenths when appreciable; otherwise a "trace" is indicated by a capital T and "no rain" by O.O.
July

<table>
<thead>
<tr>
<th>Stations</th>
<th>Temperature (F.)</th>
<th>Precipitation</th>
<th>Precip. August</th>
<th>Precip. September</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Precip.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Departure from</td>
<td>Maximum</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>normal</td>
<td>minimum</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31.4</td>
<td>41.4</td>
<td>-7.5</td>
<td>3.0</td>
</tr>
<tr>
<td>St. Johns, N. F.</td>
<td>54.1</td>
<td>-5.2</td>
<td>61.6</td>
<td>46.7</td>
</tr>
<tr>
<td>Sydney, C. B. I.</td>
<td>61.4</td>
<td>1.2</td>
<td>70.3</td>
<td>59.0</td>
</tr>
<tr>
<td>Halifax, N. S.</td>
<td>61.9</td>
<td>-1.5</td>
<td>69.7</td>
<td>54.1</td>
</tr>
<tr>
<td>Grand Manan, N. B.</td>
<td>61.3</td>
<td>-2.7</td>
<td>67.8</td>
<td>53.8</td>
</tr>
<tr>
<td>Yarmouth, N. S.</td>
<td>60.3</td>
<td>+0.8</td>
<td>68.8</td>
<td>53.8</td>
</tr>
<tr>
<td>Charlottetown, P. E. I.</td>
<td>65.0</td>
<td>+0.9</td>
<td>74.0</td>
<td>56.0</td>
</tr>
<tr>
<td>Chatham, N. B.</td>
<td>63.7</td>
<td>-1.3</td>
<td>73.8</td>
<td>58.5</td>
</tr>
<tr>
<td>Father Point, Que.</td>
<td>54.9</td>
<td>-2.7</td>
<td>61.6</td>
<td>48.0</td>
</tr>
<tr>
<td>Quebec, Que.</td>
<td>64.6</td>
<td>-0.9</td>
<td>73.1</td>
<td>56.9</td>
</tr>
<tr>
<td>Montreal, Que.</td>
<td>68.2</td>
<td>-0.3</td>
<td>75.5</td>
<td>60.9</td>
</tr>
<tr>
<td>Bisset, Ont.</td>
<td>64.5</td>
<td>-1.1</td>
<td>79.5</td>
<td>52.5</td>
</tr>
<tr>
<td>Ottawa, Ont.</td>
<td>68.5</td>
<td>-1.0</td>
<td>76.7</td>
<td>60.3</td>
</tr>
<tr>
<td>Kingston, Ont.</td>
<td>70.2</td>
<td>-1.0</td>
<td>74.2</td>
<td>59.7</td>
</tr>
<tr>
<td>Toronto, Ont.</td>
<td>69.1</td>
<td>+1.1</td>
<td>71.0</td>
<td>59.2</td>
</tr>
<tr>
<td>White River, Ont.</td>
<td>60.7</td>
<td>0.0</td>
<td>72.8</td>
<td>47.2</td>
</tr>
<tr>
<td>Port Stanley, Ont.</td>
<td>67.7</td>
<td>-0.2</td>
<td>77.0</td>
<td>58.0</td>
</tr>
<tr>
<td>Saugeen, Ont.</td>
<td>66.9</td>
<td>0.1</td>
<td>72.4</td>
<td>56.7</td>
</tr>
<tr>
<td>Parry Sound, Ont.</td>
<td>65.0</td>
<td>-0.1</td>
<td>73.2</td>
<td>56.9</td>
</tr>
<tr>
<td>Port Arthur, Ont.</td>
<td>61.8</td>
<td>1.9</td>
<td>71.7</td>
<td>49.4</td>
</tr>
<tr>
<td>Winnipeg, Man.</td>
<td>61.4</td>
<td>-0.6</td>
<td>77.8</td>
<td>59.2</td>
</tr>
<tr>
<td>Minnedosa, Man.</td>
<td>62.1</td>
<td>-0.1</td>
<td>73.5</td>
<td>50.0</td>
</tr>
<tr>
<td>Qu'Appelle, Assin.</td>
<td>62.6</td>
<td>-2.9</td>
<td>71.7</td>
<td>49.7</td>
</tr>
<tr>
<td>Medicine Hat, Assin.</td>
<td>62.5</td>
<td>-2.4</td>
<td>78.5</td>
<td>56.3</td>
</tr>
<tr>
<td>Swift Current, Assin.</td>
<td>62.6</td>
<td>-3.0</td>
<td>74.3</td>
<td>50.0</td>
</tr>
<tr>
<td>Calgary, Alberta</td>
<td>56.8</td>
<td>-3.8</td>
<td>63.1</td>
<td>44.5</td>
</tr>
<tr>
<td>Banff, Alberta</td>
<td>54.5</td>
<td>1.1</td>
<td>65.0</td>
<td>47.4</td>
</tr>
<tr>
<td>Edmonton, Alberta</td>
<td>59.2</td>
<td>-1.4</td>
<td>70.1</td>
<td>48.4</td>
</tr>
<tr>
<td>Prince Albert, Sask.</td>
<td>58.9</td>
<td>-3.0</td>
<td>70.3</td>
<td>47.5</td>
</tr>
<tr>
<td>Battleford, Sask.</td>
<td>60.8</td>
<td>-3.9</td>
<td>71.4</td>
<td>50.9</td>
</tr>
<tr>
<td>Kamloops, B. C.</td>
<td>67.3</td>
<td>-1.4</td>
<td>68.7</td>
<td>45.3</td>
</tr>
<tr>
<td>Victoria, B. C.</td>
<td>58.2</td>
<td>-1.8</td>
<td>64.5</td>
<td>51.9</td>
</tr>
<tr>
<td>Barkerville, B. C.</td>
<td>52.3</td>
<td>-2.8</td>
<td>64.3</td>
<td>39.7</td>
</tr>
</tbody>
</table>

October

<table>
<thead>
<tr>
<th>Stations</th>
<th>Temperature (F.)</th>
<th>Precipitation</th>
<th>Depth of snow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Departure from normal</td>
<td>Maximum</td>
</tr>
<tr>
<td></td>
<td>In.</td>
<td>In.</td>
<td>In.</td>
</tr>
<tr>
<td></td>
<td>31.4</td>
<td>41.4</td>
<td>-7.5</td>
</tr>
<tr>
<td>St. Johns, N. F.</td>
<td>42.9</td>
<td>-2.5</td>
<td>48.4</td>
</tr>
<tr>
<td>Sydney, C. B. I.</td>
<td>46.5</td>
<td>0.0</td>
<td>53.1</td>
</tr>
<tr>
<td>Halifax, N. S.</td>
<td>46.9</td>
<td>+2.0</td>
<td>55.1</td>
</tr>
<tr>
<td>Grand Manan, N. B.</td>
<td>48.5</td>
<td>+1.6</td>
<td>51.0</td>
</tr>
<tr>
<td>Yarmouth, N. S.</td>
<td>48.5</td>
<td>+0.0</td>
<td>55.7</td>
</tr>
<tr>
<td>Charlottetown, P. E. I.</td>
<td>46.0</td>
<td>-0.3</td>
<td>52.8</td>
</tr>
<tr>
<td>Chatham, N. B.</td>
<td>44.1</td>
<td>+1.1</td>
<td>53.4</td>
</tr>
<tr>
<td>Father Point, Que.</td>
<td>41.5</td>
<td>+1.7</td>
<td>48.6</td>
</tr>
<tr>
<td>Quebec, Que.</td>
<td>44.4</td>
<td>+2.0</td>
<td>50.9</td>
</tr>
<tr>
<td>Montreal, Que.</td>
<td>48.9</td>
<td>-4.1</td>
<td>55.9</td>
</tr>
<tr>
<td>Bisset, Ont.</td>
<td>43.4</td>
<td>+0.6</td>
<td>56.1</td>
</tr>
<tr>
<td>Ottawa, Ont.</td>
<td>48.9</td>
<td>+5.1</td>
<td>57.0</td>
</tr>
<tr>
<td>Kingston, Ont.</td>
<td>51.3</td>
<td>+4.3</td>
<td>58.6</td>
</tr>
<tr>
<td>Toronto, Ont.</td>
<td>56.8</td>
<td>-4.2</td>
<td>59.5</td>
</tr>
<tr>
<td>White River, Ont.</td>
<td>50.5</td>
<td>-2.7</td>
<td>58.6</td>
</tr>
<tr>
<td>Port Stanley, Ont.</td>
<td>50.5</td>
<td>+2.7</td>
<td>58.6</td>
</tr>
<tr>
<td>Saugeen, Ont.</td>
<td>49.6</td>
<td>-5.3</td>
<td>57.7</td>
</tr>
<tr>
<td>Parry Sound, Ont.</td>
<td>47.4</td>
<td>-3.5</td>
<td>58.4</td>
</tr>
<tr>
<td>Port Arthur, Ont.</td>
<td>43.4</td>
<td>-3.5</td>
<td>54.4</td>
</tr>
<tr>
<td>Winnipeg, Man.</td>
<td>45.0</td>
<td>-5.0</td>
<td>56.8</td>
</tr>
<tr>
<td>Minnedosa, Man.</td>
<td>44.6</td>
<td>+7.0</td>
<td>56.1</td>
</tr>
<tr>
<td>Qu'Appelle, Assin.</td>
<td>45.5</td>
<td>+6.1</td>
<td>56.7</td>
</tr>
<tr>
<td>Medicine Hat, Assin.</td>
<td>50.2</td>
<td>+5.4</td>
<td>63.1</td>
</tr>
<tr>
<td>Swift Current, Assin.</td>
<td>47.0</td>
<td>+4.0</td>
<td>60.5</td>
</tr>
<tr>
<td>Calgary, Alberta</td>
<td>44.6</td>
<td>+4.3</td>
<td>59.1</td>
</tr>
<tr>
<td>Banff, Alberta</td>
<td>41.9</td>
<td>-0.3</td>
<td>50.7</td>
</tr>
<tr>
<td>Edmonton, Alberta</td>
<td>46.2</td>
<td>+5.1</td>
<td>60.0</td>
</tr>
<tr>
<td>Prince Albert, Sask.</td>
<td>41.7</td>
<td>+4.6</td>
<td>52.6</td>
</tr>
<tr>
<td>Battleford, Sask.</td>
<td>47.4</td>
<td>-3.9</td>
<td>57.2</td>
</tr>
<tr>
<td>Kamloops, B. C.</td>
<td>46.5</td>
<td>-0.3</td>
<td>55.1</td>
</tr>
<tr>
<td>Victoria, B. C.</td>
<td>51.2</td>
<td>+2.0</td>
<td>57.0</td>
</tr>
<tr>
<td>Barkerville, B. C.</td>
<td>56.7</td>
<td>-3.0</td>
<td>43.1</td>
</tr>
</tbody>
</table>
The hydrography proves that there can be no deficiency in rainfall, for the innumerable lakes and streams are constantly full. In Assiniboia, the great plains project north of the boundary and form an area over 20,000 square miles (51,800 qkm). There are dry belts under the lee of the mountain ranges of British Columbia and a belt of excessive moisture on the Pacific coast. The immense areas of water in the great central lakes alter the climate by imparting humidity to the air and moderating those extremes which are characteristic of a continental climate. The foregoing tables present the details regarding temperature for the four most striking months of the seasons, precipitation or depth of snow for each month of the year, as taken from the U. S. Monthly Weather Review (1903. XXXI). See pages 136—137.

2. United States.

The United States, exclusive of Alaska displays nearly all the variations of climate known in the temperate zone\(^1\)). One of the most interesting facts is the low winter temperature of this country as compared with that of the same latitudes in western Europe; for example, the temperature of 32° F. at New York, latitude 40° 43', is met at Hamburg, Germany, 950 miles farther north. The permanent low-pressure area in the North Pacific contributes many of the storms that appear in the extreme northwest. These depressions sometimes reach 29 inches, but, strange to say, they are what may be called dry storms, as they do not gain moisture enough for precipitation in the east until they reach the lake region. Other storms come up from the Gulf of Mexico and pass over the lakes; these give the most abundant precipitation to the country east of the Mississippi River. The lower lake region and the St. Lawrence Valley form the great highway for nearly all the storms of the country (80 to 85 per cent). In the months of August to October, there are peculiar depressions called hurricanes, which are formed in the Caribbean Sea toward the east, and, moving first in a westerly direction, recurve in Florida or the eastern Gulf of Mexico and move up the Atlantic coast, gradually widening and at the same time diminishing in energy.

Average air pressure. In the cold months, November to March, the normal charts show areas of high pressure in the south Atlantic states and in the region to the north or west of the middle Rocky Mountains. The latter high area moves east occasionally to the middle and upper Mississippi valleys, and when this is the case the whole country east of the Mississippi is visited by cold weather and temperatures far below the normal. In the remaining months, the Rocky Mountain high area moves to the Pacific and its place is taken by a low area. The second high area moves to the middle Atlantic and sometimes it takes a position to the west of its normal place, in which case the eastern part of the country is brought under the most intense heat. Such was

notably the case in May, 1881. All the year through there is a permanent low pressure at the mouth of the St. Lawrence, due, in part, to the passage of storms, and, in part, to the permanent low-pressure area over Iceland, or the North Atlantic.

Winds. The distribution of the winds is in accordance with that of pressure just given, that is, out of high areas, and around them clock-wise, and into low areas, and around them counter-clockwise. For example, from March to October, the winds are emphatically from the high area in the Pacific, and this explains in part, if not entirely, the lack of rain during these months, for the cool, damp wind of the ocean, has its relative humidity diminished by the heat of the land. The general direction of the wind east of the Rockies, and north of 30° N., is from the west, with the exception that in the lower Mississippi Valley and Texas they are quite constant from the south. Distinctive trade winds are found south of 25°C only and these are modified by the permanent high area in the south Atlantic. It may be said, that the upper current is constant from the west over the whole country all the months of the year, excepting a slight tendency in the warmer months for the upper current to coincide with the lower in the tradewind region. The wind on Pikes Peak, latitude 38° 50' (14,147 feet), averages N. 82° W. a very little south of that in the warm months and north in the opposite season. On Mount Washington, latitude 44° 16' (6,300 feet) near the Atlantic, the wind is from N. 57° W., steady all the months; N. 48° W. in April and N. 62° W. in June being the extremes.

Temperature. The lowest mean January temperature is −5°C (−20.5°F) in the northern portions of North Dakota and Minnesota. This makes a gradient of 1°F (0.55°C) per 25 miles from the Gulf to the extreme northern border, the former temperature being 55°F (12.8°C). On the Pacific coast the temperatures are 37°C (27°C) to 53°C (11.6°C) from the north to the south, a gradient of 1°F in 70 miles. On the Atlantic coast, the range is from 20°F (−6.6°C) to 65°F (18.3°C), a gradient of 1°F in 30 miles. The highest mean January temperature is 71°F (21.6°C) at Key West. In July, the lowest temperature (56°F 13.3°C) is found at Eureka and Tatoosh islands, on the Pacific coast. A temperature of 69°F (20°C) at San Diego, California, rises to 92°F (33.3°C) at Yuma (the highest in the country at any regular station). The range in the central region is from 66°F (18.8°C) to 84°F (28.8°C) or a gradient of 1°F in 83 miles. On the Atlantic coast, the range is from 60°F (15.5°C) to 82°F (27.7°C) or 1°F in 57 miles.

Range of mean temperature from January to July. The greatest range (72°F) is found in extreme North Dakota, and the least (8°F) at Eureka, California. San Francisco has 9°F, Key West 14°F, New York City 43°F, Chicago 48°F. The difference between the normal minimum and normal maximum temperatures will also give an idea of changes of climate. There is only 7°F at Tatoosh in January; 10°F at San Francisco, 9°F at Key West,
16° F. at Chicago, 14° F. at New Orleans and New York, 23° F. at Yuma, and 31° F. the highest in the country, at Pueblo, Colorado. In July, these ranges are nearly the same, save that the highest (36° F.) now appears at Fresno, in central California. In the latter case, the very clear skies of the summer cause intense radiation of heat, and this accounts for the very great difference between the maximum and minimum.

Individual temperatures. The lowest temperature at a regular station has been —55° F. (—48.3° C.) in the extreme north of Montana, but this has been exceeded at Tobacco Garden, Dakota, —60° F. (—51.1° C.). At San Francisco 29° F. (—1.6° C.); Chicago —20° F. (—28.9° C.) (but once in twenty years); New York City —6° F. (—21.1° C.); New Orleans 15° F. (—9.4° C.); Key West 41° F. (5° C.); Washington —14° F. (—23.6° C.). The highest temperature observed at a regular station has been 118° F. (47.8° C.) at Yuma, though Furnace Creek has shown 122° F. (50° C.); Mammoth Tank 128° F. (53.3° C.); San Francisco 99° F. (37.2° C.); Chicago 100° F. (37.8° C.); New Orleans 97° F. (36.1° C.); New York City 100° F. (37.8° C.); Washington 103° F. (39.4° C.).

Number of days below freezing in four cold months. In southern Florida, extreme southern Texas, and on the Pacific coast of southern California, the temperature does not go below freezing on an average once a year. In Minnesota and North Dakota, 120 times; Chicago 89; New Orleans 5; Washington, D. C. 74; New York City 82.

Temperature above 90° (32.2° C.), June, July and August. In Minnesota and North Dakota, from 3 to 7 times; Yuma 90 times; New Orleans 28; St. Louis 24; New York City 4; Washington 10; Key West 3 times in five years.

The following six tables present the average temperature (degrees Fahrenheit) for the five years 1891—1895. In the original tables from which these are condensed observations are recorded for every hour of the day. The elevation of the meteorologic station above tide is also presented in the original). The tables are given by Fahrenheit scale and are not changed to Centigrade scale because all of the records of the United States Weather Bureau are published so. It is, however, easy to convert the tables to Centigrades by subtracting 32 and multiplying by 5/9.}

2) See also the abstract of this work in german. (Drude.)
Average Temperatures (F.) 1891—1895.

<table>
<thead>
<tr>
<th>Stations</th>
<th>Order following the Mean Minimum</th>
<th>January</th>
<th>February</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bismarck, N. Dak.</td>
<td>3</td>
<td>9.6 16.6 5.9</td>
<td>7.2 16.2 7.0</td>
</tr>
<tr>
<td>Boston, Mass.</td>
<td>13</td>
<td>28.0 34.9 20.7</td>
<td>27.9 34.8 20.5</td>
</tr>
<tr>
<td>Buffalo, N. Y.</td>
<td>9</td>
<td>25.0 29.7 18.7</td>
<td>24.5 30.2 17.5</td>
</tr>
<tr>
<td>Chicago, Ill.</td>
<td>8</td>
<td>21.9 27.6 15.0</td>
<td>24.4 30.2 17.6</td>
</tr>
<tr>
<td>Cincinnati, Ohio</td>
<td>16</td>
<td>29.8 36.2 22.9</td>
<td>33.0 41.2 26.6</td>
</tr>
<tr>
<td>Cleveland, Ohio</td>
<td>12</td>
<td>25.7 31.4 19.6</td>
<td>27.5 34.1 21.2</td>
</tr>
<tr>
<td>Detroit, Mich.</td>
<td>7</td>
<td>23.2 28.8 17.1</td>
<td>24.7 30.0 18.4</td>
</tr>
<tr>
<td>Dodge City, N. Y.</td>
<td>8</td>
<td>28.5 34.1 18.3</td>
<td>28.5 40.9 18.2</td>
</tr>
<tr>
<td>Eastport, Me.</td>
<td>6</td>
<td>22.5 28.4 15.8</td>
<td>22.0 27.6 14.9</td>
</tr>
<tr>
<td>Galveston, Texas</td>
<td>27</td>
<td>53.4 58.6 47.7</td>
<td>54.7 59.8 49.7</td>
</tr>
<tr>
<td>Havre, Mont.</td>
<td>11</td>
<td>15.0 20.8 9.0</td>
<td>10.0 22.8 3.0</td>
</tr>
<tr>
<td>Kansas City, Mo.</td>
<td>10</td>
<td>24.9 35.3 18.8</td>
<td>29.3 37.3 21.1</td>
</tr>
<tr>
<td>Key West, Fla.</td>
<td>28</td>
<td>68.0 71.6 63.5</td>
<td>69.7 74.6 66.2</td>
</tr>
<tr>
<td>Marquette, Mich.</td>
<td>4</td>
<td>14.2 22.4 9.3</td>
<td>14.3 23.5 8.6</td>
</tr>
<tr>
<td>Memphis, Tenn.</td>
<td>22</td>
<td>20.7 38.0 24.3</td>
<td>44.3 51.1 35.5</td>
</tr>
<tr>
<td>New Orleans, La.</td>
<td>24</td>
<td>51.9 60.5 44.7</td>
<td>56.3 64.0 49.7</td>
</tr>
<tr>
<td>New York, N. Y.</td>
<td>18</td>
<td>30.3 36.8 24.3</td>
<td>30.0 37.5 24.5</td>
</tr>
<tr>
<td>Philadelphia, Pa.</td>
<td>19</td>
<td>31.4 36.2 25.5</td>
<td>32.6 39.4 26.2</td>
</tr>
<tr>
<td>Pittsburg, Pa.</td>
<td>17</td>
<td>30.3 36.1 25.0</td>
<td>32.6 40.9 24.6</td>
</tr>
<tr>
<td>Portland, Oreg.</td>
<td>21</td>
<td>37.3 44.0 33.9</td>
<td>39.0 45.3 39.9</td>
</tr>
<tr>
<td>St. Louis, Mo.</td>
<td>15</td>
<td>29.8 37.1 22.5</td>
<td>33.9 40.2 25.5</td>
</tr>
<tr>
<td>St. Paul, Minn.</td>
<td>2</td>
<td>10.8 18.0 2.3</td>
<td>13.9 21.7 4.7</td>
</tr>
<tr>
<td>Salt Lake City, Utah.</td>
<td>14</td>
<td>27.9 35.2 21.1</td>
<td>29.0 37.3 22.0</td>
</tr>
<tr>
<td>San Diego, Cal.</td>
<td>25</td>
<td>53.7 63.6 44.3</td>
<td>54.0 61.9 45.8</td>
</tr>
<tr>
<td>Santa Barbara, Calif.</td>
<td>24</td>
<td>49.1 55.1 44.0</td>
<td>50.6 56.9 45.6</td>
</tr>
<tr>
<td>Santa Fe, N. Mex.</td>
<td>17</td>
<td>27.5 37.4 19.7</td>
<td>29.8 37.3 21.5</td>
</tr>
<tr>
<td>Savannah, Ga.</td>
<td>22</td>
<td>49.1 57.0 40.8</td>
<td>53.3 60.9 45.2</td>
</tr>
<tr>
<td>Washington, D. C.</td>
<td>20</td>
<td>32.5 39.7 25.5</td>
<td>34.0 42.4 27.6</td>
</tr>
</tbody>
</table>

Average Temperatures (F.) 1891—1895.

<table>
<thead>
<tr>
<th>Stations</th>
<th>Order following the Mean Minimum</th>
<th>March</th>
<th>April</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bismarck, N. Dak.</td>
<td>1</td>
<td>33.0 39.0 12.2</td>
<td>42.0 53.6 32.7</td>
</tr>
<tr>
<td>Boston, Mass.</td>
<td>12</td>
<td>35.3 42.2 28.8</td>
<td>46.3 54.8 38.7</td>
</tr>
<tr>
<td>Buffalo, N. Y.</td>
<td>6</td>
<td>31.9 37.9 24.3</td>
<td>43.0 50.8 35.8</td>
</tr>
<tr>
<td>Chicago, Ill.</td>
<td>8</td>
<td>33.6 40.0 27.1</td>
<td>45.7 53.7 38.6</td>
</tr>
<tr>
<td>Cincinnati, Ohio</td>
<td>18</td>
<td>41.7 46.0 33.4</td>
<td>54.5 65.1 45.7</td>
</tr>
<tr>
<td>Cleveland, Ohio</td>
<td>9</td>
<td>34.2 41.3 27.2</td>
<td>47.3 55.1 39.3</td>
</tr>
<tr>
<td>Detroit, Mich.</td>
<td>7</td>
<td>39.5 40.6 25.7</td>
<td>46.3 53.4 38.0</td>
</tr>
<tr>
<td>Dodge City, Kansas</td>
<td>10</td>
<td>30.8 35.1 27.5</td>
<td>55.4 68.9 41.2</td>
</tr>
<tr>
<td>Eastport, Me.</td>
<td>5</td>
<td>29.5 35.1 24.0</td>
<td>39.0 45.9 33.2</td>
</tr>
<tr>
<td>Galveston, Texas</td>
<td>27</td>
<td>60.4 65.6 55.5</td>
<td>69.4 74.0 65.4</td>
</tr>
<tr>
<td>Havre, Mont.</td>
<td>2</td>
<td>23.8 28.8 16.2</td>
<td>43.6 54.3 39.2</td>
</tr>
<tr>
<td>Kansas City, Mo.</td>
<td>15</td>
<td>40.2 49.3 31.3</td>
<td>55.9 55.4 46.6</td>
</tr>
<tr>
<td>Key West, Fla.</td>
<td>28</td>
<td>72.3 76.6 68.1</td>
<td>75.3 79.7 71.2</td>
</tr>
<tr>
<td>Marquette, Mich.</td>
<td>3</td>
<td>24.8 31.2 17.0</td>
<td>37.1 44.4 30.6</td>
</tr>
<tr>
<td>Memphis, Tenn.</td>
<td>22</td>
<td>50.9 60.1 44.8</td>
<td>63.3 79.9 54.4</td>
</tr>
<tr>
<td>New Orleans, La.</td>
<td>26</td>
<td>66.0 68.7 53.4</td>
<td>68.9 76.9 62.0</td>
</tr>
<tr>
<td>New York, N. Y.</td>
<td>14</td>
<td>37.4 45.0 39.9</td>
<td>49.9 57.3 41.6</td>
</tr>
<tr>
<td>Philadelphia, Pa.</td>
<td>16</td>
<td>39.2 47.1 31.2</td>
<td>51.2 60.3 41.6</td>
</tr>
<tr>
<td>Pittsburg, Pa.</td>
<td>13</td>
<td>39.5 48.1 30.5</td>
<td>52.3 60.9 42.6</td>
</tr>
<tr>
<td>Portland, Oreg.</td>
<td>21</td>
<td>46.9 53.8 43.9</td>
<td>48.5 57.3 42.0</td>
</tr>
<tr>
<td>St. Louis, Mo.</td>
<td>20</td>
<td>43.4 51.9 35.5</td>
<td>57.2 65.8 48.9</td>
</tr>
<tr>
<td>St. Paul, Minn.</td>
<td>4</td>
<td>27.9 35.8 19.1</td>
<td>46.1 55.0 37.2</td>
</tr>
<tr>
<td>Salt Lake City, Utah.</td>
<td>17</td>
<td>40.6 48.9 38.2</td>
<td>49.7 58.6 38.5</td>
</tr>
<tr>
<td>San Diego, Cal.</td>
<td>24</td>
<td>58.1 63.9 47.7</td>
<td>57.6 65.2 49.8</td>
</tr>
<tr>
<td>San Francisco, Cal.</td>
<td>23</td>
<td>57.7 58.4 46.9</td>
<td>52.8 60.2 47.4</td>
</tr>
<tr>
<td>Santa Fe, N. Mex.</td>
<td>11</td>
<td>37.2 47.5 27.9</td>
<td>48.0 59.6 36.0</td>
</tr>
<tr>
<td>Savannah, Ga.</td>
<td>13</td>
<td>57.7 67.0 49.1</td>
<td>55.5 75.4 57.2</td>
</tr>
<tr>
<td>Washington, D. C.</td>
<td>19</td>
<td>49.3 49.7 33.4</td>
<td>53.5 52.7 44.3</td>
</tr>
</tbody>
</table>

1) The numbers, appended to the alphabetically listed stations, are arranged with reference to their position in a scale from the lowest to the highest monthly mean minima.
Average Temperatures (F.) 1891—1895.

<table>
<thead>
<tr>
<th>Stations</th>
<th>Order following the Mean Temperature</th>
<th>June Mean.</th>
<th>Mean Maximum</th>
<th>Mean Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bismarck, N. Dak.</td>
<td>4</td>
<td>52.9</td>
<td>64.1</td>
<td>40.8</td>
</tr>
<tr>
<td>Boston, Mass.</td>
<td>10</td>
<td>56.3</td>
<td>65.6</td>
<td>48.9</td>
</tr>
<tr>
<td>Buffalo, N. Y.</td>
<td>5</td>
<td>54.0</td>
<td>61.4</td>
<td>45.9</td>
</tr>
<tr>
<td>Chicago, Ill.</td>
<td>6</td>
<td>54.7</td>
<td>62.3</td>
<td>47.2</td>
</tr>
<tr>
<td>Cincinnati, Ohio</td>
<td>20</td>
<td>62.2</td>
<td>70.8</td>
<td>53.1</td>
</tr>
<tr>
<td>Cleveland, Ohio</td>
<td>13</td>
<td>56.6</td>
<td>64.6</td>
<td>48.2</td>
</tr>
<tr>
<td>Detroit, Mich.</td>
<td>9</td>
<td>56.2</td>
<td>64.3</td>
<td>47.4</td>
</tr>
<tr>
<td>Dodge City, Kans.</td>
<td>19</td>
<td>62.0</td>
<td>74.4</td>
<td>40.4</td>
</tr>
<tr>
<td>Eastport, Me.</td>
<td>1</td>
<td>47.1</td>
<td>54.7</td>
<td>40.8</td>
</tr>
<tr>
<td>Galveston, Texas</td>
<td>27</td>
<td>74.8</td>
<td>79.1</td>
<td>71.0</td>
</tr>
<tr>
<td>Havre, Mont.</td>
<td>3</td>
<td>52.6</td>
<td>65.2</td>
<td>39.8</td>
</tr>
<tr>
<td>Kansas City, Mo.</td>
<td>21</td>
<td>62.6</td>
<td>71.9</td>
<td>53.0</td>
</tr>
<tr>
<td>Key West, Fla.</td>
<td>28</td>
<td>78.5</td>
<td>82.8</td>
<td>74.3</td>
</tr>
<tr>
<td>Marquette, Mich.</td>
<td>2</td>
<td>57.9</td>
<td>65.6</td>
<td>30.6</td>
</tr>
<tr>
<td>Memphis, Tenn.</td>
<td>24</td>
<td>68.4</td>
<td>77.9</td>
<td>59.6</td>
</tr>
<tr>
<td>New Orleans, La.</td>
<td>26</td>
<td>74.3</td>
<td>82.1</td>
<td>63.0</td>
</tr>
<tr>
<td>New York, N. Y.</td>
<td>15</td>
<td>59.1</td>
<td>68.0</td>
<td>51.8</td>
</tr>
<tr>
<td>Philadelphia, Pa.</td>
<td>17</td>
<td>61.2</td>
<td>71.1</td>
<td>58.9</td>
</tr>
<tr>
<td>Pittsburg, Pa.</td>
<td>18</td>
<td>61.3</td>
<td>70.9</td>
<td>50.9</td>
</tr>
<tr>
<td>Portland, Oreg.</td>
<td>11</td>
<td>56.3</td>
<td>66.1</td>
<td>47.8</td>
</tr>
<tr>
<td>St. Louis, Mo.</td>
<td>7</td>
<td>64.4</td>
<td>73.3</td>
<td>53.8</td>
</tr>
<tr>
<td>St. Paul, Minn.</td>
<td>12</td>
<td>56.3</td>
<td>65.6</td>
<td>46.1</td>
</tr>
<tr>
<td>Salt Lake City, Utah.</td>
<td>14</td>
<td>58.8</td>
<td>68.4</td>
<td>47.4</td>
</tr>
<tr>
<td>San Diego, Cal.</td>
<td>16</td>
<td>66.7</td>
<td>66.5</td>
<td>54.5</td>
</tr>
<tr>
<td>Santa Fe, N. Mex.</td>
<td>8</td>
<td>55.6</td>
<td>62.5</td>
<td>50.6</td>
</tr>
<tr>
<td>Savannah, Ga.</td>
<td>7</td>
<td>55.4</td>
<td>66.9</td>
<td>43.8</td>
</tr>
<tr>
<td>Washington, D. C.</td>
<td>22</td>
<td>62.8</td>
<td>72.8</td>
<td>53.3</td>
</tr>
</tbody>
</table>

Average Temperatures (F.) 1891—1895.

<table>
<thead>
<tr>
<th>Stations</th>
<th>Order following the Mean Maximum*</th>
<th>July Mean.</th>
<th>Mean Maximum</th>
<th>Mean Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bismarck, N. Dak.</td>
<td>13</td>
<td>60.5</td>
<td>81.9</td>
<td>56.3</td>
</tr>
<tr>
<td>Boston, Mass.</td>
<td>9</td>
<td>70.6</td>
<td>79.5</td>
<td>61.1</td>
</tr>
<tr>
<td>Buffalo, N. Y.</td>
<td>5</td>
<td>69.4</td>
<td>76.2</td>
<td>61.4</td>
</tr>
<tr>
<td>Chicago, Ill.</td>
<td>7</td>
<td>71.1</td>
<td>78.6</td>
<td>64.3</td>
</tr>
<tr>
<td>Cincinnati, Ohio</td>
<td>20</td>
<td>76.0</td>
<td>85.2</td>
<td>66.0</td>
</tr>
<tr>
<td>Cleveland, Ohio</td>
<td>8</td>
<td>71.7</td>
<td>76.1</td>
<td>62.4</td>
</tr>
<tr>
<td>Detroit, Mich.</td>
<td>11</td>
<td>71.2</td>
<td>80.9</td>
<td>61.7</td>
</tr>
<tr>
<td>Dodge City, Kans.</td>
<td>27</td>
<td>76.4</td>
<td>86.7</td>
<td>64.4</td>
</tr>
<tr>
<td>Eastport, Me.</td>
<td>2</td>
<td>50.5</td>
<td>68.0</td>
<td>51.7</td>
</tr>
<tr>
<td>Galveston, Texas</td>
<td>32</td>
<td>82.5</td>
<td>86.0</td>
<td>78.4</td>
</tr>
<tr>
<td>Havre, Mont.</td>
<td>15</td>
<td>68.1</td>
<td>82.7</td>
<td>52.2</td>
</tr>
<tr>
<td>Kansas City, Mo.</td>
<td>18</td>
<td>75.7</td>
<td>84.4</td>
<td>60.3</td>
</tr>
<tr>
<td>Key West, Fla.</td>
<td>25</td>
<td>83.1</td>
<td>87.9</td>
<td>72.2</td>
</tr>
<tr>
<td>Marquette, Mich.</td>
<td>4</td>
<td>66.1</td>
<td>73.6</td>
<td>56.2</td>
</tr>
<tr>
<td>Memphis, Tenn.</td>
<td>24</td>
<td>78.2</td>
<td>87.6</td>
<td>70.2</td>
</tr>
<tr>
<td>New Orleans, La.</td>
<td>26</td>
<td>80.2</td>
<td>87.5</td>
<td>74.2</td>
</tr>
<tr>
<td>New York, N. Y.</td>
<td>12</td>
<td>73.0</td>
<td>81.6</td>
<td>65.3</td>
</tr>
<tr>
<td>Philadelphia, Pa.</td>
<td>17</td>
<td>74.3</td>
<td>84.0</td>
<td>66.4</td>
</tr>
<tr>
<td>Pittsburg, Pa.</td>
<td>16</td>
<td>73.2</td>
<td>83.1</td>
<td>69.9</td>
</tr>
<tr>
<td>Portland, Oreg.</td>
<td>9</td>
<td>65.6</td>
<td>75.0</td>
<td>53.8</td>
</tr>
<tr>
<td>St. Louis, Mo.</td>
<td>21</td>
<td>77.3</td>
<td>86.1</td>
<td>69.0</td>
</tr>
<tr>
<td>St. Paul, Minn.</td>
<td>14</td>
<td>71.7</td>
<td>81.9</td>
<td>60.6</td>
</tr>
<tr>
<td>Salt Lake City, Utah.</td>
<td>23</td>
<td>75.5</td>
<td>87.0</td>
<td>64.4</td>
</tr>
<tr>
<td>San Diego, Cal.</td>
<td>3</td>
<td>65.2</td>
<td>71.9</td>
<td>60.7</td>
</tr>
<tr>
<td>San Francisco, Cal.</td>
<td>1</td>
<td>56.5</td>
<td>63.9</td>
<td>51.7</td>
</tr>
<tr>
<td>Santa Fe, N. Mex.</td>
<td>10</td>
<td>68.0</td>
<td>70.7</td>
<td>57.3</td>
</tr>
<tr>
<td>Savannah, Ga.</td>
<td>28</td>
<td>79.3</td>
<td>82.3</td>
<td>72.7</td>
</tr>
<tr>
<td>Washington, D. C.</td>
<td>19</td>
<td>74.5</td>
<td>84.7</td>
<td>65.3</td>
</tr>
</tbody>
</table>

1) The numbers in the first column are arranged in a scale from 63.9°F, the lowest mean maximum to 89.3°F, the highest, so that the position of each station is displayed with reference to the greatest heat of the United States in these two months.
Average Temperatures (F.) 1891—1895.

Stations

<table>
<thead>
<tr>
<th>Stations</th>
<th>Order following the Mean Temperature</th>
<th>September</th>
<th>October</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Max.</td>
<td>Min.</td>
</tr>
<tr>
<td>Bismarck, N. Dak.</td>
<td>5</td>
<td>59.7</td>
<td>73.5</td>
</tr>
<tr>
<td>Boston, Mass.</td>
<td>8</td>
<td>61.5</td>
<td>71.7</td>
</tr>
<tr>
<td>Buffalo, N. Y.</td>
<td>10</td>
<td>64.3</td>
<td>71.2</td>
</tr>
<tr>
<td>Chicago, Ill.</td>
<td>14</td>
<td>66.5</td>
<td>73.6</td>
</tr>
<tr>
<td>Cincinnati, Ohio</td>
<td>21</td>
<td>70.6</td>
<td>80.2</td>
</tr>
<tr>
<td>Cleveland, Ohio</td>
<td>13</td>
<td>65.9</td>
<td>73.9</td>
</tr>
<tr>
<td>Detroit, Mich.</td>
<td>12</td>
<td>65.0</td>
<td>74.1</td>
</tr>
<tr>
<td>Dodge City, Kans.</td>
<td>20</td>
<td>65.8</td>
<td>83.2</td>
</tr>
<tr>
<td>Eastport, Me.</td>
<td>2</td>
<td>55.8</td>
<td>63.2</td>
</tr>
<tr>
<td>Galveston, Texas</td>
<td>27</td>
<td>70.9</td>
<td>84.2</td>
</tr>
<tr>
<td>Havre, Mont.</td>
<td>7</td>
<td>55.3</td>
<td>69.0</td>
</tr>
<tr>
<td>Kansas City, Mo.</td>
<td>22</td>
<td>70.8</td>
<td>81.4</td>
</tr>
<tr>
<td>Key West, Fla.</td>
<td>28</td>
<td>82.3</td>
<td>86.9</td>
</tr>
<tr>
<td>Marquette, Mich.</td>
<td>3</td>
<td>59.0</td>
<td>68.4</td>
</tr>
<tr>
<td>Memphis, Tenn.</td>
<td>24</td>
<td>73.7</td>
<td>84.4</td>
</tr>
<tr>
<td>New Orleans, La</td>
<td>16</td>
<td>67.5</td>
<td>75.4</td>
</tr>
<tr>
<td>New York, N. Y.</td>
<td>17</td>
<td>68.3</td>
<td>77.9</td>
</tr>
<tr>
<td>Philadelphia, Pa.</td>
<td>18</td>
<td>68.5</td>
<td>78.4</td>
</tr>
<tr>
<td>Pittsburg, Pa.</td>
<td>23</td>
<td>72.0</td>
<td>81.7</td>
</tr>
<tr>
<td>Portland, Ore.</td>
<td>23</td>
<td>63.5</td>
<td>74.7</td>
</tr>
<tr>
<td>Salt Lake City, Utah.</td>
<td>11</td>
<td>64.7</td>
<td>75.9</td>
</tr>
<tr>
<td>San Diego, Cal.</td>
<td>15</td>
<td>66.7</td>
<td>73.4</td>
</tr>
<tr>
<td>San Francisco, Cal.</td>
<td>6</td>
<td>59.7</td>
<td>67.5</td>
</tr>
<tr>
<td>Santa Fe, N. Mex.</td>
<td>7</td>
<td>61.6</td>
<td>73.8</td>
</tr>
<tr>
<td>Savannah, Ga.</td>
<td>25</td>
<td>76.4</td>
<td>81.0</td>
</tr>
<tr>
<td>Washington, D. C.</td>
<td>19</td>
<td>68.7</td>
<td>78.7</td>
</tr>
</tbody>
</table>

Average Temperatures (F.) 1891—1895.

<table>
<thead>
<tr>
<th>Stations</th>
<th>Order following the Mean Minimum</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Max.</td>
<td>Min.</td>
</tr>
<tr>
<td>Bismarck, N. Dak.</td>
<td>1</td>
<td>24.4</td>
<td>34.8</td>
</tr>
<tr>
<td>Boston, Mass.</td>
<td>13</td>
<td>41.6</td>
<td>48.3</td>
</tr>
<tr>
<td>Buffalo, N. Y.</td>
<td>11</td>
<td>36.8</td>
<td>44.1</td>
</tr>
<tr>
<td>Chicago, Ill.</td>
<td>9</td>
<td>33.4</td>
<td>41.0</td>
</tr>
<tr>
<td>Cincinnati, Ohio</td>
<td>18</td>
<td>42.2</td>
<td>49.4</td>
</tr>
<tr>
<td>Cleveland, Ohio</td>
<td>14</td>
<td>39.2</td>
<td>45.4</td>
</tr>
<tr>
<td>Detroit, Mich.</td>
<td>12</td>
<td>36.7</td>
<td>43.0</td>
</tr>
<tr>
<td>Dodge City, Kans.</td>
<td>7</td>
<td>40.6</td>
<td>54.9</td>
</tr>
<tr>
<td>Eastport, Me.</td>
<td>6</td>
<td>38.1</td>
<td>43.0</td>
</tr>
<tr>
<td>Galveston, Texas</td>
<td>27</td>
<td>63.4</td>
<td>68.3</td>
</tr>
<tr>
<td>Havre, Mont.</td>
<td>22</td>
<td>28.7</td>
<td>37.5</td>
</tr>
<tr>
<td>Kansas City, Mo.</td>
<td>12</td>
<td>40.8</td>
<td>49.2</td>
</tr>
<tr>
<td>Key West, Fla.</td>
<td>28</td>
<td>73.7</td>
<td>77.7</td>
</tr>
<tr>
<td>Marquette, Mich.</td>
<td>4</td>
<td>30.7</td>
<td>35.7</td>
</tr>
<tr>
<td>Memphis, Tenn.</td>
<td>22</td>
<td>59.4</td>
<td>65.8</td>
</tr>
<tr>
<td>New Orleans, La</td>
<td>26</td>
<td>50.1</td>
<td>68.4</td>
</tr>
<tr>
<td>New York, N. Y.</td>
<td>16</td>
<td>43.4</td>
<td>50.1</td>
</tr>
<tr>
<td>Philadelphia, Pa.</td>
<td>20</td>
<td>43.8</td>
<td>50.8</td>
</tr>
<tr>
<td>Pittsburg, Pa.</td>
<td>15</td>
<td>42.6</td>
<td>50.0</td>
</tr>
<tr>
<td>Portland, Ore.</td>
<td>21</td>
<td>46.1</td>
<td>51.5</td>
</tr>
<tr>
<td>St. Louis, Mo.</td>
<td>19</td>
<td>42.5</td>
<td>49.8</td>
</tr>
<tr>
<td>St. Paul, Minn.</td>
<td>20</td>
<td>28.5</td>
<td>36.1</td>
</tr>
<tr>
<td>Salt Lake City, Utah.</td>
<td>8</td>
<td>41.7</td>
<td>50.8</td>
</tr>
<tr>
<td>San Diego, Cal.</td>
<td>25</td>
<td>55.0</td>
<td>67.4</td>
</tr>
<tr>
<td>San Francisco, Cal.</td>
<td>24</td>
<td>56.5</td>
<td>61.0</td>
</tr>
<tr>
<td>Santa Fe, N. Mex.</td>
<td>7</td>
<td>38.6</td>
<td>49.5</td>
</tr>
<tr>
<td>Savannah, Ga.</td>
<td>23</td>
<td>57.0</td>
<td>66.1</td>
</tr>
<tr>
<td>Washington, D. C.</td>
<td>17</td>
<td>44.2</td>
<td>52.4</td>
</tr>
</tbody>
</table>

1) For the spring and autumn months, the mean temperature has the most distinctive value, wherefore, the stations are arranged in sequence accordingly.
Moisture in the Air. In January, the least moisture (0.5 grain per cubic foot) is found in the extreme northwest; this increases quite regularly to 4 gr. on the Gulf, 6.5 gr. at Key West, nearly 3 gr. on the Pacific, 2.1 gr. at Yuma, 1.3 gr. at Chicago, 1.6 gr. at New York City and 1.7 gr. at Washington. In July, the northwest has 5.5 gr. per cubic foot, increasing to 9 gr. on the Gulf coast. The lowest, 1.5 gr. is found at Winnemucca. All through the region from the Rockies westward, except on the Pacific coast the air is very dry, hardly reaching 3 gr. per cubic foot. Chicago has 5.7 gr.; New York City, 6.7 gr.; Washington 7.0 gr.; and Key West, 9.1 gr. Corpus Christi has 9.5 gr. the largest in the country.

Precipitation. The annual precipitation, unlike the temperature varies in an east and west direction more than from north to south. The Atlantic coast receives over 40 inches in the north and over 50 inches in the south. The lake regions have from 33 in. to 49 in., the Gulf coast has about 60 in., but this diminishes toward the south. The extreme point of Texas has but 32 in., and Key West 41 in., while the Dry Tortugas in the Gulf have even less. The upper Missouri has about 15 in., as also the north and the middle Rocky Mountain region. Yuma has 3 in.; San Diego, 10 in.; San Francisco, 23 in.; Portland, Oregon, 50 in. and the rainiest part of the whole country in northwestern Oregon.

Least Rainfall. The least rainfall in the United States is found in the west and southwest. The limit of least rainfall for the purpose of this discussion will be taken at 1 inch per month. The area of least rainfall, as defined above, is smallest in April. At this time it occupies New Mexico, the most of Utah and Nevada and parts of the adjoining states. By May, the western boundary of this area has traveled westward and strikes the Pacific coast, and progresses northward until in August, it leaves the coast and the line crosses the area of the United States approximately from north to south. Meantime the heavier rainfall has begun in the extreme northwest, and a western boundary of the area appears in this month for the first time. The area in August, therefore, is bounded on the east by a line which is, approximately, the meridian of 115°. It is bounded on the west by a line which crosses the extreme northwestern angle of the United States. With the succeeding months, this band travels gradually eastward and reaches its extreme eastern position in the winter months. With the beginning of spring, the area travels rapidly westward, and by April it has taken up the position with which we began. The area of least rainfall is not confined to the United States. It extends to the southward over Mexico, and this extension continues during the whole year. There is an extension northward which begins in July and lasts until March. In the period of greatest extension in the United States, namely, in winter, the band extends northward and slightly eastward, and probably occupies the plains to the north of us, finally joining the Arctic area of least rainfall.

Greatest Rainfall. Six inches of rain per month is taken in this discussion as a maximum. It appears that there are six different regions where
the rainfall is, in some months, above 6 inches. The first is in the extreme northwest. It begins at Tatoosh Island, Washington in October. It gradually increases and reaches its greatest extent in December. At this time the line of six inches of rainfall, entering the United States on the north, south of Vancouver Island, extends down along Puget Sound; thence southward to Mount Rainier; thence eastward along the Columbia River up to the Cascade Mountains and back to the Willamette; thence south, not far from the coast, disappearing on the coast not far to the north of San Francisco, California. The highest monthly rainfall at this time is 14.5 inches in the vicinity of Tatoosh Island, Washington. There is a small outlier in the Sierra Nevada Mountains. The second area is a very variable one in Alabama and Mississippi and extending to some extent into adjoining states. It begins in January and continues until March. The highest rainfall is 9 inches in March. Within it is small area of unusually high rainfall at the southern extremity of the Appalachian range, with an annual precipitation of over 76 inches. The third area is one in northeastern Texas extending slightly into Indian Territory. It is found there in April and May, the highest rainfall being 9 inches. The fourth area is a small patch to be found in northern Missouri in May and June, the highest rainfall here being 9 inches. The fifth area beginning properly in March and continuing to October, starts at Cape Hatteras, extends gradually inward, never reaching far from the coast, and attains its extreme limit in July and August. At this time, it covers extreme southeastern Virginia, the eastern third of North Carolina and a considerable part of the coast of South Carolina. The sixth area is the region of the subtropic rains in Florida. It begins in June and ends in October. Its greatest expansion is in July, and also the greatest rainfall, which amounts to about 10 inches. It extends into southern Georgia, thence westward along the Gulf coast to the middle of the coast of Louisiana.

Topography and its effects on rainfall. From the great plains westward the lines of equal rainfall are, approximately, north and south. They are approximately parallel with the Atlantic coast. In the lake region, while they approach parallelism to the parallels of latitude, yet there are some variations, evidently due to the effects of these great bodies of fresh water. In general, the rainfall decreases also with the elevation above sea-level. Certain peaks and mountain ranges on the other hand are outlined by the mean rainfall. This is true of the Sierra Nevadas and to a less extent in the Cascades at the Dalles, where the Columbia River breaks through. In spring, this area is distinctly outlined with a rainfall of 15 inches, while in the Willamette Valley, it is only 10 inches and immediately to the east of the mountains only about 5 inches. In winter, the whole range is outlined by the lines of greater rainfall, about 38 inches or more.

The rainfall to the leeward and windward side of mountain ranges is also marked. On the Pacific coast, where the prevailing winds are distinctly from the west, the western slopes of the Sierra Nevadas show on the annual map
a rainfall of 20 to 40 inches, while immediately to the eastward in the lee of these mountains, it is only from 2 to 6 inches.

Islands occur also in the areas of least rainfall, and are found at the sources of many of the great rivers of the west, such as the Rio Grande which flows from a rainfall island found in northern New Mexico and southern Colorado. The great swampy areas of the United States are found in regions of highest rainfall. This is true for example of the Everglades in Florida, where the rainfall is 50—70 inches (127—178 cm) per year. It is also true of the great swampy district lying on the coast of North Carolina, where the rainfall is 60 inches per year, and upward; also the swampy district about the mouth of the Mississippi River; but it is not so true of the celebrated swampy district lying to the west of the Mississippi along the Gulf coast. About the mouth of the Mississippi, the rainfall is above 60 inches (152 cm), while for the celebrated swampy district the rainfall is less than 60 inches though it is above 50 inches. This wet area has probably been but recently recovered from the Gulf by deposits brought down by the great river.

The Great Lakes also influence to some extent the rainfall. In general, for instance, it will be found that the rainfall is greater on the east shore of Lake Michigan than on the west, the prevailing winds crossing the lake from the west. Much the same is true of the east shores of Lake Erie and Lake Ontario.

Maximum monthly rainfall. It is of special interest to see in what way the rainfall is distributed geographically over the United States with reference to the seasons. A maximum of rainfall in March extends along the Atlantic and Gulf coasts from New England to Texas and extends down into the peninsula of Florida. It spreads well into the interior and covers the region in the vicinity of the lower lakes. In April, it has passed westward and occupies, but a little territory in Arkansas and Louisiana. By May, this maximum has passed farther westward and occupies the central plains, the crest running in a curve from the vicinity of Davenport, Iowa, around the extreme north of Texas, and northward in the vicinity of Cheyenne, Wyoming.

These rains are well distributed for greatest usefulness to crops and growing plants. The regions of summer rainfall are especially interesting. There is an enormous territory in the United States over which a maximum rainfall occurs in June. The line which represents the crest of this wave begins in western Washington and extends to the southern part of peninsula Florida. There is also a distinct extension of this area eastward in the vicinity of the upper Great Lakes. This area of higher rainfall extends from the line, both toward the east and toward the west in July, occupying the remainder of the territory of the United States east of the Mississippi River, and also a territory in the southwestern plains, through Colorado, New Mexico and Arizona. It has extended still farther from the main axis in June, and is found then along

the Atlantic coast, also along a part of the Gulf coast. It is also found in the western region before mentioned, only somewhat farther south, occupying northern Texas, New Mexico and Arizona.

The regions of maximum rainfall in autumn are not of much interest, except in the extreme southeast, where there is a marked maximum about the peninsula of Florida in September. In September, also, there is a secondary maximum in the region of the upper Great lakes, a part of the upper Mississippi Valley, and along the Texan Gulf coast from Galveston westward. In October, the maximum on the upper lakes has extended to the lower, and in November this maximum has extended to the coast of New England, and to an area through the central states, reaching from Ohio to Texas. — The regions of maximum rainfall in winter are most interesting on the Pacific coast. Here the maximum rainfall occurs in December, and this area of maximum occupies not only the entire coast, but a region in the interior which generally extends to the continental divide. Toward the south there is a secondary maximum in the eastern part of this area, and in New Mexico. In January there is a region of maximum precipitation extending from southern Iowa to Lake Huron, and another much more extensive region extending along the Atlantic and Gulf coast to the peninsula of Florida. These two waves of higher rainfall for January meet in February along a line which lies approximately half way between then.

Minimum monthly rainfall. Beginning with the spring minimum, we find that in March there is only one — on the lower part of the peninsula of Florida. By April, the area of minimum rainfall occupies the coast from Norfolk southward, and also the interior from Eastport, Maine, to Little Rock, Arkansas. By May, it has drifted on until it occupies the coast from Massachusetts to Norfolk, Virginia, and along the Gulf coast to New Orleans, Louisiana, and northward to Arkansas and Tennessee. The summer minima are found in June along the New England coast to Long Island. In July they are found in a larger area, extending over the lower peninsula of Michigan to central Texas. In August there is a series of minima along the lakes from Rochester to Cleveland, and an extensive area of minimum rainfall over the western states, along the Pacific coast, in the interior of Idaho and also through central Illinois. In September the minimum area extends from Rochester, New York, to Cairo, Illinois and from Portland, Maine, to Long Island. In October, the New England series of minima has passed southward and is now found in southern New York, eastern Pennsylvania, New Jersey and Maryland. It is also found over the southwestern states from Missouri southward, and from Georgia westward to Illinois, in the lower Mississippi Valley. In November the minima extend along the Atlantic coast from Delaware to Florida and cover a large area in the northwest from the Cascade Range eastward to the Missouri River and southward to the northern boundary of New Mexico and Arizona. The winter series of minima is somewhat more complicated and will be omitted from discussion here.
Character of rainfall. It is a matter of interest to ascertain whether the rainfall at any particular place is due largely to small rains, or to great ones. If the former is the case, it will generally be favorable to agricultural operations and not damaging to crops. Four types may be distinguished by a study of the meteorologic maps and records. The first type is that which is found on the lower lakes and which has its extreme at Oswego in New York. Its especial characteristic is the relatively large number of days on which small rains fell. This number of days is often greater than those on which no rain fell. This is particularly the case with these rains in winter, but it may extend in some cases through the year, and at Oswego it is found that this maximum appears clearly in the annual rainfall curve. The second type is best illustrated in the extreme northwest, but it is more clearly seen over our northern latitudes generally, except on the great plains, where the rainfall gradually passes into the fourth type. In the northeast, there is a combination of type two with type one, the traces of the latter decreasing as the distance from the lower lakes is increased. Type one is that of smallest rainfall, type two of small rainfalls. The third type belongs to the southeast and is best marked at New Orleans, La. It is marked by a greater number of medium rainfalls, due to the fact that the rains in our southern latitudes are largely local rains-thunderstorms, showers, etc. The rain of our northern latitudes comes usually in connection with general storms; the rain of the southern latitudes with local storms. Medium rains of short duration are, therefore, more frequent in the southern states. The fourth type is that of little rain. It is found in the drier regions of the United States, and is best marked at Yuma, Arizona. There is little rain of any sort and this usually comes with small showers, but cloudbursts occasionally occur. The rains of this type are generally local.

Clouds. The average cloudiness is about 55 per cent. over the country in January, with over 70 per cent. in the north Pacific states, 25 to 35 per cent. in the south Pacific states, 40 per cent. in the south plateau region, 45 per cent. in the Missouri Valley, and 70 per cent. in the lower lakes. In July, there is a diminished cloudiness, about 45 per cent., with 40 to 50 per cent. on the Pacific coast, 15 to 25 per cent. in the interior near the Pacific, and 45 to 50 per cent. on the Atlantic coast. The diurnal range of clouds over the whole country shows a minimum about midnight and a maximum at 2 to 3 p.m.

3. Mexico.

Zones. — Although Mexico is intersected by the Tropic of Cancer, yet its geographic position gives it a great diversity of climate determined far more by altitude than its distance from the North Pole or the Equator. The heat of the torrid zone is experienced on the seacoast and the low, marshy tracts bordering on the Gulf of Mexico, and in the enclosed valleys 3,000 feet above sea level. Thus the City of Mexico in latitude 19° 31' N. at an elevation of 7,340 feet enjoys a much more general climate than New York, or Chicago. The night breezes temper the heat of the day and the rains which begin
usually in June and last until November, are so abundant and fall so regularly, especially in the afternoon, that they refresh the atmosphere. So decided is the effect of the rains on the atmosphere that the seasons are divided into two only, viz., the dry and the rainy season, which are independent of the elevation upon which the classification into three superimposed zones depends. These may be conveniently tabulated as follows:

<table>
<thead>
<tr>
<th>Zone</th>
<th>Elevation</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot Zone</td>
<td>0 to 3,000 ft</td>
<td>77°—82° F. (25°—27.8° C.)</td>
</tr>
<tr>
<td>Temperate Zone</td>
<td>3,000 to 5,000 ft</td>
<td>62°—70° F. (16.7°—21.1° C.)</td>
</tr>
<tr>
<td>Cold Zone</td>
<td>7,000 to 10,000 ft</td>
<td>58°—64° F. (14.4°—17.8° C.)</td>
</tr>
<tr>
<td>Boreal Zone</td>
<td>10,000 to 18,000 ft</td>
<td>—</td>
</tr>
</tbody>
</table>

The mean temperature in the hot regions varies from 77° to 82° F. (25°—27.8° C.), and often rises to 100° F. (37.8° C.), and in some coast localities to 105° F. (40.5° C.). Yet even here the atmosphere is constantly refreshed by the night breezes, and in summer by the rains which prevail from June to November and fall regularly and at fixed intervals from about one to three hours daily.

The temperate zone has a mean temperature of from 62° to 70° F. (16.7°—21.1° C.), the variation during the season being not more than 4° to 5° F. and it may, therefore, be called the region of eternal spring. It is somewhat comparable to that of Mediterranean lands. As in Algeria and Italy, the orange, fig and olive thrive amid wheat and maize fields. The tierra templada comprises all the higher mountain terraces and parts of the plateau itself. The Sierras rise high enough to condense some of the moisture derived from the neighboring seas and this condensed moisture falls as rain during the invierno, that is, the wet summer months. The dry season verano, later follows.

Between 7,000 feet above the level of the sea and greater heights lies the cold region having a main temperature of from 58° to 64° F. (14.4°—17.8° C.). Here the rainfall is five times less than in the temperate zone. The changes of temperature are but small from one end of the year to the other, although the diurnal changes between sunrise and sunset are often considerable. The higher mountains, Orizaba, Popocatépetl, Ixtaccíhuatl are covered with snow and the conditions on these peaks above the limit of vegetation are more extreme and arctic.

Tables. The following tables will present the meteorologic conditions in Mexico as they have been reported from a number of stations in various parts of the Republic. See pag. 150—151.

Climate of the City of Mexico. By way of specifically illustrating the climate of Mexico, that of the City of Mexico, as deduced from data provided by Mariano Barcena 1), will be given as a sample. The mean monthly temperature varies from 53.6° F. (12° C.) in December to 64.4° F. (18° C.) in

Mexican Climatologic Data\(^1\).

By Señor Manuel E. Pastrana, Director of the Central Meteorologic-Magnetic Observatory.

1903.

January

<table>
<thead>
<tr>
<th>Stations</th>
<th>Altitude (Feet)</th>
<th>Temperature (°F)</th>
<th>Relative Humidity (%)</th>
<th>Precipitation (Ins.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chihuahua</td>
<td>4,684</td>
<td>75.2</td>
<td>29.3</td>
<td>56.8</td>
</tr>
<tr>
<td>Guadalajara</td>
<td>5,186</td>
<td>84.2</td>
<td>39.2</td>
<td>56.8</td>
</tr>
<tr>
<td>Guanajuato</td>
<td>6,640</td>
<td>77.0</td>
<td>38.1</td>
<td>54.0</td>
</tr>
<tr>
<td>Leon (Guanajuato)</td>
<td>5,906</td>
<td>74.1</td>
<td>33.4</td>
<td>52.9</td>
</tr>
<tr>
<td>Mazatlan</td>
<td>25</td>
<td>81.7</td>
<td>56.7</td>
<td>70.0</td>
</tr>
<tr>
<td>Merida (February)</td>
<td>50</td>
<td>96.8</td>
<td>53.1</td>
<td>77.7</td>
</tr>
<tr>
<td>Mexico (Obs. Cent.)</td>
<td>7,472</td>
<td>71.1</td>
<td>39.2</td>
<td>54.5</td>
</tr>
<tr>
<td>Monterey</td>
<td>1,626</td>
<td>79.9</td>
<td>36.1</td>
<td>54.0</td>
</tr>
<tr>
<td>Morella (Seminario)</td>
<td>6,401</td>
<td>73.4</td>
<td>38.8</td>
<td>54.0</td>
</tr>
<tr>
<td>Pachuca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puebla (Col. Cath.)</td>
<td>7,108</td>
<td>72.9</td>
<td>40.6</td>
<td>56.5</td>
</tr>
<tr>
<td>Puebla (Col. d Est.)</td>
<td>7,118</td>
<td>73.9</td>
<td>35.6</td>
<td>54.0</td>
</tr>
<tr>
<td>Queretaro</td>
<td>6,070</td>
<td>70.7</td>
<td>39.2</td>
<td>54.9</td>
</tr>
<tr>
<td>Zacatecas</td>
<td>8,015</td>
<td>75.4</td>
<td>26.2</td>
<td>46.4</td>
</tr>
<tr>
<td>Zapotlan</td>
<td>5,078</td>
<td>77.5</td>
<td>40.6</td>
<td>58.1</td>
</tr>
</tbody>
</table>

April

<table>
<thead>
<tr>
<th>Stations</th>
<th>Altitude (Feet)</th>
<th>Temperature (°F)</th>
<th>Relative Humidity (%)</th>
<th>Precipitation (Ins.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max.</td>
<td>Min.</td>
<td>Mean.</td>
<td>April</td>
</tr>
<tr>
<td>Chihuahua</td>
<td>4,684</td>
<td>80.6</td>
<td>42.8</td>
<td>70.9</td>
</tr>
<tr>
<td>Guadalajara</td>
<td>5,186</td>
<td>89.6</td>
<td>47.3</td>
<td>72.3</td>
</tr>
<tr>
<td>Guanajuato</td>
<td>6,640</td>
<td>93.4</td>
<td>51.4</td>
<td>71.6</td>
</tr>
<tr>
<td>Leon (Guanajuato)</td>
<td>5,906</td>
<td>90.0</td>
<td>51.8</td>
<td>71.4</td>
</tr>
<tr>
<td>Mazatlan</td>
<td>25</td>
<td>84.6</td>
<td>64.8</td>
<td>74.3</td>
</tr>
<tr>
<td>Merida</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico (Obs. Cent.)</td>
<td>7,472</td>
<td>85.1</td>
<td>46.4</td>
<td>65.5</td>
</tr>
<tr>
<td>Morelia (Seminario)</td>
<td>6,401</td>
<td>83.3</td>
<td>48.2</td>
<td>65.5</td>
</tr>
<tr>
<td>Puebla (Col. Cath.)</td>
<td>7,108</td>
<td>86.7</td>
<td>44.1</td>
<td>65.3</td>
</tr>
<tr>
<td>Puebla (Col. d Est.)</td>
<td>7,118</td>
<td>85.3</td>
<td>40.8</td>
<td>64.0</td>
</tr>
<tr>
<td>Toluca</td>
<td>8,812</td>
<td>79.7</td>
<td>40.6</td>
<td>59.0</td>
</tr>
<tr>
<td>Zacatecas (June)</td>
<td>8,015</td>
<td>82.8</td>
<td>42.3</td>
<td>63.5</td>
</tr>
<tr>
<td>Zapotlan</td>
<td>5,078</td>
<td>92.1</td>
<td>53.2</td>
<td>71.6</td>
</tr>
</tbody>
</table>

\(^1\) The temperature can be judged sufficiently by incorporation of the records for the months of January, April, July and October. Relative humidity and precipitation is given for all the months of the year. The letter T indicates a “trace”.
Climate of Mexico

Summer

<table>
<thead>
<tr>
<th>Stations</th>
<th>Altitude</th>
<th>Temperature</th>
<th>Relative Humidity</th>
<th>Precipitation Ins.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Feet</td>
<td>°F.</td>
<td>°F.</td>
<td>°F.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max.</td>
<td>Min.</td>
<td>Mean.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ins.</td>
<td>Ins.</td>
<td>Ins.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Chihuahua</td>
<td>4,684</td>
<td>95.0</td>
<td>66.2</td>
<td>80.6</td>
</tr>
<tr>
<td>Guadalajara</td>
<td>5,186</td>
<td>86.0</td>
<td>53.6</td>
<td>70.9</td>
</tr>
<tr>
<td>Leon (Guanajuato)</td>
<td>5,906</td>
<td>85.6</td>
<td>55.6</td>
<td>69.4</td>
</tr>
<tr>
<td>Mazatlan</td>
<td>25</td>
<td>91.9</td>
<td>75.2</td>
<td>82.4</td>
</tr>
<tr>
<td>Merida (August)</td>
<td>50</td>
<td>96.1</td>
<td>64.0</td>
<td>80.6</td>
</tr>
<tr>
<td>Mexico (Obs. Cent.)</td>
<td>7,472</td>
<td>77.4</td>
<td>52.2</td>
<td>62.2</td>
</tr>
<tr>
<td>Morelia (Seminario)</td>
<td>6,401</td>
<td>77.9</td>
<td>53.6</td>
<td>62.6</td>
</tr>
<tr>
<td>Pachuca</td>
<td>7,959</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puebla (Col. Cath.)</td>
<td>7,108</td>
<td>75.6</td>
<td>49.3</td>
<td>61.0</td>
</tr>
<tr>
<td>Puebla (Col. d Est.)</td>
<td>7,118</td>
<td>75.4</td>
<td>46.4</td>
<td>62.1</td>
</tr>
<tr>
<td>Toluca</td>
<td>8,812</td>
<td>76.1</td>
<td>46.4</td>
<td>57.2</td>
</tr>
<tr>
<td>Zacatecas</td>
<td>8,015</td>
<td>79.2</td>
<td>45.5</td>
<td>61.2</td>
</tr>
<tr>
<td>Zapotlan</td>
<td>5,078</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Autumn

<table>
<thead>
<tr>
<th>Stations</th>
<th>Altitude</th>
<th>Temperature</th>
<th>Relative Humidity</th>
<th>Precipitation Ins.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Feet</td>
<td>°F.</td>
<td>°F.</td>
<td>°F.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max.</td>
<td>Min.</td>
<td>Mean.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ins.</td>
<td>Ins.</td>
<td>Ins.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Chihuahua</td>
<td>4,684</td>
<td>84.2</td>
<td>46.4</td>
<td>66.0</td>
</tr>
<tr>
<td>Guadalajara</td>
<td>5,186</td>
<td>80.6</td>
<td>50.0</td>
<td>66.6</td>
</tr>
<tr>
<td>Guanajuato</td>
<td>6,401</td>
<td>84.0</td>
<td>45.3</td>
<td>63.0</td>
</tr>
<tr>
<td>Leon (Guanajuato)</td>
<td>5,906</td>
<td>80.8</td>
<td>41.9</td>
<td>62.4</td>
</tr>
<tr>
<td>Mazatlan</td>
<td>25</td>
<td>90.1</td>
<td>68.9</td>
<td>81.1</td>
</tr>
<tr>
<td>Merida</td>
<td>50</td>
<td>95.0</td>
<td>57.9</td>
<td>79.0</td>
</tr>
<tr>
<td>Mexico (Obs. Cent.)</td>
<td>7,472</td>
<td>74.8</td>
<td>41.0</td>
<td>58.1</td>
</tr>
<tr>
<td>Morelia (Seminario)</td>
<td>6,401</td>
<td>72.7</td>
<td>44.6</td>
<td>58.3</td>
</tr>
<tr>
<td>Parral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puebla (Col. Cath.)</td>
<td>7,108</td>
<td>77.4</td>
<td>42.3</td>
<td>57.9</td>
</tr>
<tr>
<td>Puebla (Col. d Est.)</td>
<td>7,118</td>
<td>75.2</td>
<td>41.9</td>
<td>58.5</td>
</tr>
<tr>
<td>Zacatecas</td>
<td>8,015</td>
<td>77.0</td>
<td>37.9</td>
<td>55.8</td>
</tr>
<tr>
<td>Zapotlan</td>
<td>5,078</td>
<td>81.1</td>
<td>46.4</td>
<td>66.9</td>
</tr>
</tbody>
</table>

May. It rises from the beginning of the year to the fifth month, falls in the following one, and remains with small variation during the rainy season; it falls in the autumn and continues its descent until the winter. The absolute maximum temperature under shelter, that is to say, in the shade and freely exposed to the wind, vary from 73.4° F. (23° C.) to 88.8° F. (31.6° C.) and the corresponding limits in the open air are 99.8° F. (37.7° C.) and 120.5° F. (49.2° C.); the first have their maxima in April and the last in September. The absolute minima under shelter ranged from 29° F. (— 1.7° C.) to 17.3° F. (— 8.2° C.) and in the open air 19.1° F. (— 7.2° C.) to 25° F. (— 3.9° C.).
The greatest falls of temperature have occurred in December in both cases, and these great descents have been rare in the sixteen years compared. The distribution of heat in the winter, as well as in other seasons, is varied. Consequently the inconveniences caused by the extreme limits are not prolonged for many hours; in general, the temperature in winter is mild from eleven o'clock a.m. to five o'clock p.m., and in the other seasons the mornings and nights are always cool.

The principal elements which modify the normal course of the temperature are the winds, the clouds, and the rains. The winds from the two southern quadrants increase the heat and dry the air; the currents from the north cool and moisten it. Generally the winds from the winds from the first quadrant clear up the clouds suddenly and induce a decided lowering of the temperature. A sky entirely covered with clouds keeps the temperature high, while the passage of loose clouds at the hours of maximum temperatures impedes its rise. The hottest month is April; the coolest, December.

The course of the mean monthly temperature of the ground at the depth of 0.85 (33.75 inches) meter varied from 56° F. (13.3° C.) to 63.5° F. (17.5° C.) rising from the first to the sixth month of the year and falling from June to December. The lowest reading corresponds to January and the highest to the month of June, and the regularity of its course indicates that it is free from external influences. The annual mean of 60° F. (15.6° C.) differs only two-tenths of a degree at most from the mean of the surrounding air.

Rain occurs generally in all months of the year, although in no regular manner in the spring. The rainy season so called, can be said to begin in May, to be fully established in June, and to end in October, August being the most rainy and most stormy month. The mean quantity of water which has collected in this latter month amounted to 129.8 mm., and the greatest depth of rain corresponding to any one day in the same month amounted to 63.5. The mean annual depth of rainfall in sixteen years is found to be 593.5 mm., and the mean of the ten years from 1880—1890 is 614.5. The greatest annual depth registered in sixteen years amounted to 892.6 mm., and the minimum to 444.2. Generally, the greatest quantity of water falls on the mountains of the Valley of Mexico, whither the clouds are driven by the winds.

The cloudiness in Mexico increases in the summer months, there being in the other seasons a great number of entirely cloudless days, with a clear sky of beautiful blue. Cirrus veils are precursors of storms and last but a few days. Haze on the horizon is prevalent in some of the spring months, but it disappears in the rainy season, during which the atmosphere becomes notably transparent, the twilight lasting remarkably and presenting brilliant displays at sunrise and sunset. The prevailing direction of the clouds is from the southwest, but in the rainy season they proceed from the first quadrant.

The dominant wind in the City of Mexico is the northwest, which prevails the greater part of the year, especially in autumn and winter. It is the
dampest and coldest wind, and the one which increases the barometric pressure. The mean annual wind velocity is 0.8 meters per second, and on studying the monthly means it is observed that in the majority of the months it is about one meter. The greatest velocity registered in sixteen years 21 meters per second, in a wind blowing from the northeast. Generally in the spring there are wind squalls every afternoon, but the greatest velocities are observed in the summer just before the storms. As a rule, every night, although for a few hours only, there occur gusts of north winds, which usually simply cool the air, but sometimes they cause disagreeable and even unhealthy weather.

In order to present a synopsis of the climate of Central America that of the three republics of Guatemala, Nicaragua and Costa Rica is given.

a. Guatemala.

The people of Guatemala distinguish three zones, called as in Mexico tierra caliente, tierra templada and tierra fría and two seasons, the moist, or humid (invierno) and a dry one (verano), or summer. The tierra caliente comprises the coast lands of the Atlantic and Pacific oceans. The tierra templada, or temperate zone is found on the highlands or "mesetas centrales" from 2000 to 5000 feet above the sea level. The tierra fría, or cold zone, is situated above the elevation of 5000 feet, especially in the departments of Sololá, Totonicapam, Quiché; Huehuetenango, Quezaltenango and San Marcos regions known as Los Altos. The rainy season begins in May and lasts until October in the interior, and until December along the coasts. The hottest months are March and April, the coolest December and January.

Going more into details, Guatemala lies entirely in the Torrid Zone. Stretched out between two oceans not far from each other, the climate would be uniformly hot and moist, but for her varied mountains, especially the Cordilleras de las Andes which oppose themselves to the prevailing winds, causing notable differences, not only in temperature, but also in rainfall, humidity of the air, clouds and other meteorologic phenomena. The predominant winds are from the east and north. Only along the Pacific coast and on the southern slopes of the southern Cordilleras are southern and southwestern winds frequent at certain times of the year. As the sun passes twice a year to the zenith of each locality, so the temperature is higher at those times (April, May and August) than in the intermediary periods (July, December and January). The daily course of temperature is generally simple, although clouds and winds cause irregularities. The minimum is observed at sunrise and the maximum between two and three o'clock in the afternoon. Carl Sapper gives the following table of average centigrade temperatures.

The atmospheric humidity is high all over the country, except in the dry regions situated between humid or moist mountains, as at Salamá and in
<table>
<thead>
<tr>
<th>Temperature in C°</th>
<th>Stations</th>
<th>Elevation in Meters</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puerto Barrios</td>
<td>2</td>
<td>23.5</td>
<td>24</td>
<td>24.5</td>
<td>26.5</td>
<td>27.5</td>
<td>29.5</td>
<td>26.33</td>
<td>26.20</td>
<td>26.75</td>
<td>27.0</td>
<td>26.5</td>
<td>23.75</td>
<td></td>
</tr>
<tr>
<td>Salamá</td>
<td>920</td>
<td>20.0</td>
<td>21</td>
<td>23.5</td>
<td>14.75</td>
<td>25.33</td>
<td>25.33</td>
<td>24.75</td>
<td>24.25</td>
<td>24.0</td>
<td>21.5</td>
<td>21.75</td>
<td>20.75</td>
<td></td>
</tr>
<tr>
<td>Campur</td>
<td>930</td>
<td>17.75</td>
<td>19.5</td>
<td>19.75</td>
<td>21.75</td>
<td>23.0</td>
<td>22.0</td>
<td>21.0</td>
<td>20.75</td>
<td>20.75</td>
<td>18.75</td>
<td>18.75</td>
<td>16.5</td>
<td></td>
</tr>
<tr>
<td>Guatemala</td>
<td>1,495</td>
<td>16.0</td>
<td>17.5</td>
<td>18.5</td>
<td>19.5</td>
<td>19.75</td>
<td>19.0</td>
<td>18.5</td>
<td>18.5</td>
<td>18.5</td>
<td>18.0</td>
<td>16.75</td>
<td>16.5</td>
<td></td>
</tr>
<tr>
<td>Quezaltenango</td>
<td>2,350</td>
<td>10.5</td>
<td>11.75</td>
<td>13.75</td>
<td>15.25</td>
<td>17.0</td>
<td>16.75</td>
<td>16.0</td>
<td>15.75</td>
<td>16.5</td>
<td>15.25</td>
<td>14.5</td>
<td>12.0</td>
<td></td>
</tr>
</tbody>
</table>

The valley of the Motagua River. Its maximum is about sunrise, and the minimum between two and three o'clock in the afternoon depending upon the temperature. Thunderstorms are frequent from May to September, but seldom occur during other parts of the year. They come mostly in the afternoon between half past two and half past six o'clock.

It is a general rule with regard to rainfall that regions confronting moist winds from the ocean have an abundant precipitation, and that regions defended by mountain ranges from the sea winds are dry. Guatemala having a complicated topographic configuration has for this reason great varieties of rainfall. Frosts have been observed only in regions above 5900 feet (1800 m) elevation and snow has been seen in regions above 10,170 feet (3100 m).

Particulars are found in the accompanying table of average rainfall in millimeters for different regions.

<table>
<thead>
<tr>
<th>Rainfall in Mm.</th>
<th>Stations</th>
<th>Elevation in Meters</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puerto Barrios</td>
<td>2</td>
<td>140</td>
<td>155</td>
<td>85</td>
<td>155</td>
<td>160</td>
<td>320</td>
<td>500</td>
<td>490</td>
<td>280</td>
<td>160</td>
<td>430</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Cubilgnitiz</td>
<td>300</td>
<td>180</td>
<td>210</td>
<td>125</td>
<td>70</td>
<td>260</td>
<td>380</td>
<td>520</td>
<td>300</td>
<td>540</td>
<td>590</td>
<td>490</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>Setal</td>
<td>720</td>
<td>470</td>
<td>300</td>
<td>270</td>
<td>70</td>
<td>300</td>
<td>520</td>
<td>620</td>
<td>500</td>
<td>430</td>
<td>620</td>
<td>360</td>
<td>420</td>
<td></td>
</tr>
<tr>
<td>Salamá</td>
<td>920</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>90</td>
<td>180</td>
<td>100</td>
<td>70</td>
<td>110</td>
<td>20</td>
<td>60</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Senahu</td>
<td>990</td>
<td>130</td>
<td>100</td>
<td>80</td>
<td>105</td>
<td>500</td>
<td>620</td>
<td>800</td>
<td>580</td>
<td>450</td>
<td>360</td>
<td>160</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>Las Mercedes</td>
<td>1,000</td>
<td>35</td>
<td>60</td>
<td>100</td>
<td>215</td>
<td>445</td>
<td>360</td>
<td>470</td>
<td>560</td>
<td>540</td>
<td>480</td>
<td>135</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Chimax</td>
<td>1,306</td>
<td>140</td>
<td>110</td>
<td>100</td>
<td>60</td>
<td>200</td>
<td>320</td>
<td>310</td>
<td>210</td>
<td>240</td>
<td>250</td>
<td>210</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>Guatemala</td>
<td>1,485</td>
<td>10</td>
<td>8</td>
<td>5</td>
<td>20</td>
<td>75</td>
<td>140</td>
<td>280</td>
<td>275</td>
<td>225</td>
<td>225</td>
<td>180</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Quezaltenango</td>
<td>2,000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>90</td>
<td>160</td>
<td>100</td>
<td>75</td>
<td>120</td>
<td>75</td>
<td>20</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

b. Nicaragua.

The climate of Nicaragua is determined by its position in the tropics, by the proximity of two great oceans, which gives to the country the regular temperature of an island, and by its topography. The prevailing wind is northeast. In the time of solstice, the direction of the wind changes to southwest, but variable winds without determined influence mostly blow at the time of the equinoxes. There are two well marked seasons; a dry season called summer, and a wet season called winter, along the Pacific coast, in the lake
region and still further inland along the Cordilleras de las Andes. On the Atlantic side of the Cordilleras, the rainfall does not entirely cease at any season, and the country there has the character perpetual spring, although the people distinguish between a summer and a winter. There the summer begins in January and ceases with the end of May. The prevailing northeast wind coming from the Atlantic is full of moisture, which, on its passage over the forests that cover nearly the whole Atlantic slope, is condensed and falls repeatedly but irregularly in showers. During the rest of the year the rain falls heavily, only temporarily interrupted in August and October, which short and comparatively dry seasons the people call "veranillos".

The rainy season, or winter, on the Pacific side begins generally about the middle of May and ends in the middle of November. Here, too, but generally in the month of August, once, or more, veranillo are observed. The hottest months in general are May and August, when the sun is in the zenith, but sometimes they occur later.

The rainy season is the pleasanter, for then the temperature is most uniform and the sky full of clouds. As rainfall and temperature vary according to locality, the following types are given, taken from observations of Dr. ERNEST ROTHSCUH at the Hacienda Rosa de Jericho in Matagalpa in the high mountain region of Nicaragua over 3300 feet above the sea. During the period of his observations from January 1893, to March, 1894 there were rainfalls every month.

1893. January 17 days. May 24 days. September 30 days.
February 17 » June 29 » October 28 »
March 10 » July 31 » November 20 »
April 9 » August 27 » December 21 »

1894. January 30 days; February 20 days; March 18 days.

There were heavy tropic rainfalls ("aguaceros") five times in January 1893, once in March, once in April, twice in May, once in June, six times in July, once in August, once in September, ten times in October, twice in November, twice in December, six times in January, 1904, five times in February, once in March. Thunderstorms were only observed from September to December inclusive; namely, sixteen times in September, two times in October, twice in November, once in December. They occurred during the afternoon or night time.

The maximum temperature was in January 1893, 82.9° F. (28.3° C.); in February 86° F. (30° C.); in March 86.1° F. (30.1° C.); in April 90° F. (32.2° C.); in May 82.5° F. (28.1° C.); in June 80.6° F. (27° C.); in July 76° F. (24.4° C.); in August 83.4° F. (28.6° C.); in September 78° F. (25.5° C.); in October 77.3° F. (25.2° C.); in November 74.8° F. (23.8° C.); in December 71.4° F. (21.9° C.); in January 1894, 68° F. (20° C.); in February 68.1° F. (20.1° C.); in March 69.8° F. (21° C.).
The minimum temperature stood as follows:

February 62.6° F. (17° C.) August 59° F. (15° C.)
March 58.2° F. (14.6° C.) September 59.7° F. (15.4° C.)
April 62.9° F. (17.2° C.) October 57.7° F. (14.3° C.)
May 59° F. (15° C.) November 56.4° F. (13.6° C.)
June 59.9° F. (15.5° C.) December 52.1° F. (11.2° C.)

1894. January 55° F. (12.8° C.)
February 52.2°F. (11.4°C.) March 54.6° F. (12.6° C.)

The average temperature of the entire year was 62.0° F. (17.2° C.); the entire rainfall 96 inches (244 cm).

Another meteorologic type, from the Atlantic region from the observations of Dr. J. E. HUBBERT made for the Nicaragua Canal Company at San Juan for the year 1890 is given in the adjoining table.

<table>
<thead>
<tr>
<th></th>
<th>Total Rainfall, mm</th>
<th>Average Temperature C.</th>
<th>Maximum Temperature C.</th>
<th>Minimum Temperature C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>670</td>
<td>23.5°</td>
<td>27.0°</td>
<td>21.0°</td>
</tr>
<tr>
<td>February</td>
<td>171.5</td>
<td>24.0°</td>
<td>26.5°</td>
<td>22.0°</td>
</tr>
<tr>
<td>March</td>
<td>148.25</td>
<td>24.5°</td>
<td>27.0°</td>
<td>23.5°</td>
</tr>
<tr>
<td>April</td>
<td>452.5</td>
<td>23.5°</td>
<td>26.0°</td>
<td>22.0°</td>
</tr>
<tr>
<td>May</td>
<td>123.25</td>
<td>24.0°</td>
<td>26.5°</td>
<td>22.0°</td>
</tr>
<tr>
<td>June</td>
<td>1171</td>
<td>26.5°</td>
<td>29.0°</td>
<td>23.0°</td>
</tr>
<tr>
<td>July</td>
<td>1313.75</td>
<td>26.0°</td>
<td>27.0°</td>
<td>23.5°</td>
</tr>
<tr>
<td>August</td>
<td>893</td>
<td>26.0°</td>
<td>27.25°</td>
<td>23.5°</td>
</tr>
<tr>
<td>September</td>
<td>203.5</td>
<td>28.0°</td>
<td>32.0°</td>
<td>23.5°</td>
</tr>
<tr>
<td>October</td>
<td>609</td>
<td>24.5°</td>
<td>26.75°</td>
<td>23.0°</td>
</tr>
<tr>
<td>November</td>
<td>638.75</td>
<td>24.25°</td>
<td>27.5°</td>
<td>21.5°</td>
</tr>
<tr>
<td>December</td>
<td>1041.25</td>
<td>24.25°</td>
<td>27.0°</td>
<td>22.0°</td>
</tr>
<tr>
<td>Total</td>
<td>7435.75</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

For the Pacific side there are observations from the city of Rivas, about 177 feet above the sea, situated between the great lake of Nicaragua and the Pacific Ocean. During one year the mean highest temperature was 86° F. (30° C.); the mean lowest 70.7° F. (21.5° C.) and the mean average of a year 77.9° F. (25.5°).

Owing to its varied topography Nicaragua has its tierra caliente, its tierra templada and its tierra fria. The Atlantic and Pacific coast lands, except where broken by mountains, as well, as the plains surrounding the lakes and also the valley of the San Juan River are regarded as tierra caliente. The tierra templada is found on the slopes of the volcanoes and also on the mountain ridges along the Pacific, as well, as on some slopes of the Cordilleras of Nueva Segovia, Jinotega, Matagalpa and Chontales. In the highlands of these departments and on the higher mountains is found the tierra fria with pine and oak forests.
c. Costa Rica.

The climate of Costa Rica depends on its situation in the tropics, on the position of the sun at different times of the year, and on the topography, but owing to the narrowness of the country and its situation between the two great oceans, it is well-tempered by the alisios (northeast trades) and other winds. The prevailing wind is from the northeast, or, better north-northeast and east. During August, September and October an increase of the northwest winds causes the heavy rains of that season. West-northwest and northwest winds blow also from May to August. The coldest month is January; December and February are relatively cold. The hottest months are May and June. The course of the temperature has all the characters of an insular climate, without having so much humidity. The oscillation of the average temperature is greatest in March and during the dry season, as at that time the sky is clear and the soil exposed to uninterrupted insolation during the day, while the earth's radiation of heat during the night is rapid. The daily oscillation is considerable also during the dry season, and continues during the first month of the rainy season, according to the conditions of the sky.

The sky in San José is ordinarily clear between midnight and noon, even during the most rainy months, and cloudy the rest of the twenty-four hours. Although the rainfall is abundant here from May to October, with rare exceptions they do not last more than a few hours each day. The mornings are generally splendid and the air very pure, and nearly every day the sunset can be clearly observed. From May to November, there are about two hours of copious rain daily between one and four o'clock in the afternoon, averaging, with great regularity, from ten to twelve inches a month, and from seventy to eighty inches during the year. Towards the end of June, there is a short dry period called *Veranillo de San Juan*. Through the Desengano and Palma passes, the northern rains penetrate a short distance every day, and the northern descent of the Palma Pass toward Carillo is probably the most rainy district of the republic.

The rainy season on the Caribbean slope of the country does not correspond to that of the Pacific. In fact, there are no continuously dry months, and on the northern declivities of the volcanos Turrialba, Irazu, Barba and Poas, it rains more or less during the entire year; also near Lake Nicaragua, it rains nearly continuously, and the mountains of the Guatuso country and the surroundings of the volcano of Orosi are seldom without clouds. At times there are cloudbursts of tremendous power, broadening rivers for miles.

The climate of Talamanca in very unhealthy in proximity to the coast, and in the lower course of the rivers a similarly deadly climate prevails. In normal years, there are two dry and two wet seasons. The rains commence regularly in May or June and last until the end of July. The months of August and September are more or less dry. In October, there are some heavy showers, and extensive rains begin which characterize the months of November, December and January. The driest months are February, March and April. The high region is extremely humid, giving rise to fogs and rains.
The accompanying tables present the details of the meteorology of Costa Rica.

Climatology of Costa Rica communicated by H. Pittier, Director, Physico-Geographic Institute. Hourly observations at the Observatory, San José de Costa Rica, during (February) 1903. (Total for day only given). Temperature in Fahrenheit. Monthly Weather Review XXXI. 1903.

<table>
<thead>
<tr>
<th>Month</th>
<th>Temperature F.</th>
<th>Relative Humidity %</th>
<th>Rainfall. (Ins.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>Mean</td>
<td>66.6</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>53.4</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>85.5</td>
<td>100</td>
</tr>
<tr>
<td>February</td>
<td>Mean</td>
<td>68.4</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>57.9</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>84.4</td>
<td>100</td>
</tr>
<tr>
<td>March</td>
<td>Mean</td>
<td>67.4</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>51.1</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>86.0</td>
<td>96</td>
</tr>
<tr>
<td>April</td>
<td>Mean</td>
<td>68.5</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>53.6</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>88.9</td>
<td>100</td>
</tr>
<tr>
<td>May</td>
<td>Mean</td>
<td>68.4</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>56.5</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>85.5</td>
<td>100</td>
</tr>
<tr>
<td>June</td>
<td>Mean</td>
<td>68.2</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>59.5</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>84.2</td>
<td>100</td>
</tr>
<tr>
<td>July</td>
<td>Mean</td>
<td>67.7</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>57.2</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>84.7</td>
<td>100</td>
</tr>
<tr>
<td>August</td>
<td>Mean</td>
<td>66.6</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>56.1</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>81.7</td>
<td>100</td>
</tr>
<tr>
<td>September</td>
<td>Mean</td>
<td>67.4</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>55.0</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>84.7</td>
<td>100</td>
</tr>
<tr>
<td>October</td>
<td>Mean</td>
<td>67.0</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>56.8</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>83.8</td>
<td>100</td>
</tr>
<tr>
<td>November</td>
<td>(vacat).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>December</td>
<td>Mean</td>
<td>64.8</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>57.4</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>82.9</td>
<td>100</td>
</tr>
</tbody>
</table>
In considering the climate of the Isthmus, as compared with that of more temperate regions, attention is attracted to the remarkable uniformity of the temperature throughout the year. The general elements which determine this
uniformity are the direct heat received from the sun; the influence of the successive volume of aqueous vapor held in suspension in the atmosphere; the influence of the two great seas which wash the shores of the narrow belt of land connecting North and South America. The influence of the seas depends on their varying absolute temperatures and on the movements of the atmosphere, as these, in a large measure regulate the effect of the oceans in different months. The curves indicating the influence of the two oceans show that the Atlantic is much the more important. The northerly winds prevailing in the first four months of the year effectually prevent the Pacific, then relatively cold, from moderating the temperature at Panama. The joint influence of varying humidity and varying length of night is a more powerful factor in affecting the yearly unvarying annual temperature of the Isthmus than perhaps has been appreciated hitherto.

Observed Air Temperature on the Isthmus 1).

<table>
<thead>
<tr>
<th>Month</th>
<th>Colon 92 months</th>
<th>Gamboa 58 months</th>
<th>Alhajuela 39 months</th>
<th>Panama 9 months</th>
<th>La Boca 41 months</th>
<th>Naos 70 months</th>
<th>Mean.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>°C.</td>
<td>°C.</td>
<td>°C.</td>
<td>°C.</td>
<td>°C.</td>
<td>°C.</td>
<td>°C.</td>
</tr>
<tr>
<td>February</td>
<td>26.18</td>
<td>23.60</td>
<td>26.66</td>
<td>26.25</td>
<td>26.79</td>
<td>26.15</td>
<td>25.84</td>
</tr>
<tr>
<td>April</td>
<td>26.48</td>
<td>24.90</td>
<td>27.05</td>
<td>27.25</td>
<td>27.69</td>
<td>27.65</td>
<td>26.84</td>
</tr>
<tr>
<td>May</td>
<td>26.73</td>
<td>26.85</td>
<td>25.55</td>
<td>27.07</td>
<td>27.01</td>
<td>27.90</td>
<td>26.85</td>
</tr>
<tr>
<td>June</td>
<td>26.73</td>
<td>27.70</td>
<td>26.21</td>
<td>26.69</td>
<td>27.23</td>
<td>28.85</td>
<td>27.23</td>
</tr>
<tr>
<td>July</td>
<td>26.77</td>
<td>26.75</td>
<td>26.02</td>
<td>—</td>
<td>26.69</td>
<td>28.31</td>
<td>26.91</td>
</tr>
<tr>
<td>August</td>
<td>26.23</td>
<td>26.60</td>
<td>26.20</td>
<td>—</td>
<td>26.10</td>
<td>28.00</td>
<td>26.63</td>
</tr>
<tr>
<td>September</td>
<td>26.57</td>
<td>27.15</td>
<td>25.97</td>
<td>—</td>
<td>26.46</td>
<td>27.94</td>
<td>26.82</td>
</tr>
<tr>
<td>October</td>
<td>26.18</td>
<td>26.55</td>
<td>25.46</td>
<td>26.45</td>
<td>25.84</td>
<td>27.45</td>
<td>26.32</td>
</tr>
<tr>
<td>November</td>
<td>26.10</td>
<td>26.80</td>
<td>25.60</td>
<td>26.01</td>
<td>25.79</td>
<td>26.80</td>
<td>26.18</td>
</tr>
</tbody>
</table>

As is the case with the monthly means, the changes of temperature from hour to hour and from day to day are subject to much less variation on the Isthmus than in regions more remote from the equator. In connection with this study the fact that the rainfall on the Caribbean shore of South America is much less than in Panama, should be noted. During the period of observations made there the average annual rainfall was, at Alhajuela, 103.8 inches; at La Boca, 74.5 inches; at Barbados, 39.6 inches; at Trinidad, 56.5 inches; and at Curacao only 16.1 inches. It is evident from an inspection of the accompanying consolidated table to February 1903 that an annual rainfall of about 140 inches may be expected on the Atlantic coast, about 93 inches in the interior, and about 60 inches near the shores of the Pacific. There is a

well-defined dry season beginning in December and including the months of January, February, March and part of April, a period during which the sun is returning northward from his southern journey to the Tropic of Capricorn, and the locus of heavy rainfall has been transferred southward from the Isthmus. This comparative exemption from rain is characteristic of the interior and of the Pacific coast, but somewhat less so of the region bordering the Caribbean Sea.

Rainfall in inches, consolidated to February 1903.

<table>
<thead>
<tr>
<th>Month</th>
<th>Atlantic Coast</th>
<th>Pacific Coast</th>
<th>Means.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Colon (32)</td>
<td>Panama (4)</td>
<td>Naos (7)</td>
</tr>
<tr>
<td>January</td>
<td>3.89</td>
<td>0.70</td>
<td>0.50</td>
</tr>
<tr>
<td>February</td>
<td>1.44</td>
<td>0.73</td>
<td>0.08</td>
</tr>
<tr>
<td>March</td>
<td>1.58</td>
<td>1.56</td>
<td>0.33</td>
</tr>
<tr>
<td>April</td>
<td>4.32</td>
<td>2.84</td>
<td>1.71</td>
</tr>
<tr>
<td>June</td>
<td>13.50</td>
<td>7.86</td>
<td>5.49</td>
</tr>
<tr>
<td>July</td>
<td>16.70</td>
<td>7.58</td>
<td>4.29</td>
</tr>
<tr>
<td>August</td>
<td>15.13</td>
<td>6.81</td>
<td>4.78</td>
</tr>
<tr>
<td>September</td>
<td>12.68</td>
<td>7.48</td>
<td>7.42</td>
</tr>
<tr>
<td>October</td>
<td>14.15</td>
<td>9.49</td>
<td>6.64</td>
</tr>
<tr>
<td>November</td>
<td>20.69</td>
<td>11.57</td>
<td>6.26</td>
</tr>
<tr>
<td>December</td>
<td>12.14</td>
<td>2.75</td>
<td>3.21</td>
</tr>
<tr>
<td>Total</td>
<td>128.26</td>
<td>66.78</td>
<td>45.50</td>
</tr>
</tbody>
</table>

During seven months, from October, 1898, to May, 1899, the United States Weather Bureau made continuous observations upon the velocity of wind at Colon\(^2\). These velocity observations constitute the only direct measurements ever reported on the Isthmus. They show during the whole period a great uniformity from day to day, from month to month, the wind increasing gently from about six miles per hour at midnight to two or three o'clock in the afternoon, and then subsiding gradually. The strongest winds came from the Caribbean Sea, usually attaining a velocity of about 20 miles per hour, and on one occasion a velocity of 24 miles.

5. West Indies.

The islands of the West Indies with the exception of part of the Bahamas lie between the isotherms of 77° F. (25° C.) and 82° F. (27.8° C.). The extreme heat is greatly tempered by the sea breezes, and by long, cool, refreshing nights, while in the higher mountainous parts of several of the islands (15,500 square miles (40,145 qkm) lie at an elevation of more than 1500 feet above the sea level), a marked degree of coolness may generally be found. The short wet season, or spring, begins in April and lasts from two to six weeks, and

Harshberger, Survey N.-America.
is succeeded by the short dry season, when the thermometer remains almost stationary at about 80° F. In July, the heat increases to an extent well night unbearable. From the end of July to the beginning of October, the greatest rainfall of the season commences accompanied by destructive hurricanes. Out of a total of 355 hurricanes recorded during the last three hundred years, 42 have occurred in July, 96 in August, 80 in September and 69 in October. These storms commence in the Atlantic and toward the east. They follow a westerly course for a day, or two, inclining at the same time, one or two points towards the north, the polar tendency becoming gradually more marked as the distance from the equator increases. When the hurricanes reach 25° N., they curve to the northeast and almost invariably wheel round on arriving at the northern portion of the Gulf of Mexico, after which they follow the coast line of North America. December marks the commencement of the long dry season, which accompanied by fresh winds lasts till April.

a. Cuba.

Extensive climatologic data are not available for Cuba. The eastern chain of mountains, the Sierra Maestra, probably presents conditions of temperature very nearly the same as the Blue Mountains of Jamaica. Every-where the rains are most abundant in summer the rainy season from May to October. The winds brought by the trade-winds are heavier and more frequent on the higher slopes of the eastern end, although these are more arid and near sea-level. At Havana, the annual rainfall is 51.73 inches and of the total 32.37 inches fall in the wet season. The average number of rainy days in the year is 102. The warmest months at Havana in July and August, the average temperature is 82° F. (27.8° C.) fluctuating between a maximum of 88° F. (31.1° C.) and a minimum of 76° F. (24.4° C.), while a temperature as high as 100° F. (37.8° C.) has been recorded. In the cooler months of December and January, the thermometer averages 72° F. (22.2° C.) maximum being 78° F. (25.6° C.); the minimum 50° F. (10° C.). The average temperature of the year is 77° F. (25° C.).

At Santiago de Cuba, the temperature is apparently higher than on the northern and western coasts and from the meager data available appears to be about 80° F. (26.7° C.) with an average difference between the warmest and coldest months of about 6° F. The prevailing wind is the northeast trade, but from November to February, cool north winds are experienced in the western part of the island. Ordinarily from ten to twelve o'clock are the hottest hours of the day for in the afternoon a refreshing breeze (la virazon) sets in from the sea.

b. Santo Domingo.

The climate of the island of Santo Domingo is more diversified than that of any of the other islands of the Greater Antilles. It presents wide extremes of temperature, moisture and aridity. The heat at the capital of Haiti, Port
au Prince, owing to its sheltered situation is probably greater than at any seaport in the West Indies, reaching 91° to 96° F. (34.4°—35.6° C.) every day between April and October. The nights are on an average 10° to 20° cooler than the days and consequently they seem cool and pleasant in comparison with the heat of the day. This is true of the so-called rainy season, the rains falling, as a rule, late in the afternoon, or early in the evening. The temperature on the other hand during the rest of the year, which covers the dry season from October to April, is on an average about 10° lower.

c. Jamaica.

The varied surface of Jamaica, with altitudes ranging from sea-level to 7360 feet (2243 m.), that of Blue Mountain Peak, affords a range of climate which leaves little to be desired. The annual rainfall is 67 inches (170 cm). The island is naturally divided into four rainfall divisions. The northeastern and northern divisions have winter rains in November, December and January. These rains are brought by the east or northeast winds, and fall day and night. The northeastern and west central divisions have summer rains. These rains come as rule during the summer afternoons from enormous cumulus clouds piled up the height of 5 or 6 miles, and they are accompanied with much thunder and lightning. The southern division is dry having rains for the most part only during the summer months on a grand scale, and in the central line of hills heavy rains occur every afternoon from the beginning of May to the end of October.

The general average temperature is remarkably uniform throughout the island. The temperature varies with the altitude. The diurnal variations are as different as the circumstances of each locality; and according as sunshine, cloud morning fog, afternoon rains, wind and calms prevail, so will the characteristics of the diurnal variation change; but generally the minimum temperature occurs between dawn and sunrise. The temperature rises rapidly from 7 a.m. to 9 a.m. when the sea breeze begins to blow and checks the rate of increase. The maximum occurs between noon and 1 p.m. clouds or rain keep the afternoons fairly uniform, but the clear evenings allow the temperature to fall at once, the minimum occurring, as already said, a little before sunrise. The following table shows the decrease of temperature with elevation in Jamaica.

<table>
<thead>
<tr>
<th>Stations</th>
<th>Elevation feet</th>
<th>Barometric Pressure inches</th>
<th>Temperature (°F.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean. o</td>
</tr>
<tr>
<td>Kingston</td>
<td>50</td>
<td>29.95</td>
<td>78.1</td>
</tr>
<tr>
<td>Kempshot</td>
<td>1773</td>
<td>28.20</td>
<td>72.7</td>
</tr>
<tr>
<td>Cinehona Plantation</td>
<td>4907</td>
<td>25.27</td>
<td>62.6</td>
</tr>
<tr>
<td>Portland Gap</td>
<td>5477</td>
<td>24.71</td>
<td>59.7</td>
</tr>
<tr>
<td>Blue Mountain Peak</td>
<td>7360</td>
<td>23.14</td>
<td>55.7</td>
</tr>
</tbody>
</table>

The highest and lowest temperatures recorded in Kingston, Jamaica since 1880, when regular observations were commenced, are 96.7° F. (36° C.) and 56.7° F. (13.7° C.) respectfully. In the following tables the meteorologic observations at Kingston for ten years from June 1880, to May 1890 inclusive are given.

<table>
<thead>
<tr>
<th>Month</th>
<th>Temperature, Mean (°Celsius)</th>
<th>Temperature (°F.)</th>
<th>Cloud per cent.</th>
<th>Rainfall.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Max</td>
<td>Min</td>
<td>Range</td>
</tr>
<tr>
<td>January</td>
<td>23.6</td>
<td>74.6</td>
<td>86.4</td>
<td>66.8</td>
</tr>
<tr>
<td>February</td>
<td>23.7</td>
<td>74.7</td>
<td>85.8</td>
<td>66.8</td>
</tr>
<tr>
<td>March</td>
<td>24.3</td>
<td>75.8</td>
<td>85.7</td>
<td>67.8</td>
</tr>
<tr>
<td>April</td>
<td>25.5</td>
<td>77.9</td>
<td>86.5</td>
<td>69.8</td>
</tr>
<tr>
<td>May</td>
<td>26.3</td>
<td>79.4</td>
<td>87.2</td>
<td>72.4</td>
</tr>
<tr>
<td>June</td>
<td>27.1</td>
<td>80.8</td>
<td>88.5</td>
<td>73.8</td>
</tr>
<tr>
<td>July</td>
<td>27.3</td>
<td>81.1</td>
<td>89.7</td>
<td>73.5</td>
</tr>
<tr>
<td>August</td>
<td>26.9</td>
<td>80.4</td>
<td>89.4</td>
<td>73.2</td>
</tr>
<tr>
<td>September</td>
<td>26.7</td>
<td>80.1</td>
<td>89.7</td>
<td>73.3</td>
</tr>
<tr>
<td>October</td>
<td>26.0</td>
<td>78.9</td>
<td>88.9</td>
<td>72.1</td>
</tr>
<tr>
<td>November</td>
<td>25.4</td>
<td>77.8</td>
<td>88.9</td>
<td>70.7</td>
</tr>
<tr>
<td>December</td>
<td>24.3</td>
<td>75.7</td>
<td>87.0</td>
<td>68.4</td>
</tr>
<tr>
<td>Means</td>
<td>25.6</td>
<td>78.1</td>
<td>87.8</td>
<td>70.7</td>
</tr>
<tr>
<td>Totals</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>55</td>
</tr>
</tbody>
</table>

d. Puerto Rico.

The average daily temperature of the island is 80° F. (26.7° C.), which is ameliorated by a cool north breeze which generally prevails on the hottest days. The mean monthly temperature of the capital, San Juan, for a period of twenty years is 78.8° F. (26.1° C.). The maximum attained only three times during this period was 99° F. (37.2° C.) and the minimum 57.2° F. (14° C.). The temperature rises to 88° F. (31.1° C.) at midday, and sinks to 80.6° F. (27° C.) at night. It stands ordinarily on the cool mornings at 69.8° F. (21° C.), but falls sometimes as low as 60.8° F. (16° C.). The coolest places in the island are found in the interior highlands, where the nights are always cool.

June, July, August and September are the hottest months, while December, January and February are the coolest. The cold winds, which blow down from the mountains in the other islands, are seldom felt in Puerto Rico, though tropic hurricanes are frequent between July and October.

The average rainfall has been 59.5 inches (143 cm) for the past twenty years. The month of February is the driest month, when less than two inches of rainfall. January and March have less than three inches, December less than four. Five inches of rainfall occur in the remaining months April to November inclusive. The greatest quantity of the year, 7.62 inches (19 cm) is precipitated in November. During the hottest months, it rains hard and abundantly. The fall of rain comes in heavy gusts with strong winds between noon and four p.m. An hour later the skies appear in beautiful colors of gold, violet, purple and
blue. A bright, cool starlight night usually follows. East and north winds set in toward the end of October. The first brings heavy rains, and the latter gentle showers, though on the south side of the island great draughts occur.

e. The Bahamas.

The climate of the Bahamas is agreeable and healthful, but subject to greater extremes of heat and cold than the other islands of the West Indian group. The temperature varies from 60° to 75° F. (15.6°—23.8° C.) during the winter months from November to May, while the remainder of the year constitutes the warm season with a temperature between 75° and 85° F. (23.8°—29.4° C.). The lack of elevation allows the full effects of the sea-breezes to be felt, and these breezes temper to some extent the heat of midday.

f. The Bermudas.

The islands are on the eastern edge of the Gulf Stream, by which very naturally the climate is influenced. The surface temperature of the water averages 70° F. (21.1° C.). For ten years the mean temperature of the air registered 71° F. (21.7° C.), the dew-point being 64° F. (17.8° C). The highest temperature observed in the shade was 90° F. (32.2° C.), and the lowest 48° F. (8.9° C.), but in the sun a greater temperature has been reached than 90° F. (32.2° C.). August is the hottest month, averaging 87° F. (30.5° C.); February the coldest month, 55° F. (12.7° C.) The daily range is six to eight degrees and the annual about thirty-two degrees. In making a comparison with the United States, it may be said that the isotherm of 72° F. (22.2° C.) runs across the middle of Florida and through the Bermuda group of islands. The rainfall is large. The average of ten years shows 155 rainy days in 356, and 56 inches. The distribution through the year is very uniform.

In the following table the meteorologic observations at Hamilton for the year 1903 are given (furnished by the Canadian Meteorological Service 1903).

<table>
<thead>
<tr>
<th>Month</th>
<th>Temperature [°F]</th>
<th>Precipitation [Ins.]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Departure from</td>
</tr>
<tr>
<td>Month</td>
<td></td>
<td>normal.</td>
</tr>
<tr>
<td>January</td>
<td>64.2</td>
<td>+2.2</td>
</tr>
<tr>
<td>February</td>
<td>64.0</td>
<td>+2.5</td>
</tr>
<tr>
<td>March</td>
<td>65.8</td>
<td>+3.6</td>
</tr>
<tr>
<td>April</td>
<td>66.0</td>
<td>+2.1</td>
</tr>
<tr>
<td>May</td>
<td>68.2</td>
<td>-1.2</td>
</tr>
<tr>
<td>June</td>
<td>73.0</td>
<td>-2.0</td>
</tr>
<tr>
<td>July</td>
<td>78.7</td>
<td>+0.3</td>
</tr>
<tr>
<td>August</td>
<td>81.2</td>
<td>-1.6</td>
</tr>
<tr>
<td>September</td>
<td>78.4</td>
<td>+1.0</td>
</tr>
<tr>
<td>October</td>
<td>72.6</td>
<td>-0.4</td>
</tr>
<tr>
<td>November</td>
<td>68.3</td>
<td>-0.4</td>
</tr>
<tr>
<td>December</td>
<td>64.4</td>
<td>-0.3</td>
</tr>
</tbody>
</table>
Chapter III. Statistics of North American Plants.

The number of species of plants in North America can be stated only approximately, because the total is subject to change with the exploration of territory unknown botanically and with the advance of our knowledge as to the systematic relationship of plant species. For the United States and Canada, we have fairly accurate data, but for Mexico, Central America and the West Indies, we can make only an estimate, because these tropic countries are still too little known. There is a tendency manifested among American botanists to multiply species, it seems to the writer to an undue extent. For example in the two years 1898 to 1900 about 2000 new plants names were published, representing bona fide new plants, but in addition the reinstatement of names established by Nuttall, Pursh and other botanists, who were actually acquainted with the plants, they described and whose names were suppressed by later botanists less familiar with the plants as they occur in the fields and forests. There is a growing disposition to discard the use of varietal names, and to call all plants species which have characters sufficiently distinct to justify the use of a specific name. Accordingly, many varieties have been raised to specific rank. At the present rate of activity in systematic botany, the year 1908 will see a list of about 22,000 American plant names. Heller (1900) in his Catalogue of North American Plants, North of Mexico, exclusive of the lower cryptogams enumerates 16,673 plants.

Sereno Watson in the sixth edition of Gray’s Manual (1890) which classifies the plants of the northern United States, including the district east of the 100th meridian and north of North Carolina and Tennessee, gives a list of orders with the number of genera and species native and introduced. He enumerates 251 native and 46 introduced genera and 777 native species; 141 introduced species of apopetalous dicotyledonous plants. Of gamopetalous plants, there are 245 native genera, 53 introduced genera, 874 native species and 148 introduced species within the region covered by the manual. The apetalous dicotyledons comprise 76 native genera, 7 introduced genera, 257 native species and 51 introduced. The conifers consist of 10 native genera and 22 species. Of monocotyledonous plants there are 170 native genera, 22 introduced genera, 721 native species and 64 introduced species. The pteridophytes include 29 native genera with 102 native species, and the bryophytes 44 native genera, 1 introduced genus, 140 native and 1 introduced species. Summing up we have a total of 834 genera of native, 129 genera of introduced plants, 2893 native species and 405 introduced species of plants; total 963 genera and 3298 species of plants.

The last (seventh) edition of Gray’s New Manual of Botany (1908, illustrated) rewritten by B. L. Robinson and M. L. Fernald gives this summary of the total number of different plants (species, varieties and named forms) found in the region east of the 96th meridian of longitude, south of the 48th parallel
of latitude from the Gulf of St. Lawrence to Lake Superior, north of the southern boundaries of Kansas, Missouri, Kentucky and Virginia.

<table>
<thead>
<tr>
<th>Division, Class etc.</th>
<th>Genera.</th>
<th>Species.</th>
<th>Varieties and Named Forms.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pteridophyta</td>
<td>31</td>
<td>115</td>
<td>61</td>
</tr>
<tr>
<td>Spermatophyta</td>
<td>790</td>
<td>3298</td>
<td>665 705</td>
</tr>
<tr>
<td>Gymnospermae</td>
<td>10</td>
<td>25</td>
<td>3 2</td>
</tr>
<tr>
<td>Angiospermae</td>
<td>780</td>
<td>3273</td>
<td>663 703</td>
</tr>
<tr>
<td>Monocotyledoneae</td>
<td>184</td>
<td>993</td>
<td>92 236</td>
</tr>
<tr>
<td>Dicotyledoneae</td>
<td>596</td>
<td>2280</td>
<td>571 467</td>
</tr>
<tr>
<td>Total</td>
<td>821</td>
<td>3413</td>
<td>666 766</td>
</tr>
</tbody>
</table>

1001 4079 806

Whole number of different plants 4885

For the same region, including the British possessions from Newfoundland to the parallel of the southern boundary of Virginia and from the Atlantic Ocean westward to the 102d meridian, Britton in his Illustrated Flora (1898) presents a summary which is found in the following table:

<table>
<thead>
<tr>
<th></th>
<th>Genera.</th>
<th>Species.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pteridophyta</td>
<td>30</td>
<td>115</td>
</tr>
<tr>
<td>Spermatophyta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gymnospermae</td>
<td>10</td>
<td>27</td>
</tr>
<tr>
<td>Angiospermae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monocotyledoneae</td>
<td>217</td>
<td>1058</td>
</tr>
<tr>
<td>Dicotyledoneae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choripetalae</td>
<td>468</td>
<td>1601</td>
</tr>
<tr>
<td>Gymopetalae</td>
<td>378</td>
<td>1361</td>
</tr>
<tr>
<td>Total</td>
<td>1103</td>
<td>4162</td>
</tr>
</tbody>
</table>

In the Flora of the Southeastern United States by John K. Small (1903), including a systematic description of the plants growing naturally in North Carolina, South Carolina, Georgia, Florida, Tennessee, Alabama, Mississippi, Arkansas, Louisiana, Indian Territory, Oklahoma and Texas east of the 100th meridian, we have described 1494 genera and 6364 species of plants. John Macoun in his Catalogue of Canadian Plants enumerates 3209 species of flowering plants including the gymnosperms and pteridophytes and approximately 933 species of true mosses (Musci frondosi).

Axel Rydberg gives a summary of Rocky Mountain species of plants known in 1900 in his Catalogue of the Flora of Montana and the Yellowstone National Park. It appears that there are 659 species of plants strictly endemic to the Rocky Mountains found in the region included in the

1) Book first issued September 22, 1908.
above mentioned catalogue with a total of 1976 species, 163 new to science. That Coulter's Manual of the Rocky Mountain Region (1885) does not include more than a fair representation of the plants of that floral region is indicated by the fact that Rydberg describes in his monograph 776 species not mentioned in Coulter's Manual.

We have no detailed statistics of the species comprising the Pacific coast flora, but a count of those described in Jepson's Flora of Western Middle California gives 1463 species as the total number found west of the Sacramento and San Joaquin rivers, south of the counties of Mendocino, Lake and Colusa and north of the Pajaro River and Pacheco Pass. A Flora of Northwest America comprises descriptions of 3052 species found growing without cultivation north of California, west of Utah and south of British Columbia.

The total number of flowering plants in Mexico and Central America according to Hemsley in Biologia Centrali-Americana published some years ago is 11,626, of which total 8193 species are endemic, 2930 grow in north Mexico, 5848 in south Mexico, and 1337 species known for Guatemala. Mexico, Guatemala and Honduras have 6693 endemic species. Nicaragua has 843 species accredited to her, Costa Rica 1086 and Panama 1436, while the endemic plants for Nicaragua, Costa Rica and Panama represent 1076 species. The number of species for Mexico and the other states has been greatly augmented by the discoveries of C. C. Palmer, C. G. Pringle, John Donnell Smith, J. N. Rose and other botanists, so that the numbers given above must be considerably increased to accurately depict the statistics of the flora.

Grisebach in his Flora of the British West Indian Island (1864) by a count of Professor Krug gives the following number of species for the several islands named Bermudas 17, Bahamas 19, Turk's Island 21, Jamaica 2301, Cuba 1051, Haiti 324, Puerto Rico 92, while the total number of species for the Windward, as well, as the Leeward islands and Trinidad given in the work is 3143 spermatophytes and 366 pteridophytes. This represents the botanic knowledge of the West Indies in Grisebach's day. Our information concerning the flora of these islands has been augmented vastly and the lists of species for the different islands, while still far from complete, are of considerable length. The following enumeration categorically represents the available statistics for the Greater Antilles, and the Bahamas.

Cuba.

According to Grisebach 1) the flora of Cuba consists of

<table>
<thead>
<tr>
<th>Dicotyledoneae</th>
<th>2350</th>
<th>endemic</th>
<th>781</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monocotyledoneae</td>
<td>643</td>
<td></td>
<td>148</td>
</tr>
<tr>
<td>Vascular Cryptogams</td>
<td>279</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>3272</td>
<td></td>
<td>939</td>
</tr>
</tbody>
</table>

1) Grisebach: Catalogus Plantarum Cubensium 1866.
A later enumeration is as follows¹:

<table>
<thead>
<tr>
<th>Species</th>
<th>Indigenous</th>
<th>Naturalized</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thallophyta...</td>
<td>239</td>
<td>15</td>
<td>254</td>
</tr>
<tr>
<td>Bryophyta...</td>
<td>59</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>Pteridophyta...</td>
<td>260</td>
<td>3</td>
<td>263</td>
</tr>
<tr>
<td>Gymnospermae...</td>
<td>13</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Monocotyledoneae...</td>
<td>812</td>
<td>6</td>
<td>818</td>
</tr>
<tr>
<td>Dicotyledoneae...</td>
<td>2266</td>
<td>72</td>
<td>2338</td>
</tr>
<tr>
<td>Total</td>
<td>3649</td>
<td>98</td>
<td>3747</td>
</tr>
</tbody>
</table>

Jamaica, Santo Domingo, Puerto Rico and St. Croix.

According to the Provisional List of the Indigenous and Naturalized Plants of Jamaica by WILLIAM FAWCETT (1893) there are 2130 species of flowering plants in Jamaica and according to JENMAN approximately 450 species of ferns and fern allies. We have no recent statistic data as to the floras of these two islands, but in URBAN’s Flora Portoricensis, which is being issued from Berlin, the number of pteridophytes and monocotyledons is 684 species. Our knowledge of the flora of Santo Domingo is yet too scanty to permit of even an approximate estimate, but from what botanic exploration of that island has already yielded the number of plants that will probably be revealed will far exceed that of any one of the other West Indian islands. The number of species growing in the island of St. Croix is 1029 according to MILLSPAUGH², who has made (1902) the latest study of the flora.

Bahamas.

According to the exploration of ALICE R. NORTHROP (1902) the total number of plants found on New Providence and Andros islands, exclusive of cultivated and escaped plants, is 453 of which 176 species are reported from other islands of the group. HITCHCOCK on the other hand in his account of the flora of the group, published in the report of the Missouri Botanical Garden for 1893, gives as the total for the Bahamas 380 species. — COKER in his report to the Geographical Society of Baltimore (Vegetation of the Bahamas Islands 1905: 194) enumerates 795 Bahaman plants, comprising those reported by himself, Millspaugh, Hitchcock, Northrop, Grisebach, Urban and Herrick, together with those in the unpublished lists of Curtiss, Britton and Millspaugh.

¹ MANUEL GOMEZ DE LA MAZA JIMÉNEZ: Flora de Cuba. Habana 1887.
Part III.

Chapter I. Cretaceous and Tertiary Floras.

Beginning of the actual Flora. The history of the flora of North America, as it concerns this book, begins with the Cretaceous period when the land and water stood in a vastly different relationship than they do at present. That the subsequent shifting of the continental areas with respect to the oceans had great influence on the evolution of plant form and the distribution of species cannot be gainsaid. It is beyond the province of this work to deal with the speculations upon this subject, but it will suffice to refer to such facts as bear upon the subsequent distribution of plant life in North America.

The dicotyledonous angiosperms, which at present form the predominant vegetation of North America, occur in the beginning of the upper Cretaceous, or at the close of the lower Cretaceous. The reign of the cyads and pines holds throughout the lower Cretaceous. If we examine a geologic map of the North American continent, we find that the northern and central part of the continent was cut off from South America by a sea, which covered Mexico and connected the Atlantic and Pacific oceans (see Fig. 1). The coniferous vegetation was, as paleontologic evidence shows, of the same general type all over the continent. In the upper Cretaceous more of Mexico was submerged and an arm of the American Mediterranean extending across the continent northward, covered the present states of Texas, New Mexico, Colorado, Kansas, Wyoming, Montana, etc. to the Arctic Ocean. It was then, the author believes, and not with the oncoming of the glacial period as TRANSEAU claims, that the beginning of the assortment of the coniferous vegetation into the eastern and western types took place (see Fig. 2, p. 172). The upper Cretaceous period was sufficiently long to permit of the adjustment of the old types to the new environmental conditions and the evolution of new forms, for we have a great and sudden inswarming of the higher plants of modern types at the close of the lower
Cretaceous. Saporta \(^1\) is struck by this phenomenon of the sudden appearance of so many forms, and some of them the most highly differentiated of dicotyledonous plants. The early stages of their evolution may he thinks have been obscure, and as yet unobserved, or they may have taken place in some

Fig. 1. Map illustrating position and extent of Land during the lower Cretaceous Period, as well as the Distribution of Land Plants.

\(\text{Fig. 1. Map illustrating position and extent of Land during the lower Cretaceous Period, as well as the Distribution of Land Plants.}\)

\(1\) Saporta, Monde des Plantes p. 197.
Part III. Chapter i.

separate region, or mother country, as yet undiscovered, or they may have been produced by a rapid and unusual multiplication of flower-haunting insects. None of these propositions of Saporta satisfactorily explain the facts. The

Fig. 2. Map illustrating position and extent of Land during the Cretaceous Period, as well as the Distribution of Land Plants.

Eastern Dicotyledonous Vegetation. Western Types of Vegetation. Tropic Types of Vegetation. Land Bridge, according to Ortmann, connecting northern South America, West Indies and Mexico with Tropic Vegetation. Very late Cretaceous and early Tertiary Submergence with Formation of Caribbean Sea.
lower Cretaceous period was one of rapid physiographic change. **Alfred Russell Wallace**\(^1\) follows Ball's hint as to the cause of the late appearance of the exogens. The suddenness of their appearance, he notes must be only apparent, being "due to unknown conditions which have prevented their preservation, or their discovery in earlier formations"\(^2\). The erosion of material and its transport supposes rapidly moving water in which the stone and soil particles are being ground against each other and rounded off by constant attrition. Suppose a luxuriant vegetation of monocotyledons and dicotyledons to be in process of evolution in such a region, what would be the influence of the physical conditions of a region undergoing base-leveling upon the preservation of plant remains? The preservation of plant remains would be very precarious. The soil of the hillsides might have been either too dry, the flow of the streams too rapid, the grinding together of the rocks and gravel too great to permit of the fossilization of the vegetal remains, which require sedimentation of the material transported.

Naturally this sedimentation did not take place in regions of rapid base-leveling, or in a region where lakes were and are absent, and we must, therefore, appeal to these facts in order to explain the absence of fossil remains from large districts of the earth's surface. According to **Darwin**\(^3\), it is the "imperfection of the geological record", which precludes the possibility of deciding definitely, as to the exact past vegetal covering of any particular geographic district.

Evolutionary Principle. From the paleontologic evidence, it seems probable that a rapid and extensive development of new plant forms took place during the Cretaceous period. The theories of **De Vries** on the origin of species enable us to suggest the reasons for this evolution of new forms. **De Vries** has recourse to a periodicity of variation. Mutability occurs only at certain periods, and a species might continue existence indefinitely without giving rise to new forms. If this periodicity of mutation is recognized as an evolutionary principle, we have a reasonable explanation for the sudden appearance of so many new forms during the Cretaceous period for during this stage of the development of the vegetable kingdom, through causes yet unknown, the progenitors of the existing phanerogams were in a high state of mutability giving rise to new elementary species. **De Vries** emphasizes this as the method of the origin of species, for in his words: new elementary species may appear suddenly without transition, or intermediate forms between them and their immediate ancestors; and therefore the new species were constant from the moment of their origin\(^4\).

3) Darwin, Origin of Species, heading Chapter X.
4) MacDougal: The Origin of Species by Mutation. Torreya Vol. 2, May, June, July 1902. — This has not been the only method of the origin of new species, which may have arisen by hybridization, by small increments of variation, by isolation and by adaptation to environment, or acclimatization. (Harsheger.)
Evolution of the forests. The great feature of the Cretaceous period was its dicotyledonous forests (see Fig. 2) and an enumeration of the genera is sufficient to show the richness of the flora at this time. As the remains are largely leaves and fruits, trees and shrubs predominate in the lists given by phytopaleontologists, but the presence of arborescent species and ferns presupposes the presence of numerous herbaceous plants which owing to their herbaceous, or succulent character failed of preservation.

But the Miocene period is of greatest interest to the phytogeographer. Much of our knowledge has been obtained through the researches of Göppert, Heer, Lesquereaux, Unger, Ettingshausen, Starkey Gardner, Ward, Gray and Knowlton. We know that during the close of the Cretaceous, the Eocene and Miocene periods a forest of great denseness existed in northern North America, extending far north into the arctic regions. This flora consisted of a great variety of trees and shrubs found in North America today, and in addition of many related genera and species which are at present extremely local in distribution, or have become extinct. Many of the descendants of this flora exist, as will be shown later in this chapter, in widely separated districts, such as Japan, China, eastern America, Pacific America and Europe. Heer in 1874\(^1\) called attention to the fact that out of the 353 plants known from the Miocene flora of the arctic region the following extended from Greenland to the Mackenzie River: Taxodium distichum, Glyptostrobus Unger, Sequoia Langsdorfii, Populus arctica, Salix Raecana, Corylus Macquarii. Platanus aceroides, Hedera Macclurii existed in Alaska and on the island of Sachalin, off the north coast of Japan, while Alnus Kefersteinii, Betula prsica, Corylus insignis, Carpinus grandis, Castanea Ungerii and Juglans acuminata grew in Spitzbergen, Greenland and Iceland\(^2\).

The relict Miocene flora. There are Tertiary genera of plants not found in Europe today which are prominent elements of the North American flora and which remain as relicts of that Miocene forest flora which spread across the northern hemisphere into Europe and Asia\(^3\). Such genera, as Liriodendron, Magnolia, Vitis, Liquidambar, Sassafras, Aralia and Nyssa, exemplify the fact which Gray and Lesquereux emphasized that the present flora of northeastern America shows the strongest relationship to the Miocene flora of Greenland and North America including the territory west of the Mississippi. Many North American trees at present existing can be positively identified with Tertiary species. Such a similarity exists between the following list due to Engler\(^4\):

<table>
<thead>
<tr>
<th>Miocene</th>
<th>Living</th>
</tr>
</thead>
<tbody>
<tr>
<td>Populus balsamoides Goepp.</td>
<td>Populus balsamifera L.</td>
</tr>
<tr>
<td>Platanus aceroides Goepp.</td>
<td>Platanus occidentalis L.</td>
</tr>
<tr>
<td>Juglans bilinica Unger</td>
<td>Juglans nigra L.</td>
</tr>
<tr>
<td>longifolia Heer</td>
<td>Vitis vulpina L.</td>
</tr>
<tr>
<td>Vitis teutonica A. Br.</td>
<td>Tilia americana L.</td>
</tr>
<tr>
<td>Tilia Malmreni Heer</td>
<td></td>
</tr>
<tr>
<td>Liquidambar europaeum A. Br.</td>
<td>Liquidambar styraciflua L.</td>
</tr>
<tr>
<td>protensum Unger</td>
<td>Magnolia grandiflora L.</td>
</tr>
<tr>
<td>Magnolia primigenia Unger</td>
<td>Liriodendron tulipifera L.</td>
</tr>
<tr>
<td>Liriodendron Procaccinii Unger</td>
<td>Sassafras officinalis Nees.</td>
</tr>
<tr>
<td>Sassafras Aesculapi Heer</td>
<td>Taxodium distichum L.</td>
</tr>
<tr>
<td>Taxodium distichum L.</td>
<td>Sequoia sempervirens Endl.</td>
</tr>
<tr>
<td>Sequoia Langsdorffi A. Br.</td>
<td></td>
</tr>
<tr>
<td>Sternbergii Goepp.</td>
<td>gigantea Lindl.</td>
</tr>
</tbody>
</table>

The climate of the Eocene and Miocene periods was milder than at present and over much of North America was somewhat sub-tropic in character. This warm zone extended well into the Arctic regions and a temperature comparable to that of southern New England, or New Jersey existed in far northern latitudes. It is not to be wondered at that we find preserved as relicts of a lower Miocene flora (upper eocene of Lesquereux) such sub-tropic genera, as *Carya, Cassia, Cinnamomum, Cissus, Ficus, Laurus, Morus, Persca, Personia,* and *Rhus* and that a large number of palm species of the genus *Sabal* occur on the upper Missouri. The abundant brown coal layers of Grinnell Land (comprising 81° 46' north latitude reveal a flora of birches, poplars, elms, lindens, hazelnuts, *Taxodium, Picea excelsa,* and pines similar in constitution to that which we find at the present in 50° to 60° north latitude, except that the northern limit of *Taxodium* at present is about 39° north latitude. To find a similar tropic flora today, we must visit 15° or 25° north latitude, where we enter a region in which grow many species of *Carya, Cassia, Ficus* and genera of the natural order Lauraceae. The species of *Sabal* and *Chamacrops* (*Rhapido-phyllum*) occur in South Carolina and Florida.

If it is not possible to arrange all of the fossil genera and species with reference to their past distribution, it is possible to positively assert, that in northwest America during the younger Tertiary, or Neogene (comprising the Miocene and Pliocene) occurred such living genera, as *Betula, Diospyros,*

1) Considerable doubt has been thrown on these fossil species of tulip tree because all of the fossil leaf forms have been duplicated from living trees. See in this connection. — *Holm: Notes on the leaves of Liriodendron.* Proceedings National Museum, XIII, pp. 15—35. 1890. plates IV—IX.

3) Heer, O.: Flora fossilis arctica V. 1878.
Fagus, Liquidambar, Liriodendron, Magnolia, Sassafras, which are known from the Dakota formations (Upper Cretaceous). The following Dakota species of fossil plants may be compared with those of the present flora —

Hedera ovalis Lesq.	Hedera helix L.
Laurus macrocarpa Lesq.	Persea carolinensis Catesb.
Liquidambar integrifolium.	Liquidambar styraciflua L.
Liriodendron sp.	Liriodendron tulipifera L.
Menispermites	Menispernum canadense L.
Platanus primaeva Lesq.	Platanus occidentalis L.
Rhus sp.	Rhus metopium L.
Sassafras sp.	Sassafras officinale L.

Some of the peculiarities of the past and present distribution of plants are made clear by a study of the coniferous vegetation of America. Many living conifers are extremely localized in their distribution, but before the glacial period many of them extended over a great portion of the northern hemisphere. Libocedrus decurrens a tree restricted to California with a representative in Chili and in the South Sea islands occurred during Miocene times in Spitzbergen with two species. — Sequoia gigantea which grows in the Sierra Nevada Mountains of California occurred in Greenland in a related species S. Sternbergii. Sequoia sempervirens of the north California coast is related to S. Langsdorfii, which occurred in the arctic regions and eastern Asia.

The majority of the very numerous North American conifers belong to separate sections of pines, as Pinaster, Taeda, Pseudo-Strobus, Cembra and to the genera Abies, Cupressus, Juniperus, Picea, Thuja and Tsuga. Of these, only a few are represented in Tertiary deposits, namely, remains of Abies and Thuja in Montana and Wyoming. More extensive remains of conifers occur in the north, for example in Banksland 74° 27' Abies Armstrongii and Picea Macclurii related to the modern Picea alba are found with a single species of Pinus; in Grinnell Land 81° 46' Taxodium, Feildenia, Pinus and Pinus excelsa, while in Spitzbergen and Iceland occur remains of such genera as Tsuga and Juniperus.

The following List of Cretaceous and Tertiary plants of North America up to 1898 taken from KNOWLTON¹ will give a more adequate impression of the somewhat uniform flora which extended from the arctic regions through America far to the south. The number of recognized species in each case is given and genera only are mentioned about which there can be no doubt as to their identity.

Abies	1	Acer	23	Acorus	3	Aesculus	1
Abietites	11	Aceriphyllum	1	Aerostichopteris	5	Alnus	15
Acacia	2	Acerates	1	Aerostichum	2	Amelanchier	4

Ampelopsis 1
Amygdalus 1
Andromeda 25
Anemia 4
Angiopteridium 11
Anisophyllum 2
Anomozanites 4
Anona 2
Aralia 38
Araucaria 4
Araucarioxylon 2
Araucarites 3
Ardisa 3
Aristolochia 4
Aristolochites 2
Artoecarpus 2
Arundo 2
Asimina 2
Aspidiophyllum 3
Aspleniopteris 13
Arthrotaxopsis 4
Baiera 4
Baieropsis 10
Banksia 2
Bankites 1
Bauhinia 2
Benzoin 3
Berberis 1
Berchemia 1
Betula 27
Betulites with vars. 21
Blechnum 1
Bombax 1
Brachypodium 7
Brasenia 2
Bromus 1
Bunzia 1
Cabomba 2
Caesalpinia 2
Carex 7
Carpinus 6
Casuarina 1
Catalpa 1
Ceanothus 4
Cebetha 1
Cedroxylon 1
Celastrophyllum 26

<table>
<thead>
<tr>
<th>Family</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celastrus</td>
<td>Celtis</td>
<td>4</td>
</tr>
<tr>
<td>Cephalotaxopsis</td>
<td>Cercis</td>
<td>4</td>
</tr>
<tr>
<td>Cercocarpus</td>
<td>Chamaecyparis</td>
<td>1</td>
</tr>
<tr>
<td>Chara</td>
<td>Cinnamomum</td>
<td>16</td>
</tr>
<tr>
<td>Cladophlebus</td>
<td>Cissites</td>
<td>20</td>
</tr>
<tr>
<td>Cissus</td>
<td>Colutea</td>
<td>2</td>
</tr>
<tr>
<td>Cocosbola</td>
<td>Cornus</td>
<td>16</td>
</tr>
<tr>
<td>Crataegus</td>
<td>Cunninghamites</td>
<td>2</td>
</tr>
<tr>
<td>Cupressinoxylon</td>
<td>Cupressoepmern</td>
<td>7</td>
</tr>
<tr>
<td>Cycadeoidea</td>
<td>Cycadites</td>
<td>2</td>
</tr>
<tr>
<td>Cyperaceites</td>
<td>Cyperus</td>
<td>4</td>
</tr>
<tr>
<td>Cytophyllum</td>
<td>Dryopterisis</td>
<td>21</td>
</tr>
<tr>
<td>Elaeagnus</td>
<td>Eucalyptophyll</td>
<td>1</td>
</tr>
<tr>
<td>Eucalyptus</td>
<td>Eucalyptopus</td>
<td>9</td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>Fagophyllum</td>
<td>1</td>
</tr>
<tr>
<td>Fagus</td>
<td>Ficus</td>
<td>99</td>
</tr>
<tr>
<td>Ficophyllum</td>
<td>Fraxinus</td>
<td>15</td>
</tr>
<tr>
<td>Ficus</td>
<td>Gaylussia</td>
<td>1</td>
</tr>
<tr>
<td>Gleditschia</td>
<td>Glicenena</td>
<td>6</td>
</tr>
<tr>
<td>Glyphostrobus</td>
<td>Grewia</td>
<td>5</td>
</tr>
<tr>
<td>Grewiopsis</td>
<td>Gymnogramma</td>
<td>3</td>
</tr>
<tr>
<td>Hamamelites</td>
<td>Hedera</td>
<td>15</td>
</tr>
<tr>
<td>Hicoria (=Carya)</td>
<td>Hymenaea</td>
<td>2</td>
</tr>
<tr>
<td>Hymenophyllum</td>
<td>Hypnum</td>
<td>7</td>
</tr>
<tr>
<td>Ilex</td>
<td>Illicium</td>
<td>1</td>
</tr>
<tr>
<td>Inga</td>
<td>Isoetes</td>
<td>1</td>
</tr>
<tr>
<td>Juglandiphylus</td>
<td>Juglanidades</td>
<td>7</td>
</tr>
<tr>
<td>Juglans</td>
<td>Juncl genus</td>
<td>35</td>
</tr>
<tr>
<td>Junipers</td>
<td>Juniperus</td>
<td>2</td>
</tr>
<tr>
<td>Kalmania</td>
<td>Laricopsis</td>
<td>3</td>
</tr>
<tr>
<td>Larix</td>
<td>Larix</td>
<td>2</td>
</tr>
<tr>
<td>Laurinophyllum</td>
<td>Laurus</td>
<td>33</td>
</tr>
<tr>
<td>Lemna</td>
<td>Lecnothoe</td>
<td>1</td>
</tr>
<tr>
<td>Liquidambar</td>
<td>Liriodendron</td>
<td>18</td>
</tr>
<tr>
<td>Liriodendrops</td>
<td>Liriodendrops</td>
<td>2</td>
</tr>
<tr>
<td>Liriophyllum</td>
<td>Lomata</td>
<td>9</td>
</tr>
<tr>
<td>Lycopodium</td>
<td>Lygodium</td>
<td>5</td>
</tr>
<tr>
<td>Magnolia</td>
<td>Marsilia</td>
<td>1</td>
</tr>
<tr>
<td>Menispermites</td>
<td>Menyanthes</td>
<td>1</td>
</tr>
<tr>
<td>Microzamia</td>
<td>Morus</td>
<td>2</td>
</tr>
<tr>
<td>Myrica</td>
<td>Myrica</td>
<td>53</td>
</tr>
<tr>
<td>Myrsine</td>
<td>Myrsine</td>
<td>7</td>
</tr>
<tr>
<td>Myrtus</td>
<td>Negundoides</td>
<td>1</td>
</tr>
<tr>
<td>Negundo</td>
<td>Negundo</td>
<td>1</td>
</tr>
<tr>
<td>Nelumbium</td>
<td>Neuropteris</td>
<td>2</td>
</tr>
<tr>
<td>Nyssa</td>
<td>Olea</td>
<td>1</td>
</tr>
<tr>
<td>Ophioglossum</td>
<td>Olyporhiales</td>
<td>1</td>
</tr>
<tr>
<td>Oryzopsis</td>
<td>Osmunda</td>
<td>6</td>
</tr>
<tr>
<td>Ostrea</td>
<td>Oxycoecus</td>
<td>1</td>
</tr>
<tr>
<td>Palurus</td>
<td>Passiflora</td>
<td>1</td>
</tr>
<tr>
<td>Pecopteris</td>
<td>Persica</td>
<td>11</td>
</tr>
<tr>
<td>Phegopteris</td>
<td>Phragmites</td>
<td>6</td>
</tr>
<tr>
<td>Picea</td>
<td>Pirus</td>
<td>1</td>
</tr>
<tr>
<td>Pisona</td>
<td>Pistacia</td>
<td>1</td>
</tr>
<tr>
<td>Planera</td>
<td>Platanophyllum</td>
<td>1</td>
</tr>
<tr>
<td>Planus</td>
<td>Populites</td>
<td>8</td>
</tr>
<tr>
<td>Populoplyprum</td>
<td>Populus</td>
<td>84</td>
</tr>
<tr>
<td>Potamogoton</td>
<td>Potentilla</td>
<td>1</td>
</tr>
<tr>
<td>Prunus</td>
<td>Pteris</td>
<td>6</td>
</tr>
<tr>
<td>Pterocarya</td>
<td>Pyrus</td>
<td>1</td>
</tr>
<tr>
<td>Quercophyllum</td>
<td>Quercus</td>
<td>126</td>
</tr>
<tr>
<td>Rhamnites</td>
<td>Rhamnus</td>
<td>33</td>
</tr>
<tr>
<td>Rhus</td>
<td>Rosa</td>
<td>1</td>
</tr>
<tr>
<td>Sabal</td>
<td>Sabalites</td>
<td>3</td>
</tr>
<tr>
<td>Saliciphylus</td>
<td>Salix</td>
<td>45</td>
</tr>
<tr>
<td>Salvinia</td>
<td>Santalum</td>
<td>1</td>
</tr>
<tr>
<td>Sapindopsis</td>
<td>Sapindus</td>
<td>20</td>
</tr>
<tr>
<td>Sassafras</td>
<td>Seirus</td>
<td>2</td>
</tr>
<tr>
<td>Selaginella</td>
<td>Sequoia</td>
<td>44</td>
</tr>
<tr>
<td>Smilax</td>
<td>Sparragium</td>
<td>3</td>
</tr>
<tr>
<td>Sphenopteris</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Harshberger, Survey N.-America.
Endemisms and glacial Plants. The North American Tertiary flora composed of the species of the genera noticed above, as well, as of numerous herbaceous and arborescent species, that existed in the past, but have not been preserved, covered practically the entire land areas of the continent as it existed throughout the Cretaceous and Tertiary periods. The accompanying chart (see Fig. 3) will indicate that distribution, as determined theoretically from the relative position of the land and water areas, for it is clear, that the evolution of our present flora took place on dry land during and through the physiographic changes which were instrumental in the shaping of the continental land masses. As previously mentioned, the flora of the Eocene and the Miocene periods was fairly uniform in character from the Atlantic and Pacific oceans and from the American Mediterranean north and northwestward into the arctic regions and this flora was especially in the southern part of the Tertiary American continent of subtropic character. However, there appears to have been an indication, as early, as upper Cretaceous, of a separation of the eastern and western types of American vegetation, but this was not accentuated until the glacial period, because during Tertiary times, the western and the eastern parts of the continent were again united by a land connection.

We notice also a differentiation and isolation of certain Tertiary plants in the region of the southern Appalachian Mountains bringing about a peculiar relict endemism. This isolation probably began before the glacial period and was due to physiographic, rather than climatic causes. Oscillations of level, followed by erosion and base leveling, have been known to occur and to occupy vast periods of time, and we have then in the physiographic changes which have taken place in this mountain region an explanation of the peculiarities of the flora of the Southern Appalachians with its rich endemism. The presence of *Hudsonia montana* on the summit of Table Rock is thus explained, Table Rock is an undenuded remnant of a former peneplain, and it is likely that *Hudsonia montana* was once more extended in its distribution, but has been isolated by the erosion of the larger part of the plain on which it formerly grew 1). The distribution of such local plants as *Dicentra eximia*, *Shortia galacifolia*, *Lilium Grayi*, *Buckleya distichophylla*, *Neviusia alabamensis*, *Elliottia racemosa* may have also a somewhat similar explanation.

Endemisms and glacial Plants.

Fig. 3. Map illustrating position and extent of Land during lower Tertiary and Tertiary times, as well, as the Distribution of Plants.

[Map symbols and labels:
- **Arctic Flora**
- **Eastern Division of great Tertiary Forest**
- **Western Division of great Tertiary Forest**
- **Mexican Desert Types of Vegetation**
- **Tropical Types of Vegetation**
- **Interior Freshwater Lakes**
- **Direction of Miocene Gulf Stream**
- **Eocene Land Connection**: numbers I, II, III indicate order of final separation.
- **Miocene Florida-Bahama Connection**
- **Late Miocene Land Bridge**]
The action of the several uplifts and depressions of the earth’s surface was most profound upon the Tertiary forest, the history of which has been traced. With every submergence, the forest in the submerged area was destroyed, or if existing on higher ground was subjected to such extensive changes of level, as to highly modify its character and the distribution of the component species. Many species were crowded together by the change of level and the wearing away of the strata to which they had become adapted, for “if we suppose the earlier Mesozoic uplands to be the seat of the existing dicotyledons, then by the lowering of the surface by gradual consumption of the interstream areas, these forms must have been brought into conflict with the flora of the low-lands and thereby forced into a contest for supremacy”). Xerophytes of the hillsides and rock exposures are replaced by mesophytes, which thrive in rich alluvial soils; mesophytes by the wearing away of the soil and the formation of cliffs by xerophytes, such as exist on rocky outcrops; hydrophytes replace mesophytes, when an area becomes too wet for the tenancy of ordinary plants.

An arctic flora, consisting of glacial plants, must have existed north of the great Tertiary forest flora, for, we have the introduction of this element as a prominent one at the beginning of the glacial period, when the ice sheet moved south over the North American continent. This arctic flora must have been exceedingly circumscribed in the extreme north of the western hemisphere, while there is a probability, that it extended somewhat more to the southward in the eastern hemisphere. If we compare the number of Tertiary arctic plants and those of today, which although widely distributed in far distant lands, yet are undoubtedly of arctic derivation, we will according to theoretic reasons find a wide discrepancy in favor of the arctic plants of the present day floras. The ancient arctic flora was limited to the number of plants which had adapted themselves to the conditions of the polar lands in Tertiary times. The number of species was not so great, because the area to which they were confined was small and homogeneous and an excessive differentiation of new types could not take place. What the constitution of the original arctic flora was it is impossible to state. Engler believes that Salix reticulata, S. polaris, S. herbacea, Cassiope tetragona, C. lycopodioides, C. hypnoides, Diapensia lapponica, Menyanthes trifoliata, Potentilla palustris, Scheuchzeria palustris, Eriophorum polystachyon, Drosera rotundifolia), Vaccinium Oxyccoccus. Chiogenes hispidula, Andromeda polifolia, Cassandra, Cyperaceae and many others plants of the same species at present found in widely separated localities in America, Europe and Asia represent elements of such an ancient flora. It also implies that the great northern land masses must have been connected for a long time during the Tertiary period, so that migration of

plants in the circumpolar regions was by no means difficult. It is probable that in Scandinavia, Iceland, Greenland and North America many of the old glacial plants survived in the far north during the glacial period and that, therefore, the arctic region still contains endemic forms which have always been peculiar to it, such as, *Dupontia Fischeri* and *Pleuropogon Sabini*. The herd of glacial plants moved south from the far north into each one of the continental masses, America, Europe and Asia, where they were subjected to vicissitudes of climate to exposure to greater amounts of sunlight, where the physiographic and edaphic conditions were of great variety consisting of mountains, plains, valleys, sand hills, rock exposures, mud flats, bogs, moors and tundra. The outcome of such exposure to widely diverse conditions brought about a great differentiation of form and new species arose by mutation). Space will not permit a differential exposition of the influences brought to bear upon the glacial flora along the southern edge of the great ice sheet. Where the vicissitudes were greatest and the edaphic and physiographic conditions nearly uniform, we find comparatively little differentiation of new types. The sparseness of the flora of the eastern United States, except Mount Washington and one or two other localities, in glacial plants is thus accounted for. The effect of the glaciation on the eastern United States was much more severe than in the western, because the mountains were lower and practically with the exception of Mount Washington and perhaps Mount Katahdin covered with the continental ice cap. The absence of true glacial plants on any of Alleghany mountain tops, or ranges, is accounted for by the fact that these mountains were not sufficiently high to support any local valley glaciers and because, as we will see in a short time in what follows, they were covered by dense vegetation which represented a relict of the great Miocene flora which previously covered the continent. — In the Rocky Mountains and on the Sierra Nevada Mountains of the western United States, the climatic conditions were such during the period of extreme glaciation as to encourage the differentiation of species by mutation, for the upper valleys of these ranges supported local glaciers and their summits were sufficiently high and the exposure to light and the edaphic conditions so diverse, as to supplement to an important extent the action of the climatic surroundings. We find in the Rocky Mountains, as we shall enumerate later, a comparatively rich glacier flora which persists today in many ranges, such as the Selkirks, and on such peaks as mounts Rainier, Shasta, Baker and Hood. With the retreat of the great continental ice sheet, the original arctic flora fled in part back to the arctic regions augmented by the new forms, which had been evolved during the glacial period on the mountains and along the southern limits of the ice sheet. As we will see shortly, many plants remained in the north on the nunataks

and still others remained on the mountain summits not covered by the great ice sheet and migrated from these northward into the arctic regions again, or went south along the Rocky Mountains to form an element of the high mountain flora. The consequence of this shifting and migration was to produce at the present an arctic flora much richer in types, which were moulded by the changes into more plastic and world conquering forms.

We must believe that in the southwestern projection of the continent beginning even with the upper Cretaceous there was a flora practically distinct from the rest of the continent, because it was during this geologic period and the lower Tertiary that Mexico was under process of formation and these changes must have profoundly influenced the vegetation and its distribution. Such types as the various genera and species of the Cactaceae, Yuccae, and others which inhabit the Great Basin and arid southwest at the present day undoubtedly had their origin in the Mexican region and later during late Tertiary and post glacial times migrated northward into the present territory of the United States.

Chapter II. History and Development of North American Flora during the Glacial Periods.

1. The Extension of the old Glaciers.

The history of the present flora of North America begins with Glacial period, when by a change of level in the North American continent, by an increase of precipitation and decrease of temperature, a great continental ice sheet covered the land mass at the north. The southern limit of the great glaciers is indicated by a vast deposit of morainic material which stretches across North America from the Atlantic to the Pacific oceans reaching in one of its lobes the Ohio River at the present Cincinnati. Three great centers of glaciation are recognized by geologists and glaciologists, viz., the Labrador center of the northeast, the Keewatin center west of the present Hudson Bay and the Cordilleran center along the Pacific Ocean. These were elevated above their present level, and from them continental glaciers descended southward across the continent, sending forward several well marked lobes, such as the Erie Glacier, the Saginaw Glacier, the Traverse Glacier, the Michigan Glacier, the Green Bay Glacier, the Chippewa Glacier, the Superior Glacier and Minnesota Glacier with driftless areas sometimes between these lobes 1). The maximum period of glaciation with one, or two interglacial epochs lasted sufficiently long to profoundly modify the Tertiary flora and to introduce new factors into the distribution of plants.

With the coming of the cold, which closed the Tertiary and inaugurated the Glacial period, the consequent accumulation of ice on the northern continental areas destroyed the ancient plant formations and associations. The forests were broken down by the ice storms of winter and their remains were ground to pieces by the moving glaciers. The semitropic species were killed by the increasing cold and such genera as *Ficus*, *Cinnamomum*, *Eucalyptus*, *Laurus*, *Artocarpus*, *Myrtus*, *Piper*, were exterminated, and extensive swaths were cut into the Tertiary forest by the great ice sheet, and only those species survived in their old haunts south of the glaciers which were adapted, as species of *Liriodendron*, *Quercus*, *Fraxinus*, *Tsuga* and *Abies*, etc., to grow under the influence of the increasing cold. The ground they had covered south of and along the great terminal moraine afforded new areas for the occupancy of two classes of plants, arctic plants and glacial bog plants. By the reversal of the drainage lines and consequent destruction of low ground vegetation, new habitats suited to these plants arose in advance of the ice invasion, spreading away from the centers of ice accumulation. Where this migration moved to the west, the plants were later destroyed, but their southward extension brought them into areas which were not within reach of the subsequent ice invasion. But the fact, says Transeau 1), that the plants have survived the ice advances proves that they were easily able to establish themselves in new areas, as rapidly as the climate changed. Not more than five such geographic migrations of more or less latitude, corresponding with the five glacial extensions must have occurred. For during the intervals, when, as shown by the animal and plant remains found in interglacial deposits, the temperature was nearly as high, as at the present time.

The following tentative classification is proposed by Chamberlain 2) for the drift deposits of the Mississippi Valley, which probably represent the several stages of advance and recession of the great ice sheet during the Pleistocene.

Glacial or Pleistocene Series.

(see Fig. 4 at the head of Chapter III.)

1. Albertan drift sheet.
2. Interglacial deposits (Aftonian).
4. Interglacial deposits (Buchanan).
5. Illinois till-sheet.
6. Interglacial deposits.
8. Interglacial deposits (Toronto) 3).
9. Wisconsin till-sheets (earlier and later).

The Albertan stage is displayed in the Canadian province of Alberta, where the first formation of it was due to the extension of the glaciers eastward from the Rocky Mountains. Farther east, the till-sheet passes into the

2) Scott, W. B.: An Introduction to Geology, 1897: 415.
Saskatchewan gravels laid down by the waters derived from the ice-front. The lowest drift deposits of the Mississippi Valley are provisionally regarded as equivalents of the Albertan drift. A great retreat of the ice, if not its entire disappearance brought about interglacial conditions at least in the Mississippi Valley (Aftonian stage). The land area exposed by the retiring ice was rapidly reclothed with vegetation which in many places in Iowa, Minnesota, etc., formed accumulations of peat, sometimes to the depth of 25 feet. The Kansas stage represents the greatest extension southwestward of the ice-sheet, when the glacier descended again from the north nearly to the mouth of the Ohio River and spread across Iowa and Missouri far into Kansas. Eastward, the ice-sheet extended across the Mississippi River into Illinois. Again came a time of retreat, when Kansan till was eroded, soil was formed and peat deposited upon it, derived from vegetation which a second time had migrated into the barren area (Buchanan stage). A renewed extension of the ice laid down the Illinois till-sheet. A fourth recrudescence of the glacier (Iowan stage) occasioned the deposit of another till-sheet of an extent not yet determined, which is best displayed in northeastern Iowa. This stage was followed by interglacial deposits which are perhaps contemporaneous with those which are so well shown near Toronto along the valley of the Don and at Scarborough Heights and elsewhere in Canada and are a possible equivalent of Geikie's Neudeckian of the old world. The beds form a succession of fine shales and sandstones, that lie between two sheets of glacial drift and contain fossil plants and animals forming a Pleistocene fossil flora and fauna ¹).

2. The Pleistocene Flora.

With the exception of Acer pleistocenium, it is a noteworthy fact that all the plants of the Pleistocene flora were such as are now represented in the same localities, or, in the case of the Don Valley, by plants which find their most northern distribution at or near that region, and the somewhat unequal distribution thus indicated at once suggests definite climatic changes during Pleistocene time, as represented by the northern and southern migration of particular types of plants. The definite and abundant occurrence of Maclura aurantiaca (= Toxylon pomiferum), Juniperus virginiana, Quercus obtusiloba, Q. oblongifolia, Asimina triloba, Chamaecyparis sphaeroidea (= Cupressus thyoides) and Fraxinus quadrangulata points with out question to the prevalence of a much warmer climate than now prevails, while on the other hand, the equally abundant occurrence of the boreal types at Scarborough points to the existence of a colder climate at the time these deposits were laid down. It is, therefore, clear that in the region of Toronto during Pleistocene times

there were at least two distinct periods, characterised, on the one hand, by a climate equivalent to that of the middle United States at the present day, and, on the other hand, a climate equivalent to that of Quebec and Labrador. On the other hand, the flora of Green’s Creek and that of Montreal is practically identical with that now existing in the same localities. It thus represents a climate colder than that of the Don period, but somewhat warmer than that of the Scarborough period, but present evidence does not enable us to ascertain, if these deposits were laid down before or after the Scarborough deposits. The following summary given by Penhallow (1900) will probably assist in conveying a clear idea of the distinctive differences in the vegetation of these three periods.

<table>
<thead>
<tr>
<th>Pleistocene Flora</th>
<th>Don Period</th>
<th>Scarborough Period</th>
<th>Green’s Creek Period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Warm Climate</td>
<td>Cold Climate</td>
<td>Mild Climate</td>
</tr>
<tr>
<td>Abies balsamea L.</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Acer pleistocenium Dawson et Penhallow</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Acer saccharinum Wangenh. (= A. saccharum Marsh.)</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Acer spicatum Lam.</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Algae sp.</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Alnus sp.</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Asimina triloba L.</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Betula lutea Michx. f.</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Brasenia peltata Pursh. (= B. purpurea Michx.)</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Bromus ciliatus L.</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Carex aquatilis Wahl.</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Carex magellanica Lam.</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Carex reticulata Mill.</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Carya alba Nutt. (= Hicoria ovata Mill.)</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chamaecyparis sphaeroidea Spach (= C. thyoides L.)</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Crataegus punctata Jacq.</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cyperaceae</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Drosera rotundifolia L.</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Elodea canadensis Michx. (= Philotria canadensis Michx.)</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Encyonema prostratum</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Equisetum limosum L.</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>scirpoides Michx.</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>sylvaticum L.</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

1) In this and all subsequent lists, the author cited is the one who first applied the specific, or varietal name to the plant, whether it was placed at first in the right, or the wrong genus.
Pleistocene Flora.

<table>
<thead>
<tr>
<th>Species</th>
<th>Don Period.</th>
<th>Warm Climate</th>
<th>Scarborough Period.</th>
<th>Cold Climate</th>
<th>Green's Creek Period.</th>
<th>Mild Climate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equisetum sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eriocaulon sp.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fontinalis sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fucus digitatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraxinus quadrangulata Michx.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>» sambucifolia Lam. (= F. nigra Marsh.)</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>» americana L.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Festuca ovina L.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaylussacia resinosa Ait.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gramineae sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypnum commutatum Hedw.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>» fluitans L.</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>» revolvens Swartz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>» sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juniperus virginiana L.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Larix americana Michx. (= L. laricina Du Roi)</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Lycopodium sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maclura aurantiaca Nutt. (= Toxylon pomiferum Raf.)</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Oryzopsis asperifolia Michx.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxycoccus palustris Pers. (= Vaccinium oxycoccus L.)</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Picea alba Ait. (= P. canadensis Mill.)</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Picea nigra Ait. (= P. mariana Mill.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picea sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinus strobus L.</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Platanus occidentalis L.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Populus grandidentata Michx.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Populus balsamifera L.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potamogeton pectinatus L.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>» perfoliatus L.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>» pusillus L.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>» rutilus Wolfg.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>» natans L.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potentilla anserina L. (= Argentina anserina L.)</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Prunus sp.</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Quercus obtusiloba Michx. (= Q. minor Marsh.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>» rubra L.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>» tinctoria Bartram (= Q. velutina Lam.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>» oblongifolia Torr.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>
3. The Glacial Flora.

The Wisconsin stage, and last one, is the most conspicuous and best known of all, and its sheets of till and drift are far thicker than those of the other glacial stages. Especially conspicuous is the great terminal moraine, which has been traced across the continent.

The final retreat of the ice, of which in New England there is no clear evidence of more than one glacial stage, was by slow steps with many halts. In the central West are preserved many lines of moraine, with kettle-holes, kames and drumlins which mark successive pauses in the retreat. An interesting episode of later glacial times was the formation in Minnesota and Manitoba of a great body of fresh water, Lake Agassiz, which was 700 miles long from north to south. In the Great Basin, the Pleistocene was a time of far less arid climate than at present. In the eastern part of the Basin was established the great Lake Bonneville, which had an outlet north into Snake River.

If we consider these facts proved, then the only glaciation which could materially affect the distribution of our boreal societies is that of the last, or Wisconsin epoch. Through the work of Chamberlain, Leverett, Salisbury, Upham and others, the limits of this ice invasion have been definitely mapped. According to Chamberlain, the climatic conditions prevailing about the margin were intermediate between those of Greenland and Alaska at the

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Quercus macrocarpa Michx.</td>
<td>.</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>» acuminata Michx. (= Q. Muhlenbergii Engelm.)</td>
<td>.</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robinia pseudacacia L.</td>
<td>.</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salix sp.</td>
<td>.</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxus canadensis Marsh.</td>
<td>.</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thuja occidentalis L.</td>
<td>.</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tilia americana L.</td>
<td>.</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typha latifolia L.</td>
<td>.</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulmus americana L.</td>
<td>.</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>» racemosa Thomas</td>
<td>.</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaccinium uliginosum L.</td>
<td>.</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vallisneria spiralis L.</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zostera marina L.</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>.</td>
<td>38</td>
<td>14</td>
<td>26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
present time. In the former place the vegetation is sparse and of the tundra type, in the latter, the forest occurs on the stagnant ice margin, for the forest covering the greater part of the lowlands near the Malaspina Glacier at the base of Mt. St. Elias extends up over the moraine and thence over the surface of the glacier covered with morainic material for four or five miles. The vegetation, thus found on the glacier itself, consists principally of alders (*Alnus oregana*) growing to a height of 20 to 30 feet, but on the outer or older portion of the moraine, there are dense groves of spruces (*Picea stichensis*), mixed with cottonwood (*Populus balsamifera*) and an undergrowth of salmon-berry (*Rubus spectabilis*), devil's club *Fatsia (Echinopanax) horrida*, ferns and huckleberry bushes (*Vaccinium ovalifolium*). It would appear that the glaciers would not affect the tree distribution at any great distance from the ice front. Before considering this point in detail, let us describe the tundra and bog conditions of these times, because, such associations of species as one finds in the bogs and tundra of today occupied the strip of country between the edge of the ice sheet on the one hand and the northern edge of the forest vegetation on the other.

Since bog associations of plants may occupy under favorable conditions other habitats than undrained depressions, they probably existed on the borders of the heavily loaded streams, in ravines and moist situations generally along the ice front. It is to be noted, that practically all of the existing small lake areas of the northern states were covered by the ice during the maximum extension of the Wisconsin ice sheet. As there is no reason to believe that the drift sheets of the preceding epochs, which in many places extend beyond the Wisconsin terminal moraine, contained such small undrained depressions, it follows that the bog societies must have occupied the habitats.

Many glacial plants other than bog plants, such as *Silene acaulis*, *Dipensia lapponica*, *Oxyria digyna*, *Loiseleuria procumbens*, etc. occupied dry land situations on the moraines, on the exposed and worn rock boulders, or in the sand along the edge of the streams, that rushed out beneath the glacial ice. Many of these plants, however, survived in the glacial covered country, as is evidenced by the fact, that flowering plants of many species have been collected in the short arctic summer, as far north, as the land areas of North

3) See Fig. 1 of plate II: *Dipensia lapponica* on the top of the Adirondacks, Mt. Tahawus 1630 m. — Fig. 2 shows in *Cornus canadensis* a subglacial type occupying the uppermost forest region.
Diapensia lapponica L.
on summit of Mt. Tahawus, 5000 feet, Adirondack Mountains.
Photograph by Dr. Chas. H. Shaw.

Cornus canadensis L. (bunchberry)
growing in the Adirondack Mountain forests.
Photograph by Dr. Chas. H. Shaw.
America extend. Some of these plants grow on the moraines over the glacial ice itself others along the shore line within touch of the glacial ice. The nunataks, or tops of hills and mountains projecting above the Greenland ice sheet have their summer greenery and flowers. For example on Jensen’s nunataks, a cluster of rocky peaks rising 100 to 500 feet above the inland ice, at a distance of nearly 50 miles back from the sea, Kornerup, the geologist and botanist of Lieutenant Jensen’s party in 1878 collected 27 species of flowering plants. The ice surface there is 4,900 to 5,150 feet, or nearly one mile above the sea; and the nunatak summits vary in height from 5,200 to 5,650 feet. This very high and isolated flora comprised an abundance of Luzula hyperborea, Carex nardina, Trisetum subspicatum, Poa trichophylla, Oxyria digyna, Cerastium alpinum, Saxifraga oppositifolia, Campanula uniflora, Potentilla nivea, Ranunculus pygmaeus, Silene acaulis, Cassiope hypnoides, Armeria sibirica, and Papaver nudicaule. Dr. Rink found in Umanak Fjord near latitude 71° 40’ north at an elevation of 4,500 feet among numerous hillocks of ice and snow the following plants: Papaver nudicaule, Potentilla nivea, Saxifraga tricuspidata, S. oppositifolia, S. caespitosa, Arenaria verna, Silene acaulis, Draba hirta, Diarrhena americana and Carex nardina.

We can picture to ourselves the distribution of the glacial plants during the great ice age. In eastern North America during the maximum glaciation, all of the mountain tops of New England and Canada, New York and Pennsylvania were covered with glacial ice down to the great terminal moraine in northern New Jersey and Pennsylvania except the summit of Mounts Washington, Katahdin and perhaps the highest peaks of the Adirondacks. These peaks supported an assortment of arctic plants and many of these found today as relics on them, such as, Ledum latifolium (= L. groenlandicum), Rhododendron lapponicum, Diapensia lapponica, Salix uca-ursi, Nabalus nanus, Nabalus Bootii, Solidago alpestris (= S. virga-aurea), Sibbaldia procumbens (= Potentilla Sibbaldii), Silene acaulis, Arnica Chamissonis, Cassiope hypnoides, Brayaanthus taxifolius, Loiscleria procumbens, Oxyria digyna, Salix phyllicifolia, Salix herbacea, Phleum alpinum, Lycopodium selago, and others. The mountains of the west, the Rocky and Sierra Nevada systems rise in many peaks above an elevation of ten thousand feet. During the glacial period, south of the limit of the great ice sheet, they supported many large and important local valley glaciers which descended in many places nearly, or quite, to sea-level and the remnants of these vast ice fields are witness of the changes that have taken place in the glacial conditions of the Sierra from the time of the greatest extension of the snow and ice. A general exploration of this instructive region shows that to the north of California, through Oregon, and Washington, groups of active glaciers still exist on all the high volcanic cones of the Cascade Range, Mount Pitt, the Three Sisters, Mounts Jefferson, Hood, St. Helens, Adams, Rainier, Baker and others. But

the steeper slopes and many of the exposed rock faces then, as now, in the Rocky Mountains of the United States and Canada, the Selkirks and in the Sierras supported a rich and varied glacial flora which subject to the diverse environmental conditions entered a period of mutation with the evolution of many new forms. Many glacial plants also exterminated from Europe and the eastern United States where the conditions brought on by the increase of temperature, decrease of precipitation and increase of the dryness of the air were inimic to such alpine species, persisted under the more favorable and more diversified physical and climatic environment of the mountains masses of western and eastern America. The fact that nearly every requirement of a glacial plants is met in the physiographic constitution of the New England, eastern Canadian and cordilleran system of mountains together with the diverse character of the soils is an explanation of the richness of the alpine flora on the high mountains of the east and of the west.

On all mountain ranges which reached above snow line, there might be a periodic increase and decrease of snow, and when there were extensive areas of plateau at about the same level, the lowering of the snow-line might cause such an accumulation of snow as to produce great glaciers and ice fields. But along with such depression of the line of perpetual snow, there would be a corresponding depression of alpine and sub-alpine belts suitable for the growth of an arctic and temperate vegetation, and what is perhaps more important, the depression would necessarily produce a great extension of the areas of these belts on all high mountains, because, as we descend the average slopes become less abrupt, thus affording a number of new stations for such temperate plants as might first reach them. But just above and below the snow line is the area of most powerful disintegration and denudation, from the alternate action of frost and sun, of ice and water; and thus the more extended area would be subject to the constant occurrence of land-slips, berg-falls, and floods, with their accompanying accumulation of debris and of alluvial soil, affording innumerable stations in which solitary wind or bird borne seeds might germinate and establish themselves.

In fact, Fernald 1) has shown that the glacial till which was characteristic of the glacial front consisted of an extremely fine, mixed soil derived from rocks of very different kinds and it was probably the availability in these soils of the potassium, calcium and magnesium which made it possible for arctic-alpine plants, now confined to soils derived from rocks containing each of these elements specifically on all of our high mountains to grow side by side on the bogs, meadows and alluvial plains in front of the great continental ice sheet. Consequently the distribution of such plants, as Dryas Drummondii found on the Rocky Mountains and the Gaspé Peninsula, 2000 miles apart, and Festuca altaica, a common grass on Mt. Albert, also found along the Yukon River and the mountains of Asia is explained by this continuity of soil habitat

1) Soil Preferences of Alpine Plants Rhodora IX: 191.
during the glacial period but which was subsequently interrupted by later changes, confining the arctic-alpine species to those habitats, even if far removed from each other, which possess a soil derived from rocks of a similar chemic constitution.

4. The Flora of the Rocky Mountains and of the Sierra Nevada.

During that extensive glaciation of the northern hemisphere and local glaciations in the southern, these elevations and depressions of the snow-line on all mountain ranges would have been at a maximum. At the present time, the only unbroken chain of mountains and highlands, connecting the arctic and north temperate with the antarctic lands, is to be found in the American continent, the only break of importance being in the neighborhood of the Isthmus of Panama, where there is a distance of about 300 miles occupied by rugged forest clad hills, between the lofty peaks of Veragua and the northern extremity of the Andes in New Granada. We should accordingly expect that this great continuous mountain-chain has formed the most effective agent in aiding the southward migration of the arctic and north temperate vegetation, which occurred during the period, or after the period of maximum glaciation, when as before mentioned, suitable conditions were found on the high mountains for their spread. We do find in fact, not only that a large number of northern genera and many species are scattered along this route, but at end of the long journey, in southern Chili and Fuegia they are found in numbers sufficient to form an element in the flora of those countries.

The alpine regions of the Rocky Mountains support an important number of endemic forms of plants which are related to species of the arctic alpine flora and in part to species which occur in the plains below. So *Gentiana Newberryi* stands near *G. glauca* and *G. frigida*, which are found in the Rocky mountains and in Siberia. *Astragalus oroboides* (= *Phaca elegans*) shows close affinities with *Astragalus alpinus* (= *Phaca artragalina*), *Dryas Drummondii* to *Dryas octopetala*. The question naturally arises: have these endemic forms been evolved as new species out of arctic-alpine forms since their migration along the Rocky Mountains, or do they represent in part the relicts of a former arctic-alpine vegetation, the congeners of which have disappeared except on the mountain summits of the west? To satisfactorily answer these questions, the following table of the alpine dicotyledonous plants of the Rocky Mountains is given.

A horizontal line (—) before the name indicates that the plant occurs also in Asia, a line (—) after the name that the plant occurs in Greenland and eastern North America, while a vertical line (|) before the name indicates that the species is only present in the arctic regions of America, and with Eu., that it is present also in the European mountains, Scandinavia, Iceland. The southern limit of each species is given by citing the latitude beyond which it does not apparently extend.

The first list is based upon a manuscript list of plants submitted to Prof. O. Drude in a letter from Fr. Brendel, dated Peoria, Illinois, January 4, 1888; Engler, A., Entwickelungsgeschichte, pp. 150—151; Rydberg, P. A., Flora of Montana and Yellowstone Park, 1900;

The list is not intended to be complete. See for more complete details, as to the alpine species of the Rocky Mountains, the lists included in Part IV, Rocky Mountain Region. The second list, also not complete, is based on Watson's Botany of California; Coville, F. V., Botany of the Death Valley Expedition 1893; Merriam, C. Hart: Results of a biological Survey of Mount Shasta, California 1899 and Engler's Entwicklungs geschichte, pp. 152—154. For more complete details consult Part IV, California Region, Sierra Nevada District.

Eu. — Anemone narcissiflora L.» globea Nutt.

1 — Ranunculus Cymbalaria Pursh.

» adoneus A. Gray.

» ovalis Raf. (R. rhomboideus Goldie).

Eu. 1 » pygmaeus Wahlb.

1 » Eschscholtzii Schlecht. (R. nivalis R. Br.).

Aquilegia caerulea James.

Caltha leptosepala DC.

Delphinium pauciflorum Nutt. (D. Menziesii DC.).

Arabis canescens Nutt.

» furcata Wats.

Cardamine Leibergii Holz.

Vesicaria alpina Nutt. (Lesquerella alpina Nutt.).

1 Draba glacialis Adams 52°.

» oligosperma Hook.

» densifolia Nutt.

Eu. — hirta L.

» streptocarpa A. Gray.

» laeves DC. 52° (D. tomentosa Clairv.).

» crassifolia Graham 42°.

Eu. 1 » incana L.

» chrysanthha S. Wats.

» aurea Vahl.

Eu. 1 » nemoralis Ehrh. (D. nemos rosa L.).

1 Hutchinsia (Smelowskia) calycina Desv. 52°.

Parnassia parvisflora DC.

Eu. — Alsine (Arenaria) verna L. — 52°.

1 Arenaria (Alsinopsis) propinqua Richards (A. verna L. var. hirta Wats.).

1 » (Alsinopsis) Rossii R.Br. 54° (A. stricta Michx.).

» Fendleri A. Gray.

Eu. — Silene acaulis L. 40° —

Trifolium nanum Torr.

» dasiphylllum Torr. & Gray.

» Parryi A. Gray.

Oxytropis foliolosus Hook.

» multiceps Nutt.

Phaca (Atelophragma) elegans Hook.

(A. oroboides americana A. Gray).

Homalobus tenuifolius Nutt.

Eu. — Dryas octopetala L. — 41°.

» Drummondii Richards 52°.

— 1 Geum Russii T. & G. 42°.

Sieversia turbinata Rydb.

Eu. — Sibbaldia procumbens L. 42° —

Horkelia Gordonii Hook.

Potentilla multisecta Wats.

» decurrens Wats.

» pinnatisecta Wats.

» diversifolia Lehm. 52° (P. dissecta Pursh).

» nana Lehm. (P. emarginata Pursh).

Eu. 1 » nivea L. — 52°.

» brevifolia Nutt.

Eu. 1 Rubus chamaemorus L. — 52°.
Alpine regions of the Rocky Mountains.

<table>
<thead>
<tr>
<th>Rubus nivalis Dougl.</th>
<th>Solidago nana Nutt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eu. Epilobium alpinum L. —</td>
<td>Aplopappus (Tonestus) pygmaeus Torr. & Gray.</td>
</tr>
<tr>
<td>Ribes parvulum A. Gray.</td>
<td>caespitosus Nutt.</td>
</tr>
<tr>
<td>Eu. — Sedum Rhodiola DC.</td>
<td>Lyallii A. Gray.</td>
</tr>
<tr>
<td>rhodanthum A. Gray.</td>
<td>Actinella (Ryderbergia) grandiflora Torr. & Gray.</td>
</tr>
<tr>
<td>Eu. — Saxifraga oppositifolia L. — 52°.</td>
<td>Balsamorrhiza incana Nutt.</td>
</tr>
<tr>
<td>— flagellaris Willd. — 41°.</td>
<td>— sagittata Pursh.</td>
</tr>
<tr>
<td>— bronchialis L. —</td>
<td>Hookeri Nutt.</td>
</tr>
<tr>
<td>Eu. 1 aizoides L. —</td>
<td>Tanacetum (Sphaeromeria) capitatum Torr. & Gray.</td>
</tr>
<tr>
<td>— punctata L. 52°.</td>
<td>— Nuttallii Torr. & Gray.</td>
</tr>
<tr>
<td>Eu. 1 nivalis L. 41°. —</td>
<td>— spithamea Pursh.</td>
</tr>
<tr>
<td>Eu. 1 cernua L. —</td>
<td>Antennaria media Greene.</td>
</tr>
<tr>
<td>Eu. 1 rivularis L. —</td>
<td>— aprica Greene.</td>
</tr>
<tr>
<td>Lithophragma (Tellima) tenella Nutt.</td>
<td>— umbrinella Rydb.</td>
</tr>
<tr>
<td>Mitella pentandra Hook.</td>
<td>Senecio triangularis Hook.</td>
</tr>
<tr>
<td>— trifida Graham.</td>
<td>— Purshianus Nutt.</td>
</tr>
<tr>
<td>Eu. 1 Linnaea borealis Gronov. —</td>
<td>— amplectens A. Gray.</td>
</tr>
<tr>
<td>Eu. 1 — Valeriana capitata (Pall.) Lk. 56°.</td>
<td>— occidentalis Gray.</td>
</tr>
<tr>
<td>— Aster montanus R. Br. (A. sibiricus A. Gray. [cus L.]).</td>
<td>Tetradymia inermis Nutt.</td>
</tr>
<tr>
<td>Eu. — alpinus L. —</td>
<td>Arnica Parryi A. Gray.</td>
</tr>
<tr>
<td>andinus Nutt. 42°.</td>
<td>— longifolia D. C. Eat.</td>
</tr>
<tr>
<td>Oreastrum Haydeni Porter.</td>
<td>— Chamissonis Less.</td>
</tr>
<tr>
<td>1 Erigeron compositus Pursh.</td>
<td>— monocephala Rydb.</td>
</tr>
<tr>
<td>— melanocephalus A. Nels.</td>
<td>— fulgens Pursh.</td>
</tr>
<tr>
<td>— radicatus Hook.</td>
<td>Eu. — Saussurea alpina DC.</td>
</tr>
<tr>
<td>— leiomerasis A. Gray.</td>
<td>Hieracium gracile Hook.</td>
</tr>
<tr>
<td>— superbus Greene.</td>
<td>— Crepis nana Richard.</td>
</tr>
<tr>
<td>Eu. — uniflorus (Hook.) L. —</td>
<td>Macrorrhynchus troximoides Torr. & Gray (Troximon [Agoseris] aurantiacum Hook.).</td>
</tr>
<tr>
<td>— glabellus Nutt.</td>
<td>1 Campanula lasiocarpa Cham.</td>
</tr>
<tr>
<td>Eu. — alpinus L.</td>
<td>Eu. — uniflora L.</td>
</tr>
<tr>
<td>— Coulteri Porter.</td>
<td>1 Vaccinium caespitosum Michx.</td>
</tr>
<tr>
<td>— leucotrichus Rydb.</td>
<td></td>
</tr>
<tr>
<td>1 Diploappus alpinus Nutt. (Aster scopulorum A. Gray).</td>
<td></td>
</tr>
<tr>
<td>— glabellus Nutt. 42°.</td>
<td></td>
</tr>
</tbody>
</table>

Harshberger, Survey N.-America.
Eu. — Arctostaphylos alpina Spreng. —
1 Cassiope Mertensiana Bong.
Eu. — tetragona L.

1 Bryanthus (Phyllodoce) empetri-
formis Gray 42°.
2 (Phyllodoce) glanduliflorus Gray 49°.

Eu. — Rhododendron lapponicum L. —
Dodecatheon pauciflorum Durand.
Eu. — Primula farinosa L. —
2 mistassinica Michx. —
2 angustifolia Torr. —
Parryi Gray.

Douglasia nivalis Lindl. —
2 montana Gray.
Eu. — Androsace chamaejasme Host. —
2 filiformis Retz.

Gentiana (Anthopogon) barbellata
Engelm.
Eu. —
2 tenella A. Gray [Amarcella
monantha A. Nels.]. —
2 propinqua Richards.

1 arctophila Griseb.
Eu. — prostrata var. americana
Hook. (Chondrophylla
americana Engelm.).
—
2 glauca Pall.
Eu. — frigida Hke. (Gray.)
1 (Dasystephana) Roman-
zovii Ledb.

1 Gentiana (Dasystephana) Parryi
Engelm.
1 (Dasystephana) affinis
Griseb.

Eu. 1 — Pleurogyne rotata Grsb. — 39°.
Eu. — Sweertia perennis L. (P. fontana
A. Nels.).

Eritrichium aretioides DC.
Mertensia oblongifolia Hook.
1 paniculata Ait. var. nivalis
1 alpina Torr. [Wats.
1 Parryi Rydb.

Pentstemon Hallii Gray.
1 secundiflorus Benth.
1 humilis Nutt.
1 Harbourii Gray.

Chionophila Jamesii Bentham.
Synthyris (Besseya) alpina Gray.
1 plantaginea Bentham.

Veronica Cusickii Gray.
Eu. — alpina L. (V. Worms-
joldii R. & S.). —
Castilleia brevitilora Gray (C. bra-
chyantha Rydb.).
1 occidentalis Torr.
1 oreophila Greene.

1 Pedicularis (Elephantella) groen-
landica Retz. —
1 Parryi Gray.
1 scopulorum Gray.

Eu. — flamma L. —

This table shows that the endemic alpine plants are present in large
numbers on the Rocky Mountains and that they are related to genera which
occur at the foot of the mountains. Species which retreated and which existed
during the Tertiary period in North America are not present now. Such
plants as (to make a comparison with some European types of restricted dis-
tribution) Dioscorea pyrenaica and Randonia pyrenaica, which may have ori-
ginated in earlier periods and under suitable conditions persisted through the
glacial period are sparingly present in the mountain flora. To this category
also belongs in all probability Douglasia nivalis, Bryanthus empetriformis,
Bryanthus glanduliflorus and Chionophila Jamesii. It may be stated in sum-
mation, that the endemic alpine flora of these mountains was in all probability
first developed after the continental ice sheet had withdrawn itself.
For purposes of contrast, there is given a list of the alpine flora of the Sierra Nevada mountains. A comparison shows a becoming number of glacial plants with a greatly increased proportion of endemic species, than we find in the Rocky mountains. It is also noteworthy, that the alpine species of the Sierra Nevada mountains not only belong to genera which are represented by alpine species in the mountain system, but in addition genera occur in the Sierra alpine region not present in the Rocky mountains viz., Lupinus, Claytonia, Calandrinia and Spiraea. The signs affixed are the same as for the other table.

Ranunculus oxynotus Gray.
Aquilegia caerulea James.
— Aconitum Fischeri Rchb. (A. columbianum Nutt.).
Dielytra (Dicentra) uniflora Kellogg.
Draba Breweri Wats.
Arabis Lyallii Wats.
 » platysperma Gray.
 » Holbøllii Hornem.
Streptanthus orbiculatus Greene.
 » tortuosus Kellogg.
Erysimum asperum DC.
— Hutchinsia (Smelowskia) calycina Desv.
Viola blanda Willd.
 » purpurea Kellogg.
 » Beckwithii Torr. & Gray.
 » Sheltoni Torr.
— Stellaria longipes Goldie.
 » crispa C. & S.
Arenaria congesta Nutt.
 » capillaris Poir.
 » compacta Coville.
 » pungens Nutt.
Calandrinia pygmaea Gray.
 » nevadensis Gray.
Claytonia lanceolata Pursh.
Spraguea umbellata Torr.
Lewisia brachycarpa Engelm.
 (L. brachycalyx Engelm.).
Lupinus Andersoni Wats.
 » Covillei Greene.
 » albizrons Benth.
 » ornatus Dougl.
 Lupinus aridus Dougl. var. Lobbii Wats.
 » Breweri Gray.
 » Lyallii Gray.
Trifolium monanthum Gray.
Astragalus platytropis Gray.
 » Whitneyi Gray.
 » calycosus Torr.
 » Austinae Gray.
 » kentrophyta Gray var. elatus Wats.
Spiraea arbuscula Greene.
 » discolor Pursh. var. dumosa.
— Geum triflorum Pursh.
Potentilla dissecta Pursh.
 » Wheeleri Wats.
— gelida C. A. Meyer.
Eu. — fruticosa L.
Eu. — procumbens Sibth.
 » flabellifolia Hook.
Eu. — Sibbaldia procumbens L. (Potentilla Sibbaldi Hall.).
— Ivesia (Potentilla) Gordonii Torr. & Gray.
Pirus sambucifolia Cham.&Schlecht.
Amelanchier alnifolia Nutt.
Eu. — Saxifraga nivalis L. —
 » bryophora Gray.
— punctata L.
 » Tolmiei Torr. & Gray.
Mitella Breweri Gray.
 » pentandra Hook.
Heuchera rubescens Torr.
Ribes leptanthum Gray.

13*
Ribes oxyacanthoides L.
 - lacustre Pers. var. molle A. Gray.
 - viscosissimum Pursh.
Eu. — Sedum Rhodiola DC. (Rh. rosea L.)

Epilobium obscurum Gray.
Eu. — anagallidifolium Lam.
Eu. — alpinum L. —
Eu. — origanifolium Lam. —
 (E. alsinifolium Vil.).
 - clavatum Trelease.
Cymopterus cinerarius Gray.
 - nevadensis Gray.
 - terebinthinus T. & G.

Heracleum lanatum Michx.
Lonicera conjugialis Kellogg.
Aplopappus (Stenotus) acaulis Nutt.
 - suffruticosus Gray.
 - macronema Gray.
Bigelowia Bolanderi A. Gray.
Aster (Oreastrum) Andersoni A. Gray.
 - adscendens Lindl.
 - integrifolius Nutt.
 - salsuginosus Richards.
Erigeron armerifolius Turcz.
 - salsuginosus A. Gray.
 - compositus Pursh.
Eu. — uniflorus L.
 - caespitosus Gray.
 - inornatus A. Gray.
 - ochroleucus Nutt.

Adenocaulon bicolor Hook.
Eu. — Antennaria dioica L.
Eu. — alpina L.
 - media Greene R. Br.
 Bahia integrifolia DC. (Eriophyllum caespitosum Doug.).
 Hulsea algida Gray.
 Chaenactis nevadensis Gray.
 Helenium Hoopesii Gray.
Eu. — Artemisia norvegica Fries.
 - Rothrockii A. Gray.

Artemisia arbuscula Nutt.
Senecio trigonophyllae Greene.
 - canus Hook.

Eu. — Arnica alpina Olin.
 - Chamissonis Less.
 - viscosa A. Gray.
 - Merriami Greene.
 - longifolia D. C. Eaton.
Raillardella argentea Gray.
Troximon glaucum Nutt.

Apargidium boreale Torr. & Gray
 (Leontodon borealis DC.).
Hieracium Breweri Gray (H. horridum Fries).
 - albiflorum Hook.
 - gracile Hook.
Campanula Wilkinsiana Greene.
Vaccinium microphyllum Hook.
 - occidentale Gray.

Cassiope Mertensiana Bong.
Bryanthus Breweri Gray.
Kalmia glauca L. Ait. var. microphylla.

Ledum glandulosum Nutt.
Primula suffrutescens Gray.
Gentiana simplex Gray.
 - serrata Gunner var. holopetala A. Gray.
 - Newberryi Gray.
Phlox caespitosa Nutt.
 - Douglasii Hook.
Gilia congesta Hook.
 - Nuttallii A. Gray.

Eu. — Polemonium caeruleum L.
 - pulchellum Bunge.
 - confertum Gray.
Eritrichium (Krynitzkia) glomeratum DC.
 (Krynitzkia) fulvoca-nescens Gray.
Pentstemon Menziesii Hook.
 - glaber Pursh.
 - gracilentus Gray.
Vegetation south of the Land Ice.

Pentstemon Roezli Regel. Castilleia affinis H. & A.
 » Newberryi A. Gray. » miniata Dougl.
Mimulus implexus Greene. Orthocarpus pilosus Wats.
 » primuloides Benth. Pedicularis attollens Gray.
Eu. — Veronica alpina L. — » semibarbata Gray.
 » Cusickii A. Gray. Monardella odoratissima Benth.

5. The Vegetation Zones south of the Land Ice.

Down off the mountains during the glacial period existed glacial plants which formed bog and dryland associations, as previously mentioned. These with numerous sedges and grasses formed the tundra vegetation which skirted the southern edge of the great continental ice field. During the maximum glaciation, many plants were distributed only in the eastern part of North America. The following widely spread arctic-alpine species occupied Greenland, Labrador and the White Mountains and did not occur in the Rocky Mountains. Thalictrum alpinum, Arabis alpina, Arabis stricta, Draba frigida (= D. tomentosa), Lychnis alpina, Alsine stricta (= Arenaria lapponica), Arenaria ciliata, Cerastium trigynum, Potentilla alpestris (= P. aurea), Alchemilla alpina, Epilobium originatifolium, Saxifraga aizoon, S. adscendens, Bupleurum ranunculoides, Gnaphalium supinum, Arenicum Clusii (= Dornicum hirsutum), Hieracium alpinum, Hieracium prenanthoides, Gentiana nivalis, Veronica saxatilis (= V. fruticulosa), Bartsia alpina, Pedicularis sudetica, Salix phylicifolia, S. arbuscula 1).

South of this existed in all probability a coniferous forest and immediately south of the conifers without any sharp demarcation a forest of broad-leaved trees. It would appear, then, that the glaciers did not effect the true distribution at any great distance from the ice front. The conifers probably came to occupy the outer rim of tree vegetation during the glacial period on account of edaphic factors suitable to their rapid spread. As we may learn from their present distribution, a youthful topography in which erosion is active, a high elevation and porous soil, all of which imply great variations in temperature and relative humidity, are more favorable to conifers than to broad-leaved deciduous trees.

The mixed forest to which we have referred, as occurring south of the arctic tundra vegetation, was a remnant of the great tertiary forest. This forest persisted during the period of refrigeration with its greatest denseness in the region drained by the Tennessee River and its tributaries. One tongue of this forest of less denseness probably reached in a northeastern direction, as far north, as a line following the windings of the west branch of the Susquehanna River to the Blue Ridge, thence along the Blue Ridge to the Schuylkill River, thence across to the southeast side of the Great Valley and following the hills on the south side of the Great Valley to the Delaware River.

Arbitrarily considered, all of the territory above this line and between it and the great terminal moraine was a country influenced by the glacial cold where tundra conditions prevailed. All of the country south of it, protected by the Alleghany Mountains, was covered by a forest composed in the main of those species of trees, not destroyed by the glacial cold, that had existed in this region, and also in the far north, prior to the advent of the last glacial epoch. Comparing the northern remnant of the magnificent Tertiary forest with the southern remnant of this forest in the region drained by the Tennessee River and its tributaries and in the southern Appalachian Mountains, generally speaking, it lacked many of the peculiar arborescent and herbaceous species which characterize the flora of the south and many of which peculiar plants have their nearest living representatives in the flora of eastern China and Japan 1).

North Carolina. These facts argue for a great antiquity of the flora of the mountains of western North Carolina. The presence of so many peculiar types of plants, not found elsewhere in America and having their closest relatives in eastern Asia, makes it more certain that groups, now broken up and detached, were once more continuous, and that fragmentary groups and isolated forms are but relics of wide-spread types, which have been preserved in a few localities where the physical conditions were especially favorable. This important principle is evidenced on every hand, as a botanist travels through western North Carolina 2). The large size of the trees, the close commingling in a dense forest of a great variety of species, the graded-down appearance of the land surface, and the rounded contour of the mountains, all impress the fact upon him that the country through which he travels has been subjected through long ages to the continued action of climatic forces which have carved the land into its present form and influenced the character of the vegetal covering.

In the Ohio Valley, the streams flowing from the south during the glacial period would aid in preserving the broad-leaved mesophytes, as far north, as the Ohio River. It is probable that in the interior the Ohio basin was occupied by the oaks, ash, hickories, elms and maples. Judging by the present northern limits of some of these species it is doubtful if the conifers could compete with them at any great distance from the ice front, so that the belt of tundra and conifers may have extended, as far south, as the Ohio, but it seems probable that even north of this river species of oak, ash, elm and maple persisted 3). Beyond the Mississippi, the conditions must have resembled those now prevalent in the Saskatchewan basin.

The Forest Flora in the Mountains. The influence of the glaciers on the distribution of trees in the Rocky Mountains and the Sierra Nevada Mountains of California was most marked. Let us trace the history of the vegetation of this region before considering this point. We have already alluded to the extension of the sea which in the upper Cretaceous separated the western part of North America from the eastern. The Great Basin during the Lias was an enclosed natural lake, which was gradually filled by the action of aerial agents. Further during the early Cretaceous, the region of Missouri was covered by a sea and in Nebraska, there are evidences of a long continuance of a fresh-water lake. It is also probable, that the prairie region in the Miocene period was covered water. With the drying up of these seas and inland lakes, the prairie region was formed and the plant associations following the retreat of the water culminated in a prairie grass formation, which still further acted as an influence in the separation of the eastern and western floras. The factors mentioned above were sufficient to introduce a differentiation into the floras of the two widely separated regions and the separation of the tree vegetation of North America into eastern and western types may be said to have begun. That this separation was not fully accomplished until, after the Glacial period is proved by the presence of remains of Sequoia trees in the eastern United States of a later date. The climate of the eastern slopes of the Rocky Mountains during the upper Cretaceous period and subsequent must have been more humid than the climate of today, which is comparatively arid. We have proof of this climate in the petrified forests of Arizona, where the trunks of gigantic trees have been preserved unlike the flora of that region at the present day. In the soft shale rock at Florissant, Colorado are found fossil leaves, fruits and twigs of trees clearly allied to the living redwoods or sequoias of California, to oaks, hornbeams, alders, walnuts, chestnuts, elms, ashes, sumachs, hollies and other trees and shrubs arguing for a different climate in the far past.

The oncoming of the glacial period and consequent refrigeration produced even a more marked change in the distribution of tree vegetation than the inland sea of upper Cretaceous times. With the development of the continental glacier, as the ice sheets spread from the two great centers of accumulation, they united in the region north of lakes Superior and Huron. With their near approach to the lakes the area of conifers was divided into an eastern and western section. The trees of the western section were submitted to the action of the local mountain glaciers and their areas of distribution were thus broken up and many of the species of eastern affinity were destroyed and others were restricted within narrow limits. This has not been worked out for all the species of western trees, but the principles may be illustrated by a discussion of the glacial and post glacial distribution. Of the giant trees of California Sequoia gigantea (= S. Washingtoniana) John Muir 1) observed that the location

of the *Sequoia* forests was on the general forest soil-belt between the individual Sierra mountain glaciers. The remarkable gap between the northern and southern groves is located exactly in the pathway of the vast mer de glace of the San Joaquin and King’s River basins. The other great gap in the belt, forty miles wide, extending between the Calaveras and Tuolumne groves, occurs exactly in the pathway of the great mer de glace of the Tuolumne and Stanislaus basins, and that the smaller gap between the Merced and Mariposa groves occur in the pathway of the Merced glacier. We are, therefore, forced to conclude that the *Sequoia* trees which were widespread in Miocene times were restricted by the action of the glacial ice to the California side of the continent and that the remnant of a once continuous forest was still further separated into isolated groves by the action of local glaciers, such as filled the basins of the San Joaquin, Tuolumne and Merced rivers. The action of the glaciers on the distribution of other forest trees, illustrated by this clear cut example, must have been similar and we have as a result the separation of the original forest of North America into the Atlantic and Pacific types. A comparison of the coniferous vegetation of the Rocky Mountains, of eastern North America and of the Pacific coast is to be found afterwards (Chapter IV). A similar difference shows itself in a comparison of the broad-leaved vegetation of eastern and western North America. When during the glacial period, the greater part of North America was covered with ice and later submerged in its central plain region beneath the sea, it is not strange that the peculiarities of the western and eastern floras manifested, as far back, as Cretaceous times should be further accentuated. Many characteristic genera of the Atlantic slopes of North America are missing in California, and the prairie region, viz., *Asimina, Zanthoxylon, Stuarta, Gordonia, Tilia, Robinia, Gleditschia, Gymnocladus, Cladrastis, Nyssa, Liquidambar, Viburnum, Clethra, Ilex, Catalpa, Diospyros, Sassafras, Benzoin, Carya (Hicoria), Morus, Ulmus, Fagus, Castanea, Carpinus, Betula, Magnolia, Liriodendron*. There are lacking also many trees which from the Tertiary period to the present maintained themselves in North America. Common and related species of the following genera occur in eastern and western North America: *Aesculus, Acer, Rhamnus, Ceanothus, Ptelea, Euonymus, Acer, Negundo, Staphylea, Rhus, Sophora, Cercis, Prunus, Pirus, Crataegus, Amelanchier, Calycanthus, Philadelphus, Ribes, Cornus, Sambucus, Viburnum, Symphoricarpos, Lonicera, Cephalanthus, Gaultheria, Kalmia, Styra, Fraxinus, Platanus*. On the other hand, the plants mentioned below are peculiar to western America: *Fremontia californica, Larrea mexicana, Cneoridium dunsom, Zizyphus Parryi, Karwinskia Humboldtiana, Adolphia californica, Glossopetalon nevadense, Prosopis, Parkinsonia with two species, Canotia holacantha, Charpentiera californica, Whipplea modesta, Menodora* with many species. That this separation took place during and subsequent to the glacial period is proved by the discovery in the Pliocene deposits of California of remains of *Platanus occidentalis* and species of *Magnolia*. **Lesquereux** 1) has discovered at Golden

Sequoia gigantea Dec.,
Calaveras Big Tree Grove, Sierra Nevada, California. Two trees on either side of path are known as "Professor Gray" and "Dr. Torrey." "Grizzly Giant" is in the background.
City Colorado two fossil species of *Platanus*, three of *Juglans*, one of *Ulmus*, one of *Lindera* (*Benzoin*), one of *Sapindus* and one of *Fagus*. None of these genera exist in Colorado at the present day.

Prairies. With the gradual disappearance of the sea which extended over the central prairie region during the Miocene period, the soil at first was largely impregnated with the salts of sea water, which were afterward leached out by the rain which with the drying up of the land fell with less constancy, producing more arid conditions on the eastern slopes of the Rocky Mountains. Harvey¹) suggests that on account of the low precipitation this region bounded on the west by the crest of the Rocky Mountains was denied at first to tree invasion and came to be occupied by a prairie formation, which was displaced after the glacial period by the invasion of trees, while the plains became grass-covered. The formation of the prairies introduced a drier climate in the interior of North America and new elements of plant life were introduced which developed into the numerous and peculiar forms, characteristic of the prairie region of today. Numerous Cactaceae, many Chenopodiaceae, the Chlorideae, the peculiar Polemoniaceae of the prairies appeared during Miocene and Pliocene times.

Coast Plains. We have thus far traced the developments of the main types of the North American flora during the Glacial period. Before treating of the post glacial and present distribution of North American plants, let us briefly allude to the conditions which probably existed on the Atlantic and Gulf coast plains.

During the Tertiary period that portion of North America which now comprises the Atlantic and Gulf coast plains was beneath the Atlantic Ocean. Later during the upper Tertiary, it was elevated excepting the portion comprising the Florida peninsula. With its appearance above the sea, it was tenanted from two main sources of plant supply, viz., the flora which covered the elevated mountain and table lands of the present eastern states as far north as New York and the coastal flora which must have been differentiated and fringed the tertiary sea coast composed of typic sea coast plants. The sandy plains of the coast were tenanted chiefly by pines which if they did not arise as coastal plain species probably were derived from the near, by tertiary forest so frequently referred to. The assortment of species in the newly formed land depended largely upon edaphic conditions. The sandy soil of the coastal plain would only support those species which had previously existed in the near by land areas under similar edaphic conditions, which may have been a rocky ledge of some mountain side, or the sandy bottom of some silt filled ravine, or which were sufficiently plastic, as species, to adapt themselves to the new surroundings.

Colony of northern plants in Florida. The topography of Florida in the neighborhood of the Appalachicola River is in striking contrast to the level

¹) Botanical Gazette XLVI: 84.
areas in other parts of Florida and the adjoining States. There are high river bluffs and deep ravines with steep slopes. In these ravines, and especially on the north facing slopes, is to be found a mesophytic association of plants that is abundant farther north, but which reaches its southern limit here. Among the plants of this association are beech, mapel (Acer floridanum), Mitchellia, Hepatica, Sanguinaria, Epigaea, Anemonella (Syndesmon) and many other species that dominate in mesophytic northern woods. In this association one finds two of our most notable endemic plants—Torreya and Croomia\(^1\). They presumably are preserved here perhaps because of exceptionally favorable topographic conditions, while in other places which represent their distribution in the great Miocene forest they have become extinct because of unfavorable conditions.

Contrast of Mountain and Coastal Floras. The presence of the following on the Pocono plateau and the coastal plain is thus accounted for:

<table>
<thead>
<tr>
<th>Woodwardia virginica L.</th>
<th>Scirpus Torreyi Olney.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lygodium palmatum Bernh.</td>
<td>Scirpus subterminalis Torr.</td>
</tr>
<tr>
<td>Lycopodium inundatum L.</td>
<td>Carex Collinsii Nutt.</td>
</tr>
<tr>
<td>Eleocharis olivacea Torr.</td>
<td>Carex albolutescens Schwein</td>
</tr>
<tr>
<td>(C. subulata Michx.).</td>
<td>Polygonum Careyi Olney.</td>
</tr>
<tr>
<td>Orontium aquaticum L.</td>
<td>Myriophyllum tenellum Bigel.</td>
</tr>
<tr>
<td>Eriocaulon septangulare With.</td>
<td>Rhexia virginica L.</td>
</tr>
<tr>
<td>Peltandra virginica L.</td>
<td>Proserpinaca palustris L.</td>
</tr>
<tr>
<td>Pontederia cordata L.</td>
<td>Limnanthemum lacunosum Vent.</td>
</tr>
<tr>
<td>Juncus pelocarpus E. Mey.</td>
<td>Utricularia purpurea Walt.</td>
</tr>
<tr>
<td>» militaris Bigel.</td>
<td>» cornuta Michx.</td>
</tr>
<tr>
<td>Aletris farinosa L.</td>
<td>Habenaria (Blephariglottis) blephariglottis Willd.</td>
</tr>
<tr>
<td>Amianthium (Chrosperma) muscaetoxicum Walt.</td>
<td></td>
</tr>
</tbody>
</table>

Originally developed as mountain or plateau forms, they spread down to the coastal plain, where by mutation they were augmented undoubtedly by new forms. After the ice sheet had moved off from the Pocono plateau, which suffered glaciation many of the old plateau forms returned from glaciated mountain crests to reclothe the table land left bare by the retreat of the glacial ice \(^2\). On the unglaciated mountain crests south of the terminal moraine of New Jersey, which represent a former peneplain, exist plants referred to above found in great numbers in sandy soil along the Atlantic coast. According to N. L. Britton the most noteworthy are Juncus Greenii, Solidago puberula, Orontium aquaticum, Tephrosia (Cracca) virginiana, Lespedeza hirta,

\(^1\) Cowles, H. C.: Colony of northern Plants along the Appalacheicola River, Florida. Read at Eight International Geographic Congress, Sept. 10. 1904.

Lupinus perennis, Quercus ilicifolia (= Q. nana), Corema Conradii. At Culver's Gap, Britton found Polygala polygama, Lechea racemulosa, all abundant in sandy soil along the coast. In all probability, therefore, the flora of the Kittatinny, or Shawangunk Mountains described above is peculiarly an endemic one showing relict endemism and that the flora of the pine barrens of the coast is a derived one. The same peculiar distribution is noticed in the southern states where on the high mountains above five thousand feet such plants occurring also on the sandy flats of the coastal plain are found, viz., Zygadenus limanthoides, Xerophyllum asphodeloides, Amianthium (Chrosperma) muscor- toxicum, Leiophyllum (Dendrium) buxifolium, and Hudsonia montana of Table Mountain related to Hudsonia tomentosa of the coast.

With reference to the coniferous vegetation previously mentioned, in this connection it is a noteworthy fact that the distribution of the long-leaf pine Pinus palustris in general coincides with the area of the Atlantic and Gulf coastal plains except on such mountains as Pine and Horseleg where it is found above 1000 feet. This is largely influenced by the fact that in its demands upon the soil this pine is to be counted among the most frugal, as far, as mineral constituents are concerned, if only the mechanical conditions which influence favorable soil moisture are not wanting. It thrives best on a light silicious soil, loamy sand, pebbles or light sandy loam with a slightly clayey subsoil sufficiently porous to insure at least a partial under drainage and to permit unimpeded development of the long tap root. The Cuban pine, Pinus cubensis (= P. heterophylla = P. caribaea) is confined to the coast plain of northern and central Florida and southeastern Georgia. The loblolly pine. Pinus taeda is a coastal plain species, while the pitch pine Pinus rigida, which occurs on the New Jersey coast and coastal plain is also a prominent tree on the mountain summits of northeastern Pennsylvania and elsewhere.

Chapter III. Postglacial and Recent History of the North American Flora.

1. Immediate Effects of Glacial Retreat.

Boreal Associations and Forests. All of North America, north of the great terminal moraine, which marks the southern boundary of the continental ice sheet with the probable exception of the nunataks, unglaciated areas and parts of the Pacific coast has been tenanted by plants, which have migrated from several directions into the territory abandoned by the glacial ice. (See the arrows illustrating in the accompanying Figure 4 the directions of Plant Migration.) Geologists 1) believe from evidence afforded by the time that it has taken for the river to cut its gorge at Niagara, that 15,000. to 25,000 years have elapsed

since the close of the glacial period. If their deductions are sound, then
certain elements of the flora of the northern part of America cannot be
older than 25,000 years at the outside. Some of its elements may be
much older and we have reason to believe that many boreal plants existed
as such on the nunataks which were unglaciated areas above the sea of ice.

With the renewal of a milder climate and the consequent recession of the
glaciers, the plant associations would gradually spread in the direction of con-
tinuous habitats and generally northward. Several waves of plant migration
may be recognized. The glacial element would follow the retreating edge
of the ice to be followed by bog and tundra types which would then push
into the barren ground left by the retreating ice. Many glacial plants, existing
in the extremely fine and mixed soils, apparently rich in the availability of
potassium, calcium and often magnesium derived from rocks of different kinds,
would be left as relicts on such mountain peaks as Mt. Marcy, Mt. Washington
and Mount Katahdin, or in circumscribed areas in the lowlands, such as the
botanist finds in New Brunswick and Labrador. The determination of the
postglacial habitat of each species of arctic-alpine plant was regulated by the
soil preferences of that species. Whether the plant was to grow upon a soil
derived from rocks containing potash, calcium or magnesium was a matter of
specific preference. Fernald (l. c.) divides the known localities where arctic-
alpine plants are found into three main groups, corresponding with the cha-
acter of the rocks from which the soils are derived. In the first group of
alpine areas, he includes the White Mountains, the Adirondack Mountains, the
highest summits of the Green Mountains of Vermont; Baldpate, Abraham,
Saddleback, Bigelow, Katahdin and nearly all the other naked-topped mountains
of Maine; the great table land of Table-top Mountain in Gaspé; and Mt. Desert
Island and other exposed parts of the eastern coast of Maine. The predominant
rocks are granite, or gneiss, and all are especially high in potassium which
becomes the distinctive soil element of the alpine areas constituting our first
group, where we find 122 plants, nearly two thirds of which in their alpine
distribution are quite unknown on the mountains of the other groups. Such
plants are Hierochloë alpina, Salix phylicifolia, S. argyrocarpa, Cassiope hyp-
noides, Arenaria groenlandica etc. The second group of alpine areas includes
the cliffs of Percé, of the north coast of the Gaspé Peninsula, and of Bic,
which are chiefly limestones, calcareous sandstones, limestone conglomerates,
and calcareous slates; the northwestern escarpments of Table-top Mountain,
where Salix vestita, S. glauca, Saxifraga oppositifolia, S. Aizoon, S. aizoides
and Primula mistassinica abound are limestones; the river cliffs and ledges
of many streams of eastern Quebec, northern New Brunswick and Maine
characterized by Asplenium viride, Woodsia alpina, W. glabella, Carex eburnea,
Tofieldia glutinosa, Astragalus elegans, Hedysarum boreale (= H. americanum),
Shepherdia canadensis, Primula mistassinica, Pinguicula vulgaris, Erigeron
hyssopifolius are chiefly limestones or limy slates; the famous cliffs at Willough-
by are of impure limestone, and the soil of the cliffs in Smugglers Notch are
controlled by their lime content. On these calcareous cliffs and mountains occur 135 species, 94 of which are apparently unknown upon the little calcareous, but strongly potassic rocks (Group I). The third group of exposures consists of the tableland of Mt. Albert in Gaspé, where serpentine prevails as a soft rock consisting of hydrated magnesium silicate. — But the appearance of these plants on the various mountains is a differential matter. If we take Mount Washington as a mountain, the summit flora is older than that of the lower alpine slopes of the mountains above timber-line and, the flora of these slopes is in turn older than that of such gorges as Tuckerman's Ravine, Huntingdon Ravine and Great Gulf which probably supported local glaciers for many centuries after the great ice sheet had retreated from the Presidential range 1). Mount Katahdin, 161 miles northeast of Mount Washington, has a less number of alpine plants than the other mountain and some geologists believe it to have been buried entirely beneath the glacial ice sheet, and the place of the boreal flora upon the retreat of the continental ice sheet encroached upon Mount Katahdin is determined largely by the physiography of the mountain. The glaciers occupying the various basins of the mountain, but with a favorable opportunity the encroachment perhaps began from the south-west and west. This idea seems to be confirmed by the present distribution of the spruce and fir which ascends higher on this side. It seems probable that the Great Basin was the first tenanted on the eastern side and the North Basin opposed this migration a much longer time for the reason that this basin which presents a scene of desolation, was the seat of a local valley glacier which was perhaps the last to disappear. The area over which the bog plants spread in taking advantage of the numerous glacial lakes and streams must have been much more extensive even than that now occupied by them. In the smaller glacial depressions where absence of wave action would favor littoral vegetation, the bog plants would become firmly established. On the western and eastern sides of the glaciated area, the tundra would be closely followed by the coniferous forests. because of their preglacial location separated from each other by a treeless region.

These conifers and those forming a still younger element surrounded the bog associations which were thus trapped by the environing tree vegetation. As the lake filled with such plants as Potamogeton natans, P. incens, Nuphar (Nymphaea) advena, Nymphaea (Castalia) odorata, fringed with a circumarea of sedges (Dulichium arundinaceum, Scirpus, Carex) grasses (Phragmites communis) and other plants (Sarracenia purpurea, Typha latifolia, Menyanthes trifoliata, Cicuta bulbifera, Scheuchzeria palustris, Utricularia (several species), and an outer circumarea of Cassandra (Chamaedaphne) calyculata, Dryopteris (Nephrodium) thelypteris, Kalmia glauca, Ledum latifolium (= L.

1) This assumption is true if Mount Washington was a nunatak and not covered by ice as some geologists and glacialists claim.
Fig. 4. Map illustrating original Centers of Plant Dispersal as determined by the glacial Conditions of the Continent.

↑ Arrows illustrate directions of glacial and post glacial Plant Migration.
K Kansan Stage of Glacier.
Illinoian Stage of ice advance.
Jowan Stage.
SS Southern limit Wisconsin Stage.
Boreal Flora along front of Terminal Moraine.
Dispersal Center of Deciduous Vegetation.
Dispersal Center of Coniferous Forests of Pacific Coast.
Dispersal Center of Prairie Vegetation.
Dispersal Center of Desert Vegetation.
Dispersal Center of Tropic Vegetation.
Pleistocene Bridge.
groenlandicum), Rubus hispidus, Comarum palustre, Andromeda polifolia, Chionogena hispidula, Vaccinium Oxycces, Eriophorum virginicunm, Rhododendron Rhodora, was gradually transformed into firmer ground. Such shrubs as Cassandra (Chamaedaphne) calyculata, Vaccinium corynomsum, Azalea viscosa, flex verticillata, Rosa carolina, Pyrus arbutifolia, Nemophila fascicularis and young trees, Acer rubrum, Betula populifolia, Betula pumila, Picea nigra (— P. mariana) and Larix americana (— L. laricina) began to smother out the typic bog plants. The area thus encroached upon culminated in a climax forest association. Such a sequence of events one can trace in the coniferous areas of Wisconsin, Minnesota, New York, northern Pennsylvania, the New England states and Canada 1). As an evidence of the constant shifting of floral types in a region may be mentioned the conversion of a former sphagnum bog area into a salt marsh. PenhalJow 2) finds upon examination of the strata in a number of salt marshes on the New England coast that their history is as follows: first-sphagnum bogs existed and were subsequently invaded by sedges, Cassandra (Chamaedaphne) calyculata and finally the white pine, Pinus strobus. Suddenly by the disappearance of the sea barrier, the former bog areas were flooded with salt water and converted into, salt marshes. PenhalJow calculates from the character of the plant remains that an indefinite period may be assigned to the formation of the bogs, but that the Cassandra-layer (4—5 inches) was formed in 50 years, the second peat layer with small white pine stumps in 200 years, the first peat zone with larger white pine trees in 70 years and the superimposed salt marshes 100 years to form, a period of 420 years after the bogs had been captured by vegetation other than sphagnum mosses.

The swamp plant associations of North America next concern us. As we know from numerous physiographic studies that have been made of glacial basins, many of the lakes were formerly much larger than at present. Some of them in early post glacial times had steep banks, which were unfavorable to the development of shore vegetation. But by the lowering of the water level consequent upon the cutting down of the outlet, the shore line at present is a gradually sloping one and supports a "drained swamp" flora. In other cases, irregular arms extending away from the main body of the lake and protected from wind and wave action, doubtless supported a bog vegetation during the tundra dominance. Since then they have been separated from the main lake by a lowering of the water level. To day we find in such cases the bog vegetation still persisting in the depressions which were formerly arms of the lake, while on the shore of the main body of water, which came to be swampy at a much later period, the so-called "drained swamp" flora occurs. The relation of these two distinct associations of plants seems to depend largely

1) This account is based upon the observations of the writer upon kettlehole bogs in the great terminal moraine of the Pocono plateau of northeastern Pennsylvania and of E. N. Transeau l. c. in Michigan and North America generally.

2) Transact. of the R. Soc. of Canada ser. 3, I sect. 4: 13—45.
upon the time when the swamps came into existence as swamp habitats. If they have existed since the days of tundra conditions, they may show a bog flora today. If they are of recent origin, the plants will correspond to the normal swamp plants of the present conditions. We may say, that the chances of capturing newly exposed land areas at the present time are all in favor of the swamp plants, largely because of the greater production of seeds, more adequate means for seed dispersal and better adaptations to present climatic conditions). In early postglacial times, however, the conditions were far different. The climate being more boreal in its character favored the bog plants so that, they became practically the only competitors for the low-ground situations.

The spreading northward of the coniferous trees, as the third great wave of vegetation, was much slower in the west than in the east, because the local glaciation lasted much longer in the west than in the east for many of the mountains there today are glaciated. However, the conifers of the southwest suffered a gradual destruction with the disappearance of the inland sea and the recession of the glaciers due to increase in temperature, as compared with the rainfall. It is possible that the rainfall in Nebraska was never any greater than at the present time, and trees, such as Pinus ponderosa var. scopulorum, found in the central part of Nebraska, far removed from the main area of their occurrence, seem to indicate that with the decrease in transpiration accompanying decrease in temperature certain trees might have been more widely distributed during glacial times, which cannot live now in Nebraska under present conditions. The bog plant associations perished with the coniferous forests and their southwestern boundaries today correspond with that of the forest. The delay in the northward migration of the coniferous forests of the Rocky Mountains and of the Pacific coast incident to the presence of extensive glaciers, which poured their ice streams down into the valleys and on the Pacific coast into the ocean, established the difference which we find in the distribution of the forest trees in northern Canada (the Mackenzie Basin) and Alaska at the present day. The forests of central, most northern Canada, are of the Atlantic type consisting of such trees as black and white spruces, Picea nigra (= P. mariana), P. alba (= P. canadensis), balsam Abies balsamea, tamarack Larix americana (= P. laricina) canoe birch Betula popyrisfera, balsam poplar Populus balsamifera and aspen Populus tremuloides, all trees of essentially eastern origin which migrated north after the retreat of the continental glaciers. In Alaska, the species which are capable of existing under the inclement conditions of Alaska, are eastern species ranging across the continent, including the canoe birch, balsam poplar, aspen and white spruce. These reach the Pacific coast at Cook Inlet and thus head off, so to

Postglacial spreadings of Plants.

209

speak, the western conifers in their northwestward migration. Fernow in explaining why the Pacific coast forest of Alaska (consisting in the main of a mixture of the tideland, or Sitka spruce *Picea sitchensis* and coast hemlock *Tsuga heterophylla*, to which may be added, near timber line and farther west on the lower levels, the beautiful but useless alpine hemlock *Tsuga Mertensiana*) does not cover Kodiak Island and the Alaskan peninsula farther west, neglects the facts which the writer has advanced above to explain the distribution of the two distinct forests of Alaska. He adduces the following conditions which doubtless have been strongly operative in checking the advance of the western and Pacific types of coniferous vegetation. To secure the extension of the coast forest, it is necessary that the winds should blow from the north and east from September to May, when the spruce and hemlock release their seed, and it should be dry in order to permit the cones to do so. The contrary usually happens: there is during these months a constant succession of southeast and south winds and the air is heavily charged with moisture. For this reason, the spread of the Pacific coast forests has been retarded, while the Atlantic coast forest of the interior shut off from such winds by high mountains including the McKinley range, had a decided advantage and has at last reached the Pacific coast ahead of the other forest.

Spread of Plants from Southeastern Center. In eastern North America a large number of species came from the great forest in which broad-leaved trees and coniferous trees were intermixed the latter found especially perhaps during glacial times on the mountain tops, which had remained undisturbed in their original home. At the close of the long ice age these trees were in a plastic condition through the influence of the pressure of species and through the action of the physiographic vicissitudes to which these fitile forms were subjected. Many species, therefore, found in this remnant of the great Miocene forest (which covered eastern North America west of the coastal plain, east of the prairie region and south of a line stretching along the Ohio River northeastward to another line following the windings of the present west branch of the Susquehanna River to the Blue Ridge, thence along the Blue Ridge to the Schuylkill River, thence across to the southeast side of Great Valley, thence to the Delaware River, which at this point marked the eastern extension of the forest) found congenial conditions in the most extensive land areas north of the terminal moraine where the species which had preceded in the first three floral waves formed open ecologic formations, which permitted, therefore, new migrants to occupy the ground. An inspection of the forest maps to be found in the ninth volume of the Tenth Census Report, Forest Trees of North America, shows that the majority of trees, the geographic distribution of which is illustrated by the maps, proceeded from a territory which seems to center in the area of the present states of southern and central Pennsylvania, Maryland, West Virginia, Kentucky, Tennessee, western North Carolina, south-

Harshberger, Survey N.-America.
western Virginia, northern Georgia, Alabama, Mississippi. A study of these maps reveals an important fact, that the spread of the species from this common center has been in a series of more or less concentric waves. The map accompanying this book, shows the northern limit of many of the most important forest trees. The lines may be taken to represent the several distributional advances of trees from the south. Approximately the trees invaded the northern part of the continent in the order indicated by their present relative distribution. (See colored map of North America.) Those farthest north entered the glaciated country first, either singly, as a species, or by mass invasion of associated species and those farthest south advanced much more tardily. The order of the invasion depending upon the adaptability of the species and the mode of seed distribution was, therefore relatively, as follows:

Wind Carried Seeds.
1. Picea alba (= P. canadensis),
 farthest north.
2. Picea nigra (= P. mariana),
 farthest north.
3. Larix americana (= P. laricina).
4. Populus balsamifera.
5. Populus tremuloides.
7. Abies balsamea.
8. Pinus strobus.
9. Thuja occidentalis.
10. Ulmus americana.
11. Acer saccharum.
12. Tsuga canadensis.

Animal Carried Seeds.
13. Quercus rubra.
14. Fagus americana.
15. Quercus alba.
17. Juglans nigra.

The species most successfully provided with means of distribution and most easily adjustable extended farthest from the original center after the glacial period, which circumscribed the area of the original extended forest of the Tertiary period. The map shows that the outer confines of any particular genus is usually occupied by a single species. Nearer the center, two species are found; still nearer, if the genus is a large one, three and still nearer, four, etc. The position of the various shades of green on the maps suggests the circles of impulse produced when a stone is thrown into water. Theoretically these waves spread in all directions, unless they meet with obstacles, when they are deflected. Similarly the maps suggest a series of distributional impulses, by which the various species of oaks, ashes, hickories, and chestnuts moved out from a parent forest of great density into the territory left bare by the retreat of the great ice sheet ³. Clearly, therefore, the deciduous forest of eastern North America has been derived from that forest which reaches its greatest development in the mountainous region of western North Carolina.

MacMillan's remarks on this point, with reference to the character of the Minnesota flora, that it has been shown that while the valley of the Minnesota is geographically central, it is by no means botanically central, but, on the contrary, strongly southern and eastern. Bessey has shown that the trees and shrubs of Nebraska have come up the Missouri bottoms and spread from the southeastern corner of the state west and northwest. Mason states that the trees of Kansas show the same origin. Adams has demonstrated this clearly in a study of the faunal distribution of animals and in a cursory way with plants. Bray alludes to the same eastern origin in speaking of the eastern Texas timber belt. "The further extension of this forest is checked near the Brazos River by the drier climate of the southwest. Here its vanguard is broken into straggling detachments, of which only the hardier push onward along the prairie stream ways or up the deeper canyons of the hills. It is a striking phenomenon, this breaking up and gradual dwindling away of so vast and vigorous a forest. Not only in Texas, but far to the north, through the Indian Territory, Kansas, Nebraska, and the Dakotas, the same thing may be seen. Like a vast wave that has rolled in upon a level beach, the Atlantic forest breaks upon the dry plains, halting, creeping forward, thinning out, and finally disappearing, except where, along a river course, it pushes far inland. In line with this argument, the conclusions of Transeau are apropos. Transeau recognizes four centers of distribution in eastern North America in which the complex of climatic factors is most favorable to the type of forest vegetation there at present localized. When we depart from such centers, we find the conditions more and more unfavorable to the four particular types of forest which are: (1) the northeastern coniferous centering in the St. Lawrence basin and corresponding with our St. Lawrence Great Lake Region (see colored map); (2) the deciduous forest centering in the lower Ohio basin and southern Appalachians our Piedmont-Appalachian-Ozark Plateau Region; (3) the southwestern coniferous forest, centering in the south Atlantic and Gulf coastal plain (our Atlantic-Gulf Coastal Region); and the insular tropic forest in the southern part of Florida on the West Indies (our Bahaman Region). Transeau believes, that the present limits of these centers (which implies that in these places the trees attain their best development) is due to the influence of present climatic factors, viz., temperature, relative humidity, wind velocity and rainfall which most powerfully influence plant growth. These factors can be expressed

comprehensively in the ratio of rainfall to evaporation, expressed in percentages which, if plotted on the map, says Transeau, exhibit climatic centers which correspond in general with the centers of plant distribution.

To return to the bog plant associations previously mentioned, we must describe the envelopment of these by the species of the broad-leaved trees which, as we have just seen, were derived from a southeastern center. In the Ohio Valley, the northern fringe of this deciduous forest encompassed the bog societies which here existed along the most southern lobe of the great ice sheet. The oaks, hickories, maples, ashes and elms following the line of their specific habitat, the stream valleys, or the uplands, the sandy stretches left by glacial drainage, or the eskers, kames and drumlins surrounded the bog associations in their northward progression.

2. Evolution of Coastal and Southern Mountain Flora.

Different Areas. With the final elevation of the land along the Atlantic and Gulf shores of the North American continent, we have the evolution of the coastal plain which has passed through an interesting history since the beginning of Cretaceous times. A zone extending from the "fall line" representing the eastern edge of rocky deposits of Archean age has at times been dryland, as it is now, and at times sea bottom. Along the advancing and receding coast, gravels have been piled by streams coming from the landward side and with them sands and clays have been deposited. Now it is a great plain marked by few hills and slightly terraced with bluffs on the margins of flood plains. Near the coast and along the flood plains, extensive marshes are found. This irregular zone of marsh is clearly distinguished from the higher plain. A lower plain extends from the coastal marshes out to the sea for many miles, until at last shallow waters change into deep waters, and the bottom plunges down with steep declivity into the depths of the Atlantic.

This region, which may be divided into several well marked areas, viz., the northern Atlantic coastal plain, the southern Atlantic coastal plain and the Gulf coastal plain, shows some marked differences in the flora of the different areas. These differences will be emphasized in succeeding chapters of this work. Suffice it to say here that the flora of the coastal plain is comparatively recent, more recent than the latest submergence when the Columbia gravels were deposited, perhaps as late as Pleistocene times and the endemic species have been evolved by mutation or otherwise since the Pleistocene, while the other plants have been derived from other sources of supply; one of which, not mentioned previously, is the West Indian group of islands. Many plant associations are met with on the coastal plain and their development has followed the elevation of the land above sea-level. For example in New Jersey, where the most northern extension of the plain occurs, we have the pine barren

Evolution of Atlantic coastal plain.

Fig. 5. Cypress Swamp Formation. Prominent trees of the foreground are Taxodium distichum and Nyssa uniflora. Pearl River, Mississippi.

(Arkansas-Louisiana District of the Atlantic-Gulf Coastal Region.)

formation, the sphagnum swamp formations, the salt-marsh formations of the sea strand). Similarly Kearney for Ocracoke Island, North Carolina) has emphasized the great diversity of the plant covering of that part of the country and for the Dismal Swamp region.

Mohr (3) gives an exhaustive treatment of the flora of Alabama and in his treatise on the subject discussing the flora of the coastal plain proper emphasizes in his classification the diversification of the plant formations. The same great diversity of plant formations is noticeable, according to Bray, in the forests of eastern Texas (4), who distinguishes swamps and bayou forests, chiefly
in the coastal plain, hardwood forests of the alluvial bottoms, the mixed loblolly and hardwood forest of the interior of the coast plain, the longleaf pine forests of the Fayette prairie and the hardwood and shortleaf pine forests of the lignitic belt.

Examples of coastal Species. A large part of the coastal plain flora was developed along the edge of the continent in rather restricted localities when the shore line was much more depressed than at present. The sea strand vegetation and salt marsh vegetation probably originated as such on the strand of the Tertiary continent. The distribution of the species of the genus *Taxodium* is an interesting test case. *Taxodium distichum* grew, as far north, as Greenland in Miocene times. Later its distribution was restricted to the coastal plain and Mexico where the Mexican tree, *T. mucronatum*, grows according to my observations at 5000 to 8000 feet respectively. On the Edwards Plateau in Texas, *T. distichum* reaches enormous size at the edge of deep hollows at altitudes from 1000 to 1750 feet above the sea, hundreds of miles west of the sea, hundreds of miles west of the great cypress swamps (Fig. 5). In all probability then after the Lafayette formation had been deposited *Taxodium* migrated into the coastal plain from higher elevations and became differentiated into two species *T. distichum* and *T. imbricarium* 1). The absence of any serious obstacle to plant migration from and to all parts of the eastern section of the continent is a noteworthy fact connected with the spread of plants into the coastal plain. Completely open on the east and west, the denizens of the highland found no hindrance in peopling the new land, after its rise above the water. The longleaf pine (*Pinus palustris*) 2), loblolly pine (*P. taeda*), etc. were probably prompt to seize upon the sandy, or gravelly soil of the coastal plain after it had been raised from the sea, first after the Lafayette period of submergence, later after the Columbia deposits had been formed and the formation of these deposits afford a valuable time index 3). Geologists tell us that the coastal plain has been elevated unequally, part at a time. The land sooner elevated was probably at once tenanted with forest trees such as the long leaf pine with seeds easily disseminated by the wind. As each successive portion of the plain was elevated the pine forests would naturally spread. The same may be said of the other coastal species which without question entered a period of mutation with the opening up of a new land for their occupancy. Since this was written, confirmation of it has been found in the discovery by RO LAND M. HARPER 4) of *Pinus palustris* at an elevation above 1000 feet on

1) For the distinction of these species and their habitats see two articles by HARPER, ROLAND M. *Taxodium distichum* and related species. Bulletin Torrey Botanical Club XXIX: 383—399; also *Further Observations on Taxodium do*. XXXII: 105.

2) The name *Pinus palustris* L. is in N. Am. more commonly used for the *Pinus australis* Michx. — CHAPMAN in his Flora of the Southern Un. States states: "*P. palustris* L., the prior, but inappropriate name". (Drd.)

3) See the reference to the monograph of W. J. MacGee noted above.

Pine Mountain in northwest Georgia, also in Alabama on the southern slopes of Horseleg and Head mountains, while there are several other species such as *Quercus lyrata*, *Q. Michauxii*, *Magnolia glauca*, *Ilex glabra*, *Nyssa uniflora* with equally interesting distribution. On the southern slope of Pine Mountain on the other hand associated with *Pinus palustris* are *Pinus echinata*, *Andropogon scoparius*, *A. virginicus*, *Aletris farinosa*, *Quercus marylandica*, *Q. prinus*, *Tephrosia (Cracca) virginiana*, *Ceanothus americanus*, *Viola pedata*, *Eupatorium album*, *Chrysopsis graminifolia*, *Solidago odora*, *Sericocarpus lini-folius*, *Silphium compositum*, *Helianthus diaricatus*, all but one two of which are common to the dry pine barrens of the coast plain.

The action of the several uplifts and depressions of the earth's surface was most profound upon the vegetation of this coastal plain. With every submergence of the lower portions of the region, the vegetation in the area of submergence was destroyed, or if existing on the higher grounds, was subjected to such extensive changes of level, as to highly modify its character and the distribution of the component species. We have, however, data on the origin of a number of the elements of the coastal plain flora which is here apropos. On the coastal plain of the southeastern North America we have the following species of the genus *Yucca*: *Yucca filamentosa* var. *vera*, *Yucca filamentosa* var. *concaeva*, *Yucca filamentosa* var. *bracteata*, *Yucca filamentosa* var. *patens*, *Yucca gloriosa*, *Yucca aloifolia*, *Yucca recurvifolia*, all ranging east of the Mississippi River. West of that river, we have along the Red River, *Yucca louisianensis*, *Yucca arkansana*, in southern Texas, *Yucca Schottii*. The Mexican tableland is perhaps the original home of the entire group of Yuccas and the eastern species have taken a sweep around the gulf coast with a possible reflex wave northwest into the Appalachians. *Yucca aloifolia* perhaps a derivative of the Central American *Y. elephantipes* reached the coastal plains through the West Indian islands, for according to TRELEASE it seems to have evolved there. It is possibly a later introduction than the other species, as it is found on the newer parts of the coastal plain, viz., the Mississippi delta and the sand dunes of eastern Florida and Georgia. The fact also that so many varieties of the species *filamentosa* are recognizable, favors the view which the writer has all along held that a plant entering new country and subjected to different conditions is likely to undergo mutation. These plants reached the coastal plain in post glacial times, or not earlier perhaps, than the late Tertiary period.

The strand plants of the delta of the Mississippi River¹ some of them of tropic, or subtropic distribution are the following, the New World species being left unmarked, while the circumterrestrial are marked by an asterisk:

Batis maritima L.
Canavalia obtusifolia DC.

*Ipomoea acetasaeolia R. & S.
* } Pes-caprae L.
* Lithopha (Philoxeris) vermiculata L.
 Chrysoma pauciflouescula Michx.
 Uniola paniculata L.
 Iva imbricata Walt.

The soil of the delta itself represents that of the most recent formations of the southern coastal region. The "passes" of the Mississippi River are broad channels of water separated from the waters of the Gulf by an irregular and frequently very narrow strip of land of river deposit. Enormous quantities of silt must be sorted and arranged by tidal and current action in the formation of perhaps the newest land of the continent. Phragmites, Vigna and Spartina form associations. Phragmites occupies the higher levels, Spartina makes dense matted growths in the swampy ground of the lower levels. Vigna clammers on the canes and forms an almost impenetrable thicket, while occasional trees of Salix, Cissus bipinnata and Ampelopsis arborea occur along the bank. The muck marsh islands about the mouth of the Mississippi are composed of a very fine black alluvium with surface low-lying and flat. The flora is limited to a few species usually in two associations. The grasses Spartina patens, S. stricta and Distichlis maritima (= D. spicata) form one association, while succulents Batis maritima of tropic distribution, Salicornia Bigelovii and S. ambigua form the other. Avicennia nitida also is found here. These muck islands may be converted into sand islands by receiving a supply of sand, which sometimes reaches a thickness enough to support Xyris sertotina, Utricularia subulata, Oldenlandia uniflora, Siphonochila (Odontonchila) corymbosa, Polyprenum procumbens, Gratiola subulata (= Sophronanthus hispida) and Diodia virginiana. The flora of these islands are just as old, as the soil deposits on which they are found, the muck marsh flora being perhaps much older, as a floristic element. If the sand of the sand islands becomes thin by drifting away, muck marsh conditions may be restored by the appearance of Batis and Salicornia.

The sand plain floristically has three leading types determined by the physiographic age of the land. The youngest is the sand spit, which is a low lying extent of sand, hot, brilliantly lighted, wind swept and sea inundated in heavy weather. Mollugo verticillata, Panicum repens, P. halophilum, Iva imbricata, Serenoa serrulata, Scirpus americanus, Cyperus cylindricus, Diodia teres, Syntherisma fimbriatum, S. filiforme, Cerchus incertus, C. tribuloides, Euphorbia (Chamaesyce) cordifolia and Physalis angustifolia represent the floral covering of the basins, low dunes and level reaches of the sand spit plain. The second type of sand plain is the open grass plain covered with herbaceous plants and such grasses as Chaetochloa magna, Uniola paniculata and the slender vines Vigna glabra, Clitoria mariana, associated with Chamaecrista littoralis, Gerardia purpurea and Croton maritimus (= C. punctatus). The sand plain, however, culminates in the forests of Pinus palustris (= P.
The Atlantic and Gulf coast plains were covered by a forest of the same general character from Virginia through the Carolinas, Georgia, northern Florida, Alabama, Mississippi, Louisiana, and Arkansas to eastern Texas, where near the Brazos River, it is checked by the drier climate of the southwest. It is instructive to study it in Texas, where it meets three other floral elements, viz., the Mexican flora, the Rocky Mountain flora and the Great Plain flora. Here the vanguard of the coastal plain forest is broken into straggling detachments, of which only the hardier push onward along the prairie streamways or up the deeper canyons of the hills. "It is a striking phenomenon, this breaking up and gradual dwindling away of so vast and vigorous a forest"). Not only in Texas, but far to the north, through the Indian Territory, Kansas, Nebraska, and the Dakotas, the same thing may be seen. Like a vast wave that has rolled in upon a level beach, the Atlantic forest breaks upon the dry plains — halting, creeping forward, thinning out, and finally disappearing, except where along a river course, it pushes far inland”. The swamps and bayou forest form one of the elements of this coast forest that reaches Texas and reaches northward into Arkansas, as far, as southeastern Missouri, *Taxodium distichum*, *Nyssa sylvatica*, *Q. nigra* (= *Quercus aquatica*, *Carya amara* (= *Hicoria minima*), *Liquidambar styraciflua*, *Fraxinus platycarpa*, *Magnolia glauca* and *Nyssa uniflora* are the more important trees of this type of forest. The relative representation of species varies greatly in different areas. In one place *Nyssa uniflora* (see Fig. 5, p. 213) is dominant, in another *Taxodium distichum*, in another *Carya amara*. The hardwood forests of the alluvial bottoms in Texas consists of nearly all the well known valuable trees of the Atlantic States. The oaks (*Quercus*) stand first in quantity and variety: *Quercus Michauxii*, *Q. macrocarpa*, *Q. lyrata*, *Q. alba*, *Q. rubra*, *Q. phellos* and *Q. nigra* (aquatica) associated with *Fraxinus americana*, *F. viridis*, *Carya* (Hicoria) *aquatica*, *Carya olivaeformis* (= *Hicoria pecan*), *Carya tomentosa* (= *Hicoria ovata*), *Nyssa sylvatica*, *Platanus occidentalis*, *Tilia americana*, *Acer dasycarpum* (= *A. saccharinum*), *Ostrya virginiana*, *Carpinus caroliniana* and *Maclura aurantiaca* (= *Toxylon pomiferum*) and *Juglans nigra*. On the rich loose bottom soil, the timber grows very large and the intermixture of species is ordinarily very complete.

At the Gulf, the coast plain in Texas is a grass covered prairie. Twenty miles inland tongues of forests are found projecting down to the Gulf along

the ridges. These tongues are the seaward extension of mixed forests of loblolly pine and hardwoods. A change to long leaf pine land takes place, where the Neocene formation meets the sands of the Eocene. The loblolly pine *Pinus taeda*, covers the sandy ridges of the Neocene formation, while the swampy flats grow a jungle of hardwood with some loblolly, climbing vines and palmetto thickets. The alluvial valleys are filled with hardwood trees. The longleaf pine area in Texas is shaped like a broad wedge thrust in between the loblolly pine at the south and the shortleaf at the north, and extends southwestward to the Trinity River, where the overlapping areas of loblolly and shortleaf form its western boundary1). It always grows on dry sands from necessity rather than preference for it finds refuge from the competition, which is generally too much for it on moister and better soils.

The shortleaf pine *Pinus mitis* (≡ *P. echinata*) and post oak forests occupy the Tertiary plain, a region of sand beds and underlying clays, the remnant of an ancient plain worn away by erosion, in which the streams have established wide drainage bottoms. It is on these uplands that the shortleaf pine and oak prevail. In Texas, as in the South Atlantic States, the live oak *Quercus virginiana* (≡ *Q. virens*) occurs on the coast plain, where westward toward the Neues, it yields to the increasing aridity of climate, becoming a more stunted open growth spreading over the grass prairie, which become converted into woodland.

Northward extension of Areas. One fact is noteworthy in the study of the coastal plain flora and that is the tendency to a northward migration of plants. That tendency is clearly illustrated in the northward extension of the pine barren flora on Staten Island and Long Island. The soil of the islands is generally sandy, but is occasionally more firm, where the strata of clay approach and form the surface. The geologic formations to the south and southeast of a line drawn from a point below Long Branch to another near the head of Delaware Bay are Tertiary, while those to the north of it are Cretaceous. The Tertiary soils extend southward along the Atlantic Ocean to Florida and are occupied by a pine barren flora. On Staten Island, Cretaceous strata are exposed in its extreme southern portion. They doubtless extend over the entire southern and eastern sections, but are mostly covered by a layer of material of variable thickness derived from the glacial drift. On Long Island, the great terminal moraine occupied the position marked by a range of hills extending throughout its whole length at an average distance of ten miles from the Atlantic. South of these hills sandy plains prevail, the material composing them having been formed partly from the modified drift of the hills, partly from the underlying Cretaceous strata. Those species detected on the Cretaceous soils of Staten Island, south of the moraine, and, therefore, not on the drift, are thirty four in number.

1) Bray, W. L.: l. c.
Magnolia glanca (≡ M. virginiana).
Hudsonia ericoides.
Aseyrum crux-androce (= A. hypericoides).
Arenaria squarrosa (= A. caroliniana).
Polygala lutea.
Tephrosia (Ursacca) virginiana.
Desmodium (Meibomia) laevigatum.
Desmodium (Meibomia) viridiflorum.
Rubus cuneifolius.
Crataegus uniflora (≡ C. parviflora).
Eapatorion rotundifolium.
Aster nemoralis.
Aster concolor.
Chrysopis mariana.
Gnaphalium purpureum.
Gaylussacia dumosa.
Andromeda (Pieris) mariana.

Of these species the following four have been detected in Suffolk County, Long Island: Desmodium (Meibomia) viridiflorum, Rubus cuneifolius, Ipomoca pandurata, Phlox subulata with the addition of sixteen species not mentioned previously:

<table>
<thead>
<tr>
<th>Drosa filiformis.</th>
<th>Helianthus angustifolius.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aseyrum stans.</td>
<td>Coreopsis rosea.</td>
</tr>
<tr>
<td>Eapatorion hyssopifolium.</td>
<td>Utricularia subulata.</td>
</tr>
<tr>
<td>E. lenecolepis.</td>
<td>Chamaecyparis (Cupressus) thyoides.</td>
</tr>
<tr>
<td>E. album.</td>
<td>Junecus pelocarpus.</td>
</tr>
<tr>
<td>Aster spectabilis.</td>
<td>Xyris caroliniana.</td>
</tr>
<tr>
<td>Solidago puberula.</td>
<td>Eleocharis melanoacarpa.</td>
</tr>
<tr>
<td>Chrysopis falcata.</td>
<td>Sporobolus serotinus.</td>
</tr>
</tbody>
</table>

Thus it appears that 34 of these characteristic pine barren plants grow in the southern part of Staten Island, and that 46 of them have been detected in Suffolk County, Long Island.

It would seem that these species have followed the two more recent geologic formations, throughout their whole extent along the Atlantic coast. Another fact which stands out prominently in this connection is that not a single one of the above mentioned plants, growing as we have seen along the edge of the glacial drift is native of Europe, but belongs to a true American flora, which had its origin in the southern part of the continent and migrated northward into Staten Island and Long Island at the close of the great ice age. In contrast to this fact, we have another one equally prominent and that is, that of the species of plants growing on the moraine and north of it about one-third are common to northern Europe and America. The flora north of the morainic lines clearly antedates in point of occupancy of the country the more southern and American pine barren flora, which migrated northward at a date subsequent to the migration of the flora with strong European affinity.

It would seem that the flora of the Delaware Valley and of the coastal strip between the pine barrens and the salt marshes in New Jersey was
developed subsequent to the post-Pensauken uplift of the New Jersey geologists\(^1\) which occurred prior to the glaciation of the northern hemisphere. During the Pensauken submergence of the New Jersey geologists\(^1\) which occurred prior to the glaciation of the northern hemisphere, New Jersey was depressed to such an extent as to drown the Delaware River at its lower end, allowing the sea to pass up its valley and over the peneplain which had been developed during the previous cycle of erosion, so that a broad sound was formed which connected Raritan Bay with Delaware Bay, forming an island covered perhaps with pine barren vegetation. The mouth of the Delaware River during the post-Pensauken uplift was transferred to Delaware Bay followed by a cycle of erosion which lasted until the ice of the last glacial epoch invaded the northern portion of the state. It was during the post-Pensauken uplift that the flora of the lower Delaware Valley and the coastal strip was probably developed, so that the New Jersey pine barrens became surrounded by a fringe of vegetation developed along similar lines in the coastal strip and along the east and west banks of the Delaware River.

Pine barren Flora. Another illustration of the historic factors instrumental in plant distribution and one connected with the development of the pine barren flora in general is afforded by the peculiar flora of the Kittatinny or Shawangunk Mountains of northwestern New Jersey. This mountain chain forms a wall of almost constant altitude, averaging over 1200 feet in height, along the eastern side of the Delaware River from Port Jervis to the Delaware Water Gap. Its summit and western slopes are composed of a coarse, or fine, very hard silicious conglomerate, or sandstone, with little soil but that derived from the limited disintegration of these rocks and it is, therefore, highly silicious. While the mountain sides were extensively glaciated, there is very little glacial drift on the ridge. On these mountains exist a number of plants which occur also in sandy soil along the Atlantic coast. Among the noteworthy species, according to N. L. Britton, are *Juncus Greenii, Solidago puberula, Orontium aquaticum, Tephrosia (Cracca) virginiana, Lespedeza hirta, Lupinus perennis, Quercus ilicifolia* (\(= Q. nana\), *Corema Conradii*). At Culver’s Gap were found by Britton, *Polygala polygama, Gerardia pedicularia, Lechea racemulosa*, all abundant along the coast and *Prunus pumila*. Another peculiarity is the substitution of *Pinus rigida* on the mountains for *Pinus strobus* of the surrounding country.

The reason for the somewhat remarkable similarity of the pine barren and summit mountain floras is usually attributed to the similarity of the soil on the mountains to that of the plains bordering the coast. It is probably true that the plants occupy these areas, because they have adapted themselves to growing in soils of silicious sands, but to say that the soil is the prime factor in their distribution is putting the case too strongly. It appears that the flora

\(^1\) Cf. Salisbury, J. D.: The physical Geography of New Jersey, Geological Survey of New Jersey, IV.
of the mountains is an endemic one showing relict endemism, representing a
survival of a pine barren flora which was extensively represented in Atlantic
North America as a plain flora occupying the situations controlled by the same
edaphic conditions. During the elevations of the coastal plain, it spread its
boundaries over the newly raised land and on to the more level mountain
summits, but during a subsequent depression (Pensauken submergence) it was
again destroyed on the coastal plain or circumscribed in its distribution to similar
edaphic situations in the mountains where it persisted during the glacial period.
With the post-Pensauken uplift the New Jersey coastal plain was again tenanted
by pine barren plants, which after the retreat of the great continental ice sheet
migrated to Staten and Long islands.

This peculiar pine-barren assemblage of species \(^1\) of the mountain
floras of northeastern Pennsylvania and northern New Jersey forms an element
in the flora of the Pocono plateau 2000 feet above sea level in Monroe County;
Pennsylvania. The original vegetation of this plateau consisted of five elements,
viz., the pine barren association of plants, consisting of a forest of pitch pine
\((\text{Pinus rigida})\) with associated species which entered the region at the close
of the glacial period and occupied the looser sand and boulder material of
the slopes and sides of the great terminal moraine having been derived from
the pine barren elements of the mountains previously described; following 2, the
deciduous forest of oaks, ashes, tulip poplar and associates, which moved up
the river valleys and clothed the slopes of the mountains and edges of the
tableland; 3, the chestnut and black locust forest, which moved up the valleys
from the Susquehanna River to Laurel Ridge; 4, a forest consisting of white
pine, black spruce and hemlock, which migrated into the region along the
crest and in the upper mountain stream valleys from the main Appalachian
system, comprising that association of species found in the mountains of Vir-
ginia and southward at an elevation of three thousand feet and over. 5, the
sphagnum-bog flora, as a relict flora, when more glacial conditions prevailed.
In these bogs are preserved many glacial plants such as \(\text{Ledum latifolium}
\) (= \(\text{L. groenlandicum}\), \(\text{Scheuchzeria palustris}\), \(\text{Rhododendron Rhodora}\), \(\text{Kalmia glauca}\), etc. With the destruction of the original forest consisting of species
disposed in general, as above, the pine barren element consisting of \(\text{Quercus ilicifolia}\) (= \(\text{Q. nana}\)), \(\text{Pinus rigida}\), \(\text{Gaylussacia resinoso}\), \(\text{Vaccinium vacillans}\),
\(\text{Epigaea repens}\), \(\text{Gaultheria procumbens}\), \(\text{Rhododendron viscosum}\), \(\text{Kalmia angustifolia}\), \(\text{Amianthium \{Chrosperma\} muscaeo\text{tlicum}\}, \(\text{Lycopodium inundatum}\), seems
to be spreading by mass invasion to the white pine lands made sterile by the
action of the forest fires, so that if no precaution is taken the whole of the
Pocono tableland will be covered with a worthless scrub of \(\text{Comptonia aspleni-
folia}, \(\text{Pieris \{Pteridium\} aquilina}, \(\text{Quercus ilicifolia}\) (= \(\text{Q. nana}\) representing the
pine barren associations of species \(^2\)).

1) That is an “Association of Species” or “species-guild” in a phytogeographic sense.
A consideration of the strand flora of New Jersey, which is well represented in the meadows of sedges, swamp rose mallow (Hibiscus moscheutos) and the forests of Pinus rigida, Juniperus virginiana &c. of the plate IV, reveals the fact that the time element is important in an explanation of the distribution of the sea-shore plants. If we contrast the character of the association of species on the northern and southern shore of New Jersey we find that the formations on Barnegat beach, for example, are usually open, while those on Wildwood beach are closed and have culminated in the forest type of vegetation. This argues for a greater age of the strand flora of Wildwood, as compared with that for example at Sea Side Park in the north, and this conclusion is substantiated by the fact that the bays behind the sandy sea islands are converted by the action of the tides and vegetation into salt marshes in the south, while in the north there are wide and open bays of brackish, or salt water \(^1\). The development of this coast flora must have been subsequent to the post-Pensauken uplift, but there is good reason to believe, that practically the same plants formed an association of species which fringed the continent wherever a sandy or gradual shoreline was exposed to the action of the sea. These plants migrated along the shore with every elevation and depression, now fringing some recently formed sea-sound, now encroaching upon some recently emerged sandbank. We find an interesting confirmation in the presence of typic seashore plants on the coasts of the great lakes. Such plants as Ammophila arenaria (= A. arundinacea), Sabattia angularis, Lathyris maritimus, Gerardia purpurea, Euphorbia polygonifolia, Myrica carolinensis are found not only on the shore of the Great Lakes, but some of them at the Lake of the Woods. The most satisfactory explanation seems to be that in post-glacial times the valleys of the St. Lawrence, Hudson, Lake Champlain and probably also lakes Ontario and Superior were then occupied by the sea, because of the northeast depression of the lands. During this period of submergence the typic seashore plants invaded the interior of the continent by way of the then existing seashore. Another interesting confirmation of the fact that the later periods of submergence and uplift had a powerful influence on the distribution of sea coast species is found in the present distribution of the swamp rose mallow, Hibiscus moscheutos, in the Atlantic coastal plain. This plant normally occurs in brackish marshes from Massachusetts to Florida and Louisiana and on lake shores in saline situations locally in the interior to western Ontario. When it occurs in fresh water swamps, it is reasonably certain that these swamps represent converted salt marshes or bays which were present during a former time of submergence. New Jersey shows this best. During the Pensauken submergence, southern central New Jersey was a sea island separated from northern New Jersey by Pensauken Sound. Hibiscus moscheutos in its present distribution in New Jersey follows the former shore line of that

Salt Marsh, Southern New Jersey.

Distichlis and Salicornia, Hibiscus. — Juniperus virginiana on low dunes. Myrica carolinensis &c.
ancient island, for it occurs on both banks of the Delaware River to the head of tide water, in marshes along the New York Division of the Pennsylvania Railroad between Trenton and Newark, which follows the old sound bed and in the brackish marshes of the coast.

In the higher Appalachian Mountains of the southern states, we find a forest of firs, *Abies Fraseri*, accompanied by such trees and shrubs, as the yellow birch *Betula lutea*, mountain ash *Sorbus americana*, mountain maple *Acer spicatum*, red elder *Sambucus racemosa* and wild red cherry *Prunus pennsylvanica*. Other characteristic species like the striped maple *Acer pennsylvanicum*, hemlock *Tsuga canadensis*, white pine *Pinus strobus*, and the arbor vitae *Thuja occidentalis* to much lower elevations (900 meters or less). Along the crest of the highest mountains of this region usually at an altitude of 6000 feet (1800 meters) or upwards the green alder, *Alnus viridis* (= *A. alnobetula*), *Arenaria groenlandica*, *Potentilla* (Sibbaldiopsis) *tridentata* and *Trisetum subspicatum* are encountered. By far the greatest surface of the mountain region is covered with such woody species as *Betula lenta*, *Magnolia umbrella* (= *M. tripetala*), *M. acuminata*, *M. Fraseri*, *Acer saccharinum*, *Rhododendron maximum*, *Kalmia latifolia*, *Castanea americana* (= *C. dentata*). Mingled with these are *Juglans nigra*, *Liriodendron tulipifera*, *Carya alba*, (= *Hicoria ovata*) *C. tomentosa* (= *Hicoria alba*), *Quercus alba*, *Q. prinus*, *Ilex opaca*, *Hamamelis virginiana*, *Fagus americana* (= *F. ferruginea*), which are perhaps more characteristic of the Alleghanian flora than that lower down. The lower slopes of the Alleghanian flora than that lower down. The lower slopes of the mountains and the valleys between are largely occupied by extensions of the flora which distinguish the Piedmont plateau. Very characteristic species, especially along the streams are *Platanus occidentalis*, *Betula nigra*, *Tilia heterophylla*, *Celtis occidentalis*, *Liquidambar styraciflua*, *Morus rubra*, *Sassafras officinale* (= *S. sassafras*), *Diospyros virginiana*, *Nyssa sylvatica*, *Pinus virginiana* (= *P. inops*), *Pinus mitis* (= *P. echinata*), *Ulmus americana*, *Castanea pumila*, and *Quercus marylandica* (= *Q. nigra*).

Origin of Mountain Elements. There are many plants in the mountainous parts of the south which are probably the more or less modified descendants of that characteristic flora which in later Eocene or in Miocene time extended to high northern latitudes, also occupying the mountainous parts of what is now the north temperate zone 1). To be reckoned here with more or less confidence, are 2).

Danthonia sericea Nutt.
Uniola gracilis Michx.
(= U. laxa L.).
Poa Chapmaniana Scribn.
Arundinaria macrosporæa Michx.
> tecta Walt.
Lilium carolinianum Michx.
Ulmus alata Michx.
Parnassia grandifolia DC.
Decumaria barbara L.
Itea virginica L.
Crataegus uniflora Muench.
> rotundifolia Ehrh.

Berchemia volubilis Hill. (= B. scandens DC.).
Cissus ampelopæsis Pers. (= Ampelopæsis cordata Michx.).
Vitis (Muscadinia) rotundifolia Michx.
Aralia spinosa L.
Leucothoe (Andromeda) racemosa (L.) DC.
Gaylussacia dumosa Andr.
Vaccinium (Batodendron) arboreum
Symlocos tinctoria L. (Marsh.
Chionanthus solitaria Rydb.

Most of the species, as well as many of the genera, comprised in this second category are characteristic neither of tropic nor of high northern regions. They belong in great part to groups which are most largely represented at present in the mountainous parts of the warm belt of the northern temperate zone, in both the eastern and western hemispheres.

To be considered in connection with this category of species are those which occur both within the main limits of the southern coastal area and in the mountains of the Appalachian region. With the exception of Clethra (which is largely tropic) all these genera have their present center of distribution in the warmer part of the north temperate zone. This may be said also of the larger groups to which many of them belong, e. g., the families Calycanthaceae, Sarraceniaceae, Hamamelidaceae, and Monotropaceae, and the tribes Hydrangeae of Saxifragaceae and Andromedae of Ericaceae. Some of them are known to belong to floral types which were widely distributed in the northern hemisphere during the early part of the Tertiary, in not a few cases ranging, as far north, as Greenland and Alaska. Very broadly speaking several of these genera represent groups which appear to be on the wane, as distinguished from the dominant and aggressive types of neotropic origin which appeared later in the mountains and to which we shall refer. A faint indication of a coastal plain element in the mountain flora 1) is perceptible, as far north, as West Virginia and southeastern Kentucky; while, on the mostly granitic outcrops in northern central Georgia and northern Alabama, of which Stone Mountain is a type, it is so extensive as to somewhat obscure the main flora. The occurrence of coastal plain species of southern origin (lower austral) at higher elevations in the midst of a transition flora demands attention.

Some of the species occurring on Lookout Mountain, but not reported from other stations in the mountains, e. g., Pinus taeda, Cocculus (Cebatha) carolinus, Vaccinium (Batodendron) arboreum, and Spigelia marylandica also

extend farther up the Tennessee valley. This mountain especially near its southwestern end in Alabama, harbors a notable colony of lower Austral plants:

- *Pinus taeda* L.
- *Xyris communis* Kunth (= *X. macrocephala* Vahl).
- *Asimina parviflora* Michx.
- *Cocculus carolinus* L. (= *Cebatha carolina* Britton).
- *Sarracenia flava* L. (var. oreophila).
- *Crotonopsis linearis* Michx.
- *Berchemia scandens* Hill (= *B. volubilis* DC.).
- *Vaccinium (Batodendron) arboreum* Marsh.
- *Gelsemium sempervirens* L.
- *Spigelia marjordanica* L.
- *Chondrophora virgata* Nutt. (= *Bigelowia nudata* var. *virgata* Nutt.).

The species physiologically of the hot coast plain (austro-riparian) form not infrequently, in peculiarly favorable localities diminutive pine barrens which cover sandy river bottoms and the dry sunny lower slopes of the hills, in numbers so pronounced, that a botanist suddenly set down amongst them might be puzzled for a moment as to his whereabouts. Two colonies of this character may be referred to.

Along the French Broad River below Paint Rock, North Carolina, and just within the limits of Tennessee, the stream is bordered by limited strips of flat land, which are mostly covered by a small growth of yellow pine *Pinus mitis* (= *P. echinata*). The altitude of the river banks is here from 1150 to 1200 feet (345 to 360 m) above the sea. In these grooves, the herbaceous flora is like the coastal pine barren flora. The following list of species all of which are abundantly represented, indicates the character of this flora.

- *Erianthus alopecuroides* L.
- *Andropogon argyraeus* Schult.
- *Chrysopogon (Sorghum) nutans* var. *Linnaeanus* (= *Sorghastrum Linneanum* Hack.).
- *Sporobolus asper* Michx.
- *Danthonia sericea* Nutt.
- *Gymnopogon ambiguus* Michx. (= *G. racemosus* Beauv.).
- *Triodia cuprea* Jacq. (= *Tridens sesslerioides* Michx.).
- *Crataegus uniflora* Muench. (= *C. parvifolia* Soland.).

- *Schrankia (Morongia) angustata* Torr. & Gray.
- *Stylosanthes riparia* Kearney.
- *Croton glandulosus* L.
- *Vitis rotundifolia* Michx.
- *Bignonia crucigera* L. (= *B. capreolata* L.).
- *Elephantopus tomentosus* L.
- *Eupatorium aromaticum* L.
- *Chrysopsis graminifolia* Michx.
- *Silphium asteriscus* L. (= *S. compositum* Michx.).

Another noteworthy austro-riparian colony, according to KEARNEY 1), occurs at a mean elevation of about 1000 feet (300 meters), in the canyon-like valley of the Hiwassee River, in extreme south-eastern Tennessee. Some of the most important species are:

1) KEARNEY, THOMAS H. JR.; I. C. 835.
Harshberger, Survey N.-America.
3. Southern Atlantic States and Mississippi Valley.

We now come to the difficult question of the probable past history of the lower austral plants which occur today in the Appalachian region. In studying this floral element, one soon reaches the conclusion that it comprises species which are markedly different not only in their systematic relationships, present distribution in the region and probable past history, but even, to a considerable degree, in their ecologic constitution.

Neotropic Elements. A most pronounced element consists of plants of probably neotropic origin, which made their first appearance, as we have seen, in the Appalachian region in geologically very modern times, probably after the close of the glacial epoch. The following list embraces species which probably from their distribution elsewhere, or from their affinities, are most likely to have had this history.

Erianthus alopecuroides L.
» brevibarbis Michx.
» contortus Ell.
Andropogon argyraeus Schult.
» Elliottii Chapm.
Paspalum purpurascens Ell. (= P. Boscianum Fluegge).
Panicum gibbum Ell. (= Sacciolepis gibba Ell.).
» viscidum Ell.
Danthonia sericea Nutt.

Erianthus alopecuroides L.
» contortus Ell.
Andropogon argyraeus Schult.
» Elliottii Chapm.
Paspalum purpurascens Ell. (= P. Boscianum Fluegge).
Panicum gibbum Ell. (= Sacciolepis gibba Ell.).
» viscidum Ell.
Danthonia sericea Nutt.

Yucca filamentosa L.
Agave virginica L.
Pogonia divaricata L.
Phoradendron flavescens Pursh.
Asimina parviflora Michx.
Cocculus (Cebatha) carolinus L.
Schrankia (Morongia) angustata Torr. & Gray.
Sorghastrum Linneanum Hack.
Paspalum longipedunculatum LeConte.
Panicum gibbum Ell. (= Sacciolepis gibba Ell.).
Panicum angustifolium Ell.

Sepalium trilobatum Michx.
Clitoria mariana L.
Crotonopsis linearis Michx.
Ascyrum stans Michx.
Hypericum densiflorum Pursh.
 » (Sarothra) Drummondii Grev. & Hook.
 » virgatum Lam.
Rhexia mariana L.
Jussiaea decurrens Walt.
Gelsemium sempervirens Ait.
Cynoctonum mitreola L. (= Mitreola petiolata T. & G.).
Spigelia marylandica L.
Callicarpa americana L.
Gratiola sphaerocarpa Ell.
 » viscosa Schwein.
Bignonia cricigeria L. (= B. capreolata L.).

Yeatesia lacte-virens Buckl. (= V. viridiflora Nees.).
Diodia virginiana L.
Melothria pendula L.
Eupatorium aromaticum L.
Chrysopsis graminifolia Michx.
Silphium asteriscus L.
Tetragonotheca helianthoides L.
Coreopsis major Walt. (= C. scinitolia Michx.).
Coreopsis auriculata L.
Marshallia lanceolata Pursh var. platyphylla Curtis.
Liatris (Lacinaria) graminifolia Walt.
Pluchea petiolata Cass.
Silphium compositum Michx.
Helianthus angustifolius L.
Helenium nudiflorum Nutt.

By far the greater number of these neotropic species in the above list belong to groups, whether genera, tribes, or families, which are chiefly tropic in their distribution. Thus of the three most largely represented families, the Gramineae, the species belong chiefly to the tribes Andropogoneae and Paniceae; and the Compositae to Eupatorieae and Helianthoideae. This category is remarkable in consisting almost entirely of herbaceous species. Most of them are of distinctly xerophytic structure, loving a dry sandy soil and much light and heat.

The extremity of peninsular Florida is remarkable from a floristic standpoint in the presence of so many tropic species many of which have been received through the Bahama islands and perhaps some of them directly from the Greater Antilles. In all probability part of this migration occurred during the Eocene period for during the Eocene elevation there was probably a landway from Cuba across the Bahama banks to Florida, as evidenced by geology and by the fact that certain groups of Antillean land mollusks according to ÖRTMANN 1 crossed that bridge. Perhaps this land connection continued until Miocene times, or at any rate peninsular Florida was then identified with the Bahama islands for geologists have proved that during this time the Gulf Stream did not form any barrier to plant distribution northward because it flowed out of the American Mediterranean, as now, but through a passage across the northern half of Florida.

Subsequent to the Miocene, the Bahama islands were again submerged for

the present Bahama group of islands is of very recent geologic history, the
last uplift being placed not earlier than the late Tertiary by Britton1) and
others. The flora clearly of the Bahamas and that of Florida is of southern
derivation, a large number of the known indigenous species, as before shown,
being common to the near by and older islands of Cuba and Haiti, while
many of the species are closely related to plants from these islands. The
chief agents in the introduction and distribution of the plant populations
of the Bahamas and Florida being migratory birds, supplemented by winds and
ocean currents. Notwithstanding the geologically short period that the Bahama
have been above the sea, they have witnessed the evolution by mutation
or otherwise of numerous species, there being many endemic plants known
and many more will be made known, as the result of the recent explorations.
Many of these, it is believed, will prove to be examples of rapid evolution.
The tropic flora of southern Florida then is represented by species that mig-
rated into Florida since the last upheaval of the present Bahama chain of is-
lands. The modern flora of southern tropic Florida essentially consists of the
recent introductions which have undergone mutation into new forms. Emph-
asis should at this point be made of the fact that the agencies enumerated
above were at all times, whether in the Eocene, or Pleistocene, instrumental
in the migration and intermingling of plants, although the land bridges also
afforded an easy means of access into an area connected by such a bridge
with another land mass possessing a richer flora. Of the 492 plants common
to the Bahamas and the United States, there are 40 previously enumerated
that are only found in these two regions. Such plants as Myrica cerifera,
Vitis rotundifolia, Rhus Blodgetii, Eragrostis Elliotii and Baccharis angusted-
folia have in all probability migrated from the mainland to the Bahamas.
Dividing these islands into two groups, the first or northeastern, according to
Coker, comprises Andros, New Providence, Abaco, Great Bahama, Berry
islands and surrounding cays, and the second, or southwestern group, consist-
ing of Eleuthera and all the islands south of it2). It will be seen from the
above list that all, except eight of the plants confined to the United States
and the Bahamas are found only on the northwestern group. Analyzing the
figure 492, we find that 322 species are common to the Bahama islands and
southern Florida and 170 species are common to the Bahamas and the southern
United States. Selecting a representative number of plants the following
species found in southern Florida also occur in the Bahamas. Those
marked by an asterisk(*) occur in Cuba; those with two asterisks(**) in the
Greater Antilles; those with a cross(†) in Mexico and Central America, while
those with a paragraph (§) in South America.

1905.
publication The Bahama Islands of the geographical Society of Baltimore.
Juniperus (Sabina) barbadensis L. (**)
Cyclopatehe Northropii Cook.
Pseudophoenix Sargentii Wendel.
Thrinax argentea Lodd. (= Cocco-
thrinax jucunda Sarg.) (*⊥**)
 » floridana Sarg. (*)
Tillandsia balbisiana Schult. (*)
 » aloifolia Hook. (*†**)
 » fasciculata Sw. (*⊥§*)
 » utriculata L. (*⊥§*)
 » recurvata L. (*⊥§*)
Agave sisalana Engelm. (**⊥)
Swietenia mahagoni Jacq. (*†§**)
Croton linearis Jacq. (*)
Excoecaria lucida Sw.
Hippomane mancinella L. (*⊥§**)
Hypelate trifoliata Sw. (**)
Gouania domingensis L. (**⊥)
Canella Winteriana L. (**†

Rhizophora mangle L. (*⊥**)
Bletia verecunda Sw. (***)
Epidendrum nocturnum L. (*†)
Polystachya luteola Hook. (**†)
Coccolobis (Coccoloba) uvifera L.
 (*⊥§**)
Cassytha filiformis L. (*⊥⊥**)
Chrysobalanus icaco L. (*⊥§**)
Caesalpinia (Guilandina) crista L. (**†)
Byrsonima lucida Sw. (*)
Bursera simaruba L. (*⊥**)
Eugenia longipes Berg. (**)
 » monticola Sw. (**
Conocarpus erecta L. (*⊥**)
Avicennia nitida Jacq. (**⊥†)
Genipa clusiifolia Jacq. (**
Pectis linifolia L. (= P. Lessingii
Fernald) (**

The distribution of plants in the southern extremity of Florida is an interesting confirmation of the historic development of a flora. Seven plant formations can be recognized, viz., 1 the sea strand formation; 2 the mangrove swamp formation; 3 the everglade formation; 4 the prairie formation; 5 the savanna formation; 6 the pine-land formation; 7 the hammock-land formation. Historically, the sea-strand formation and the hammock-land formation are the oldest floristically speaking. The strand flora, consisting of such plants as *Uniola paniculata, Panicum amarum, Ipomoea Pes-caprae, I. Batatas* littoralis, *Iva imbricata, Cakile maritima, Agave decipiens* (on tropic section), has existed as an element of peninsular Florida since the land was elevated above the sea and perhaps was derived from an earlier seashore flora, which existed along the shore of the mainland, or the coasts of the larger and more elevated sea islands.

Nearly all the tropic species recently added to the flora of the United States were discovered in or about the hammocks, which are essentially duplicated by similar formations in the West Indies. The total area of the hammock-land is relatively insignificant, when compared with the pine-lands, yet the flora, as shown in the enumeration below is as rich, if not comparatively richer.

Pinelands 43 per cent.
Hammocks 42 per cent.
Everglades 15 per cent.

The hammocks consist of isolated groups of hardwood trees, shrubs and vines. These hammock formations with an overlying soil, thicker than the pine-lands, due without doubt to the accumulation of vegetal detritus, vary in
size from an acre to many hundred acres and are scattered as islands in the everglades and pine-forests instead of surrounded by the ocean, as they formerly were before the sea bottom between them became dry land by elevation. The trees, shrubs and woody vines harbor an almost incredible growth of plants of various categories. The growth of epiphytes is especially striking, for in numerous cases the tree trunks and branches are completely clothed with air plants, and so prolific are the orchids and bromeliads that many individuals are forced to growth on the ground and on the neighboring pine trees\(^1\). Here occur the great majority of flowering plants now known to be common both to the West Indies and the mainland of North America. It is in the hammock where one finds the mastic *Sideroxylon masticodendron*, crabwood *Gymnanthes lucida*, satin-leaf *Chrysophyllum oliviforme* (= *C. monopyle*), gumbo-limbo *Bursera gymmifera* (= *B. simaruba*), prince-wood *Exostema caribaenum*, white wood *Drypetes crocea* (= *D. lateriflora*), and manchineel *Hippomane maccinella*\(^2\). As the rock of New Providence Island of the Bahama group is essentially identical with that of Florida south of Miami, and as there are many trees and shrubs common to the two regions, as well, as to Cuba, while many species are endemic to each of the three regions, we are forced to conclude from the evidence that the flora gives, that geologically and to a certain extent floristically the hammock lands formed originally part of the Antillean region. The hammock lands represent perhaps part of the ancient system of keys which existed at the time when the Gulf Stream left the American Mediterranean through a channel which existed across the northern half of Florida. It was when these islands formed an extended archipelago coextensive with the Bahamas that the hammocks were occupied by their present flora which, therefore, shows the closest relationship to that of the near by Bahama islands. With the elevation of the land through the epeirogenic movements of the earth's crust, through the agency of coral polyps, vegetation, ocean and wind currents, the Gulf Stream was directed into its present channel and the sea islands which now exist in south Florida in the form of hammocks, were connected by dry land, or by partially submerged banks to form the present peninsula of Florida, and after sufficient elevation had taken place, the surrounding sea flat was transformed into a savanna or into the vast spring known as the everglades.

With the appearance of level plains by the removal of the shallow sea over a sandy bottom, isolated trees and herbaceous plants, which associated together formed the savanna formation, appeared and clothed the ground. Imperceptibly, these savannas were transformed into the pine-land formation. This formation is characterized by a scattering growth of *Pinus heterophylla*

1) Consult the articles by SMALL, J. K. and BRITTON, N. L. in *Journal New York Botanical Garden* III, No. 26, Feb. 1902; IV, No. 39, March 1903; V, No. 51, March 1904; V, No. 55, July 1904; V, No. 56, Aug. 1904 to which the writer is indebted for many facts herein set forth under the new cloak of generalization.

Everglades the Jan. few Swamps confined captured How belonging These Zamia herbaceous of younger in clearness ached everglade formation. they glades, or about the an herbaceous with lands, mud borders of species islands, leaves few vegetation of of a fringe Geology "prairie"). timber a prairie. whatever their position in point of time, they cover an area about one hundred miles wide and perhaps one hundred and fifty miles long, the elevation being about 18 feet above sea-level. The everglades consist of an extended saw-grass swamp traversed by winding river-channels, and covered with scattered hammock-lands. Its flora consists of grasses, sedges and other herbaceous plants (Apios tuberosa, etc.) among which are many aquatic and mud inhabiting plants (Peltandra virginica, Saururus cernuus). The vegetation of the everglades is of a more northern character than that of the hammock lands, more than half the species of which are native to Cuba and the Bahama islands, so that often one can stand with one foot in an association of northern species and the other in an association of plants restricted to the tropics.

The Mangrove formation represents an important element in the flora of southern Florida. The mangrove swamps are particularly abundant along brackish shores and along the sea-islands, the so-called Florida Keys\(^1\). Their vegetation is confined almost exclusively to the mangrove trees and such few tillandsias and orchids as grow upon their branches. Frequently on the borders of these swamps occurs a large showy species of Acrostichum with leaves often six to eight feet long. The area shut off from the sea by the fringe of mangrove becomes dry ground and eventually grassland (in Florida a "prairie").

The results of this survey as to the southern extremity of Florida may be arranged below:

<table>
<thead>
<tr>
<th>Ancient Strand Flora</th>
<th>Northern Element</th>
<th>Ancient Sea Island Flora</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mangrove Flora</td>
<td>Everglade Flora</td>
<td>Swamp Flora</td>
</tr>
<tr>
<td>Savanna Flora</td>
<td>Pineland Flora</td>
<td>Grassland Flora</td>
</tr>
<tr>
<td>Present Strand Flora</td>
<td></td>
<td>Present Hammock Flora</td>
</tr>
</tbody>
</table>

Mississippi Valley Flora. As has already been mentioned, the central valley of North America during the upper Cretaceous period was mostly under water. In lower Tertiary time, these waters had receded from the north leaving the southern part of the Mississippi valley still submerged. In the late Tertiary, the water had still further receded, only a narrow embayment representing the once more extensive northward projecting lobe of the ocean. (See Fig. 3, 4, page 179.) A plain was formed with the recession of the sea, and in all probability it stood then much at its present elevation. This plain was invaded at once by the grass formation which formed dense mats of turf with deeply penetrating roots. Thus we have the vegetal covering of North America at the close of the Tertiary period divided into two great kinds, forest and plain. The plain flora consisted of turf-builders which characterize the prairie and plains of the present day. During the middle Tertiary period down to the Pleistocene, the grassy plains were much less extensive than now, because the climate of the eastern foothills of the Rocky Mountains was much more humid, in part, because of the presence of Lake Bonneville in the Great Basin permitting the western forest trees to grow east of their present position, and in part, because the characteristic forest of the east occupied a much more extended area, especially during Miocene times. The recession of the inland waters was followed by a much drier steppe climate and the western trees receded to about their present position. The arid plains east of the Rockies thus had their origin, and their floral covering was derived from several sources of supply.

1. An invasion took place from the Great Basin and Mexico. This may be called the southwestern arid contingent.
2. The prairie contingent derived from the prairies lying immediately to the east.
3. A Rocky mountain element which invaded the region from the west and
4. A relict flora representing those plants which remained even after the climate had become more arid and forbidding to the majority of western forest trees. However, east of these dry plains existed a grass covered territory or prairie on both sides of the Mississippi River. The invasion of trees into this area was not possible because the turf and mat formation was so dense and because a steppe climate with strong winds prevented the encroachment of
forested trees, so that the prairie flora, if disturbed always culminated again in the grass formation. Prof. LÉSQUIEREAUX 1) believed that the failure of forest vegetation to occupy the prairies was due to the chemic nature of the soil, coupled with its exceeding fineness. Most of the older geologists with LÉSQUIEREAUX believed that all our prairies not only the low prairies along our lakes and river bottoms, but also the high rolling prairies were produced by the slow recession of temporary sheets of water of various extent; that these lakes were transferred into swamps and by and by drained and dried. That much of this prairie soil is not stratified, as if laid down in water, that it contains no remains of leaves, insects, fresh water or marine shells seems to militate against the lacustrine origin of the present prairie soils, however, it might have been in early Tertiary times. Several other theories have been advanced to account for the origin of the prairies. Dr. WHITE 2) says without the least hesitation that the real cause of the prairies is the prevalence of annual fires, originally maintained by the Indians. Professor J. D. WHITNEY concurs with LÉSQUIEREAUX that the cause of prairies at least east of the Mississippi is mainly the fineness and depth of the soil, while another writer believes the absence of trees is mainly dependent on the rainfall 3): a view disproved by the rain charts.

We know that during the glacial period much debris, glacial silt, gravel and till was carried down by the Mississippi River and its tributaries. We can safely imagine the formation of large temporary lakes, on the bottom of which would be deposited the material derived from the melting ice front and streams which emerged from the ice beneath. Lake Agassiz, a glacial lake of this type, occupied an area of more than 100,000 square miles in northwestern Minnesota, northeastern Dakota and a considerable portion of Manitoba. On the bottom of this lake was deposited during the comparatively brief time of its existence, silt to a depth as yet undetermined, but known to be at least 100 feet 4). Undoubtedly some of the superficial prairie soil had a lacustrine origin when temporary or shallow lakes were present in the great central valley, but the larger part of it according to the most recent studies had a different origin, for we find, that most of the glaciated portion of this region is deeply covered with fine loam called loess which in some places may have had its origin as a water deposit, but which in all probability was deposited by wind action. In the United States, the Loess which in the north lies over the glacial drift, covers thousands of square miles throughout the drainage basin of the Mississippi River. It is found in Ohio, Indiana, Michigan, Iowa, Kansas, Nebraska, Illinois, Tennessee, Alabama, Mississippi, Louisiana, Arkansas, Missouri, Kentucky and the Indian Territory. According to Aughey,

2) White: Geology of Iowa 1: 133.
it prevails over at least three-fourths of Nebraska to a depth ranging from 5 to 150 feet and furnishes a soil of extraordinary strength and fertility. The altitude of the loess deposits is by no means uniform. In the lower part of the Mississippi valley, it is found at an elevation of about two hundred and fifty feet. In the upper Mississippi valley, it rises to a height of seven hundred feet above the bed of the river 1). No general depression of the region will account for these irregularities and we must have recourse to wind action. Loess forms a mantle at the surface over all the Kansas area and covers with a thin sheet most of the southern portion of the Iowa drift. As a rule, the deposit is a very fine-grained, yellow silt covering alike the summits, slopes and valleys. At numerous points, the loess attains a depth of fifteen to twenty five feet. In many of these deeper deposits, the shells of pulmonate land mollusks belonging to the genera Zonites (Zonitoides, Euconulus), Patula (Oreohelix, Pyramidula), Helicodiscus, Ferussacia (Cochlicopa), Pupa (Bifidaria), Vertigo (Sphyrodium), Mesodon (Polygyra), Vallonia, Succinea have been found, while a few species of Limnacea, found in fresh, water occur. In such beds, the loess is usually quite calcareous and segregations of lime form small nodules ("loess-kindchen").

Professor Calvin has shown that the materials of the loess of central and southern Iowa were probably derived from the finer constituents of the Iowa drift 2). It would seem that the conditions during the glacial period would be exceptionally favorable for strong northerly and westerly winds whose sweep over the ice sheet would be unobstructed. Then too the finer, loose materials, liberated by the melting of the ice, would be in prime condition to be gathered up and swept along by the winds. During all these physiographic changes which began with the oncoming of the glacial period and closed with the formation of loess, we must believe that the original grass flora of the plains maintained itself, but during the ice age typically in a more southern locality for in the north central prairie region, the vegetation and prairie vegetation was destroyed and replaced by an arctic flora along the ice front. Such boreal trees as Betula papyrifera, Populus balsamifera, Populus tremuloides, Acer glabrum were left behind according to Clements after the disappearance of the northern flora. As a closed vegetal formation the grass vegetation prevented trees from ever reaching the prairie areas. We have evidence of a continuous grassy covering of parts of this central plain from the time that it was elevated above the sea sometime during the Tertiary period for the life of the Miocene is in all respects a great advance upon that of the Eocene and Oligocene. The grasses greatly multiplied and took possession of the open plains producing ideal conditions for the growth of forage plants for the herbivorous animals.

That the grassy covering of the plains has been subjected to physiographic

1) Wright, G. Frederick: The Ice Age in North America 1889: 360.
changes is illustrated by a study of the loess deposits. Aughey gives the following section by shallow region Aughey: Forestry Feb. 24 carpet changes following the sod, with prairies such especially the dry fine of encroachment by prairie the This stratified prairie the can treeless region. The dryness of the summers make the growth of trees precarious, the nature of the soil, whether coarse or fine, becomes the controlling factor, starting with a grass flora when the central plain was formed. This plant formation was maintained and preserved because through the character of the soil, lacustrine at first and subsequently glacial and loess, the grasses were enabled to form close mats sufficiently dense to prevent the encroachment of tree vegetation. The grass formation represents a type of vegetation which is peculiarly adapted edaphically to maintain itself in the fine loess soils of the prairie in a region with strong and cutting winds and dry climate and to successfully hold its own against other plant formations. The experience of orchardists and tree planters in the prairies has demonstrated that the eastern trees, on good soil, cannot compete singly with the prairie grasses, no matter how great a supply of moisture is furnished either by rainfall, or irrigation. There is only one way in which trees of the East can overcome the prairie grasses and that is by advancing in solid phalanx. This method is necessarily very slow and accounts for the lack of time since the glacial epoch for the trees to extend their supremacy over the whole prairie region. The buffaloes also had their influence in preserving the prairie mat and the Indians hunting the buffaloes set fire to the dry grasses and still further increased the prairie tendencies. That this historic explanation is the correct one is demonstrated by the fact that where the loess is shallow and where the glacial gravels protrude there are usually found groves of forest trees. The groves of trees which stand isolated upon the prairie grow upon

1 Aughey: Physical Geography and Geography of Nebraska: 276.
coarse soil, for in some cases the deposits of coarse drift have escaped being covered by the prairie soil, because a little more elevated in these spots, or the increased height has favored the washing away of the finer particles by the rain. Then again where the continuity of the fine prairie soils is interrupted by a gulch or water course, by stream action, the closeness of the prairie sod is interrupted and trees appear. For this reason, if the heights of the bluffs be considerable and the eroding power of the stream sufficient to cut the country up into a succession of ravines with but little level ground between them then the whole region will be more or less covered with timber, as is the case with northeastern Iowa, although the conditions with regard to moisture are less favorable than in other parts of the state 1).

Another interesting confirmation of this view is found on the Edwards Plateau of Texas which is the rough deeply eroded southern margin of the Great Plains. If the plateau were an uneroded highland, climatic conditions remaining unchanged, the vegetal covering would be an open grass prairie. As a matter of fact it is being cut down to the coast level, as fast, as erosion can do it, and coincident with this, it is in process of transformation from a grass prairie to timberland. Erosion has resulted in breaking up the heavy sod covering which of itself operated effectually to keep out tree growth.

Similarly the invasion of trees in coast plain of Texas illustrates their dependence on edaphic conditions. The soils here consist of compact clays and silts interspersed with areas having a larger proportion of sand, and, therefore, more porous soils. These latter were more easily captured by forest, the compact soil more slowly. Thus one finds alternating areas of forest and prairie 2).

The grass formation or prairie formation is clearly older floristically speaking than the forest groves and forest areas along the streams. As will be shown subsequently, the grass formations are endemic, while the forest trees have been derived in the main from the great southeastern forest previously described, while part of them have entered the North American prairie district from the west. The reason why the invading trees extend westward and northwestward into the prairie country from the Mississippi valley proper along which they have migrated, thus has a reasonable physiographic and climatic explanation.

The distribution of the timbered and prairie tracts in Wisconsin illustrates the dependence of the forest growth on the geologic and historic conditions rather than those having to do with climate. In the northern part of the state, is a region of dense forest, although as the statistics of rainfall show this is not a region of large precipitation. It is, however, covered with coarse detrital matter, plentifully distributed from the headquarters of the drift on Lake

Superior. Another area covered by siliceous sandstone is the pine district of the state, while south of Wisconsin is the region of oak openings and prairies. And when we reach these treeless tracts, we find we have gotten entirely beyond the drift covered areas and that we are upon a soil made up of the insoluble residuum left from the disintegration of several hundreds of feet of limestone and dolomites.

The vegetation-center of the prairies is found in Nebraska, Iowa, Kansas and the Dakotas. From this center the typic plains flora slowly shades out toward both north and south. All vegetation regions, and none more readily than a plains region, where dissemination is so easily affected, borrow floral elements from adjacent regions, and it is only when this invasion has resulted to a pronounced degree that the original floral covering changes aspect. It is to the elucidation of these various elements in the plains flora that we must now direct our attention.

One of the most striking elements is the intrusion into the prairie region of trees and shrubs which have migrated from the northeast along the water courses emptying into the Missouri and Mississippi rivers. The trees which have entered Nebraska in this way according to Bessey are Juniperus virginiana, Asimina triloba, Salix (3 species, 6 in number), Populus monilifera (= P. deltoides), Tilia americana, Ulmus americana, U. racemosa, U. fulva, Celtis occidentalis, Morus rubra, Fraxinus americana, F. pubescens, Pyrus (Malus) coronaria iocensis, Crataegus [4 species], Amelanchier canadensis, Prunus virginiana, Prunus serotina, Gymnocladus canadensis, Gleditschia triacanthos, Cercis canadensis, Platanus occidentalis, Rhamnus lanceolata, R. caroliniana, Aesculus glabra, Negundo aceroides (Acer negundo), Rhus copallina, Juglans cinerea, J. nigra, Hicoria (Carya, 5 species), Quercus [9—10 species], Ostrya virginiana, Carpinus caroliniana, and possibly one birch. Here are fifty-six or fifty-seven species of trees, which without question come into the region from the forests of the southeast.

The trees which have entered the prairie region from the Rocky Mountain forests have made much less impression. Those which belong to this list are Pinus ponderosa var. scopulorum, Juniperus scopulorum, Populus [4 species], Shepherdia argentea, Acer glabrum and Betula (2 species).

Occasionally these eastern and western floral elements meet. Bessey mentions a case. Long Pine Creek runs northward about twenty miles to the Niobrara River through a deep and winding canyon. In this canyon, a blending of the eastern and western floras takes place. Pinus ponderosa var. scopulorum occurs in the greatest abundance here, but not eastward of this stream, while the black walnut Juglans nigra of the east is found associated with the bull pine, as also Ostrya virginiana, which with Prunus

demissa, Ribes aureum, Rhus aromatica var. trilobata (= R. trilobata), form an interesting ecologic association. The plants found near the buffalo wallows formerly constituted a noteworthy element distinct from the true prairie flora. The American buffalo delighted in rolling in and plowing up with its hoofs the soft muddy soil of the prairies, forming countless shallow depressions circular in shape very often retaining water for days. The plants found near such wallows were distributed by means of the mane of hair which clothes the front of the buffalo’s head. Such plants as Asclepias syriaca, Chenopodium album, Martynia proboscidea (= M. louisiana), Lippia cuneifolia, Panicum (Echinochloa) crus-galli, Rhus glabra, and species of the following genera: Trifolium, Thlaspi, Amaranthus, Sinapis, Portulaca, Conchus, Stipa, Setaria, Elymus, Dactylis, Deschampsia, Euphorbia, Glycyrrhiza, were thus carried, for the capsules of Martynia proboscidea (= M. louisiana), and the fruit of Bidens, Glycyrrhiza, Styxax, Setaria, Elymus, Helianthus, Rhus trilobata, Obione (Atriplex) canescens, Amaranthus, Chenopodium and the hispid twigs of Euphorbia have been taken from the matted hairs around the head of the male bison 1).

The vegetation of the sand-hill region is made up of four elements at least: a proper element, a Mississippi basin element, consisting almost entirely of grasses and sedges intermingled with deep-rooted perennial herbaceous woody plants, a prairie element, and a foot hill element. To these one may add a Rocky mountain element, represented by the pine bluff formation along the Niobrara, and a northern element represented by Betula papyrifera, which also takes part in the Mississippi basin vegetation-element of the region 2). The trees representing the Mississippi basin element are almost entirely confined to narrow belts which border the streams in the canyons. They are Ulmus americana, U. fulva, Negundo aceroides (= Acer negundo), Fraxinus viridis, Fraxinus pubescens, Celtis occidentalis.

The species occurring in the sandy hills which are proper to or most frequent in the foot hills are the following:

Aster canescens Pursh.
Cactus (Mammillaria) viviparus Nutt.
> longifolius Lam.
Clematis ligusticifolia Nutt.
Oenothera (Anogra) albicaulis Pursh.
Cymopterus montanus Torr. & Gray.
Artemisia frigida Willd.
Campanula rotundifolia L.
> canadensis Michx.
Crepis runcinata James.
Amelanchier alnifolia Nutt.
Carduus ochrocentrus A. Gray.
Astragalus missouriensis Nutt.
Chrysopsis villosa Nutt. var. hispida
> mollissimus Torr.
A. Gray.
Berula erecta Coville (= B. angustifolia Mert. & Koch).
Chrysopsis villosa Nutt. v. canescens.
Bromus Kalmii A. Gray.
> var. sessilifolia.
Porteri Nash.
Cheilanthes gracilis Mett. (= C. Fei
Cleomella angustifolia Torr. [Moore].

2) Pound, Roscoe and Clements, Frederic E.: The Phytogeography of Nebraska 1900: 55.
Erysimum asperum DC.

» DC. var. Arkansanum (== E. arkansanum Nutt.).

Galium boreale L.

Gnaphalium palustre Nutt.

Geum strictum Ait.

Gyrostachys (Spiranthes) stricta Rydb.

Hordeum pusillum Nutt.

Juncus bufonius L.

Lacinaria (Liatris) spicata L.

Leucocrinum montanum Nutt.

Lychnis Drummondii Wats.

Mentzelia nuda Torr. & Gray.

Monarda citriodora Cerv.

Opuntia fragilis Nutt.

Orobanche ludoviciana Nutt.

Dalea (Parosela) aurea Nutt.

Physalis lanceolata Michx.

Phlox Hoodii Richards.

Pentstemon gracilis Nutt.

Pinus ponderosa Lawson var. scopulorum Engelm.

Plantago criopoda Torr.

Sophora sericea Nutt.

Sporobolus airoides Torr.

Stipa comata Trin. & Rupr.

Thelesperma trifidum Poir.

Thermopsis rhombifolia Nutt.

Townsendia grandiflora Nutt.

Woodsia oregana D. C. Eaton.

If a comparison is instituted between the sand-hill formations and those of the prairie formations proper, it becomes evident, that the prairie element consisting of such species, as Andropogon scoparius, A. provincialis, Koeleria cristata, Eatonia obtusata and Panicum Scribnerrianum occur in bunch grass formation of the sand hills, so that the bunch grass formation comprises plants of the prairie formation proper. These plants constitute the prairie element of the sand-hill flora. On the other hand, such plants as Redfieldia flexuosa, Muhlenbergia pungens, Eragrostis trichodes, Cristatella Jamesii and Polanisia trachysperma are peculiar to the sand-hills and may be looked upon as the proper elements. It is further evident that the plants of the blowout and sand draw formations constitute the sand-hill flora par excellence, while those of the bunch grass formation show decided affinities to the prairie flora proper.

The species of Artemisia, Sarcobatus vermiculatus, and the like, in the prairie province are Great basin elements. On the other hand, the under-shrub formation of table-lands and bad lands are not proper foot-hill formations, nor are they proper to the prairie province. Where any of the species of these formations invade other regions of the prairie province, we may call them foot-hill elements. But in the province as a whole, these species are Great Basin floral element, and the formations are Great Basin elements in the vegetation of the foot-hill region.

The flora of the central North American plains has thus been analyzed. The old vegetable covering of the plains consisting of plants developed there under the peculiar conditions of environment has been invaded by a number of distinct elements from adjacent regions, so that the prairie flora proper, the sand-hill flora and the foot-hill flora, is a composite one consisting of endemic elements associated with the derived, all of which elements have been discussed and set forth in a differential manner above.
4. The Western Mountainous Elements and the Great Basin.

Black Hills Flora. The Black Hills are on the boundary line between South Dakota and Wyoming, the larger part lying within the former state. They constitute an isolated range about 120 miles long north-northwest, and 40 to 50 miles wide east and west. The nearest mountains are the Big Horn Mountains on the west and the Laramie Mountains to the southwest. The highest point is Harney’s Peak 7368 feet (2245 m). The varied flora of these hills has been derived from several sources of supply. There are plants from the East, from the Saskatchewan region, from the prairies and table-lands west of the Missouri River from the Rocky Mountains and west thereof. The following trees and shrubs have come from the east and northeast.

Negundo aceroides Moench (≡ Acer
 Negundo L.).
Amelanchier alnifolia Nutt.
Betula glandulosa Michx.
 » papyrifera Marsh.
Chimaphila umbellata Michx.
Cornus canadensis L.
 » stolonifera Michx.
Corylus rostrata Ait.
Crataegus coccinea Linn.
Fraxinus lanceolata Borkh.
Juniperus virginiana L.
Linnacea borealis L.

Ostrya virginiana Mill.
Picea canadensis Mill.
Populus deltoides Marsh.
 » tremuloides Michx.
Prunus americana Marsh.
 » pennsylvanica L.
 » virginiana L.
Quercus macrocarpa Michx.
Rhus glabra L.
Shepherdia canadensis Nutt.
Symphoricarpus racemosus var. pauci-
 » velutinus Dougl.
 » coccineus Desf.
 » lucida Dougl.
 » pinifolia Nutt.
 » virginiana L.
 » scopulorum Engelm.
 » scopulosa Lawson var. scopus
 » angustifolia James.
 » betula occidentalis Hook.
 » Ceanothus ovatus Desf.
 » Cercocarpus parvifolius Nutt.
 » Juniperus nana Willd.
 » Pinus ponderosa Lawson var. scop-
 » Rubus nutkanus Mociño.
 » Rhizocarpa angustifolia James.
 » Prunus demissa Nutt.
 » Rhus trilobata Nutt.
 » Spiraea lucida Dougl.
 » Vaccinium Myrtillus L., var. macro-
 » phyllum Hook.

The Rocky Mountains in the west have supplied the following plants. Those marked with an asterisk * are found on the Pacific coast and in the northern Rockies; those with a dagger † in the Rocky Mountains southward.

Berberis aquifolium Pursh.
†Betula occidentalis Hook.
†Ceanothus ovatus Desf.
†Cercocarpus parvifolius Nutt.
*Juniperus nana Willd.
†Pinus ponderosa Lawson var. scopu-

In the foot hills and the lower part of the Black Hills, the flora is essentially the same as that of the surrounding plains, with an addition of eastern plants that have ascended the streams. In the higher parts, the flora is of a northern origin. Most of the plants composing it are of a more or less transcontinental distribution, but often characteristic of a higher latitude. The only true trees of western origin, as shown in the lists above, are Pinus ponderosa and Betula occidentalis. The other full-sized trees are eastern.
The flora resembles therefore, as the tables show above, more that of the region of the Great Lakes than that of the Rockies 1).

Recent History of the Rocky Mountain Flora. The Stony Mountains a well-marked group by the head waters of the Missouri on the east, and the head waters of the Snake and Columbia rivers on the west, and the Park Mountains in southern Wyoming, central Colorado, and northern New Mexico, together constitute the Rocky Mountain system. The Stony Mountains are of diverse structure. There are a number of great ranges not systematically grouped, complicated by volcanic mountains, plateaus and hills. The ranges are moderately high; and by reason of the northern altitude and a fair amount of rainfall, they are covered for many months with snow, and here many beautiful streams have their origin. The flanks of the mountains and high plateaus are often covered with great forests, and the low foot hills with gnarled trees.

The ranges of the Park Mountains are more irregular than those of the Stony Mountains, and have a general north- and-south trend. Between the ranges are great valleys known as parks. The four most important are the North, Middle, South and San Luis parks. Above the timber line, the peaks are naked; below on the flanks of the mountains great forests stand, and often spread over elevated plateaus while the valleys are beautiful prairies, or parks. The central portions of the ranges are in the main composed of metamorphic rocks of great age. On the flanks of the mountains and out in the parks there are many beds of volcanic rocks which serve still further to modify the aspect of the ranges. In a few cases, especially on the western side, these volcanic beds have been piled up in mountain forms 2).

The history of region, as it has influenced the distribution of plants, is briefly, as follows: At the close of the Jurassic the first great upheavals took place 3). Two lofty ranges of mountains — the Sierra Nevada and the Wahsatch were pushed up from the great subsiding area. These movements were followed by a prolonged subsidence during which Cretaceous sediments accumulated over the Rocky Mountain region to a depth of 9000 feet or more. Then came another vast uplift whereby the Cretaceous sediments were elevated into the crests of mountains, and a parallel coast-range was formed fronting the Pacific. The Rocky Mountains, with the elevated table-land from which they rise were permanently raised above the sea. The slopes of the land were clothed with an abundant vegetation, in which we may trace the ancestors of many of the living trees of North America. Vast lakes existed among the mountains, and the climate as proved by the presence of the lakes must have been much more humid than at present in the same region, and more

favorable to vegetation. The change in elevation during the Eocene was sufficient to drain the Eocene lakes, but the elevation attained was so small that vast Miocene lakes covered a large part of what now constitutes the eastern slopes of the mountains and continued into the Pliocene). The climate was still favorable to a rich forest vegetation of deciduous and coniferous trees, which were with a slight preponderance of present western types the same, as covered the eastern part of the continent in the Appalachian Mountains and elsewhere. The changes which followed from the Pliocene down to the present produced vast changes in the topography of the country and in the vegetation. Great floods of trachyte, basalt and other lavas from many points and fissures over a vast space of the Rocky Mountains and westward were poured out. During the Pleistocene, the territory occupied by the Great Basin in great part a desert was then a lake region. One of these seas, named Bonneville occupied Salt Lake Valley, Utah and a contemporary lake called Lake Lahontan, situated in northwestern Nevada and extending into California existed, 886 feet deep. The climate was more humid than at present, but from the evidence that the basin itself affords, it seems safe to assume, that the average rainfall over Nevada at the time it was transformed into a lake region was probably not in excess of ten or fifteen inches a year. The times of marked expansion of these ancient lakes indicate an increase in mean annual precipitation, and times of contracted water surface, a decrease of rainfall. During this period, a rather uniform forest covered the western mountainous part of the continent, as far, as the Pacific. It will be remembered from what has preceded that the great ice sheet effectually separated the practically uniform Miocene vegetation of North America into two great groups, an eastern and a western, a change which had already begun when the Mississippi Valley was submerged and after its elevation was tenanted by a grass formation (see ante) accompanied by a steppe climate which still more effectually isolated the two great floras. The vegetation of the Rocky Mountains had many elements during the period of greatest lake extension which do not exist now for we have evidence from remains found in South Park that such genera as Sequoia, Glyptostrobus, Myrica, Rhus, Sapindus, Ficus, Planera, Caesalpinia, Acacia, Zizyphus, Ilex etc. existed there. With the disappearance of Lakes Bonneville and Lahontan, the gradual recession of the glaciers from the mountains which supplied these lakes with water and the disappearance of the great ice sheet from the northern part of the continent, an arid climate was introduced into the region. A great destruction of plant forms took place, especially the deciduous forest trees, while those species remained and were still further differentiated which adapted themselves, as some of the conifers did, to the more dessicating air and winds of a desert climate. The paucity of the ligneous flora of the region under consideration thus has a reasonable explanation. The whole region is marked by the scantiness, or absence of

arboreal vegetation and of rainfall, the former being in great measure dependent on the latter. Its plains are treeless except along the water-courses; the mountains bear trees along sheltered ravines and on the middle and higher slopes upon which there is a considerable condensation of moisture; but, whenever they rise to a certain height (about 11,000 feet) in latitude 37° to 41°, they are woodless from cold and other conditions attending elevation, although the higher mountains enjoy an abundant condensation of moisture mostly in the form of snow. Three belts may, therefore, be distinguished in the vegetation of the Rocky mountains. 1. An arid and woodless district, which occupies a large part of the area. 2. A forest belt adorning the mountain slopes. 3. An alpine unwooded belt above the timber-line.

1. The woodless region may be divided into three well-marked districts: 1. the lower Rocky Mountain slopes (parks and higher foothills); 2. the desert interior, which will be considered separately under the caption, Great Basin and 3. the eastern lower foothills and mesas that merge into the eastern woodless plains'). The mesas are long, gently sloping, flat topped ridges extending from the bases of the foothills out towards the plains in an easterly direction. The vegetation of the north slopes of the mesas differs from that of the south slopes. The varying amount of moisture and sunshine are the important factors determining this difference. The east and west ends of the mesas are also different in their plants. The west end, being closer to the foothills, is sheltered from the afternoon sun, while the east is not thus protected. In the Spring small streams from the melting snow on the hills supply the west end of the mesas. Pine trees and *Populus tremuloides* grow there, while at the east, there are no trees at all. A gradual transition is noticed from the xerophytic formations of cactuses, *Yucca, Astragalus, Artemisia* and desert grasses on the east to the pine groves with their desert species of *Pulsatilla* and *Delphinium* on the west. Such shrubs as *Cercocarpus, Ribes*, and *Rhus trilobata* grow among the pines or east of them for a distance. Sometimes a mesa will have certain shrubs growing near the top on the south slope, but none farther down on the same slope. This is accounted for by the same fact that the spring snow lasts for a long time on the mesa, and as it slowly melts, it trickles down the south slopes to be quickly absorbed by the soil not far from the crest, while on the other hand, there is sufficient moisture on the north slope to permit the growth of shrubs for some distance from the foothills. Finally, it is important to note that the flora of the mesas is, a complex of mountain and plain species. At one season of the year, the vegetation of the mesas has the character of the mountain region. At another season, the prairie plants are more abundant. The slight change in the angle of the sun's rays causes the replacement of the *Leucocrinum* by a *Pentstemon* of higher altitudes. Later the prairie *Yucca* comes into blossom, and then

there appear masses of *Arnica*, the near relatives of which belong to higher altitudes followed by prairie species of *Erysimum*, *Lithospermum*, *Petalostemon* and in the autumn by *Senecio* and *Gutierrezia*. These species of the two latter genera derived from different regions are the dominant ones of the herbaceous autumn flora. The *Senecio* occurs regularly in the mountains, while *Gutierrezia* is properly a plant of the plains. The flora of the lower foothills has been previously described. For the most part, the lower foothills are sparingly covered with pines. The north slopes of hills are better provided with trees than the south slopes. The herbaceous plants are chiefly those previously mentioned as occurring on the mesas, or in the parks. The mountain parks are somewhat level stretches of land encircled by high mountains, or hills. The altitude of these parks in the region under consideration is usually from 2500 to 3000 m. Plants to enter these parks from below must migrate by way of narrow canyons, or else over the passes from 600 to 1500 feet higher. We, therefore, find a paucity of plants from lower altitudes and relative abundance of proper mountain forms. Such plants, as *Aquilegia coerules*, *Potentilla* (*Dasiphora*) *fruticosa*, *Pentstemon secundiflorus*, *Epilobium (= Chananacrium)*, *Eriogonum* spp., *Campanula* spp., with species of *Aster* and *Erigeron*. In these parks and on the surrounding foothills, the coniferous trees are the dominant plants, although here are found trees of *Populus tremuloides*. The coniferous trees are usually not in dense forests, but the parks are open with the development of a rich grass flora.

2. The *forests* adorning the mountain slopes require more extended description, because we can use the present distribution of the trees and shrubs in ascertaining the origin of the Rocky Mountain flora. Northward especially in northern British America, the Atlantic and Pacific forests join and intermingle. Southward with the Rocky Mountains trees are borne only on the mountains and high plateaus and along the banks of streams descending from the mountains. The mere botanic enumeration of the following species of trees gives no proper idea of the arboreal flora of the region.

Juniperus occidentalis Hook.	Larix Lyallii Parlatore.
» californica Carr.	Pinus edulis Engelm.
» virginiana L.	» flexilis James.
» scopulorum Sarg.	» monticola Dougl.
» pachyphloea Torr.	» aristata Engelm (= P. Balfouriana Wats.).
Cupressus guadalupensis Wats.	
Abies concolor Lindl. & Gord.	
» subalpina Engelm. (= A. lasiocarpa Hook.).	
Pseudotsuga Douglasii Carr. (= P. taxifolia Britt.).	
Picea Engelmanni Engelm.	
» pungens Engelm.	
Larix occidentalis Nutt.	
	Populus angustifolia James.
Recent History of the Rocky Mountain Flora.

245

Populus balsamifera L.
- Fremonti Watson.
- monilifera Ait. (= P. deltoides Marsh.).
- tremuloides Michx.
- trichocarpa Torr. & Gray.

Betula occidentalis Hook.
- papyrifera Marsh.

Ulmus americana Linn.

Morus microphylla Buckley (= M. rubra L.).

Juglans californica Wats.
- rupestris Engelm.

Quercus Emoryi Torr.
- hypoleuca Engelm.
- undulata Torr.
- grisea Liebm.

Condalia obovata Hook.

Olneya tesota Gray.

Parkinsonia Torreyana Wats.

Prosopis pubescens Benth.

Prospis juliflora DC.

Acacia Greggii Gray.

Platanus Wrightii Wats.

Yucca brevifolia Engelm.

Fraxinus anomala Torr.
- pistaciaefolia Torr.
- viridis Michx. f.

Chilopsis saligna Don.

Arbutus Menziesii Pursh. var.

Sambucus glauca Nutt. (= S. caerulea Cereus giganteus Engelm. [Raf].

Negundo aceroides Moench.

Acer grandidentata Nutt.

Sapindus marginatus Willd.

Prunus emarginata Walp.
- pennsylvanica L.
- angustifolia Nutt.

Pyrus sambucifolia Cham. & Schl.

Crataegus rivularis Nutt.

Amelanchier alnifolia Nutt.

It includes practically all of the trees inhabiting a region extending from the eastern base of the Rocky Mountains to the eastern base of the Sierra Nevada and Cascade ranges and north of the Mexican boundary, well into British America. The character of the flora at the two extremes are most widely different. There is a denser forest in the north, but it consists of fewer species. In the southern part on the other hand, and undue appearance of richness is given to a scanty sylva 1. by the exclusion of shrubs and 2. by including species which belong to the southern part of Arizona and New Mexico. Of the latter sort are Yucca brevifolia, Cereus giganteus, Pinus chihuahuana, Pinus arizonica, Sapindus marginatus, Arbutus Menziesii, Fraxinus anomala, Fraxinus pistaciifolia, Platanus Wrightii, Quercus Emoryi and Quercus hypoleuca. From the whole region oaks are conspicuously absent, as trees, though the forms just referred to as Mexican types form small trees in the southern portions of Arizona.

It is important to analyze the various floral elements of the Rocky Mountain flora in order to determine their origin. As has been mentioned after the retreat of the continental glacier which covered the Rocky Mountain region, as far, as central Montana and Idaho, the region south of this line became drier and drier owing to the causes above enumerated. An extensive territory both in the northern and southern Rocky Mountains was thus opened for the migration of trees, shrubs and herbs. Upon the direction of the migration and the character of the plant migrants depends the character of the floras in the northern and southern Rocky Mountain regions respectively.
The northern Rocky Mountains north of the Big Horn River valley including the mountains of Idaho and Montana, northwestern Wyoming and eastern British Columbia, Alberta and northward were tenanted from several main directions, viz., the north east and the east; the west and southwest. Far in the northern part of the interior of British Columbia and Alberta is found just such an assemblage of plants, as occur in many parts of eastern Canada, though mingled with unfamiliar plants. This flora appears to run completely across the continent north of the great plains and it characterizes a region of moderately heavy rainfall, summers not excessively warm and cold winters. Thirteen species of trees and shrubs entered the northern Rocky Mountains from the northwest Pacific coast:

Abies grandis Lindl.
Larix occidentalis Nutt.
Sorbus sambucifolia Cham. & Schlecht.
Rosa gymnocarpa Nutt.
Chrysothamnus viscidiflorus Nutt.
Prunus emarginata Walp.
Echinopanax (Fatsia) horridum Smith.

Prunus demissa Walp.
Menziesia ferruginea Smith.
Lonicera utahensis Watson.
Phyllocladus glanduliferus Hook.
Ledum glandulosum Nutt.
Spiraea pyramidata Greene.

Five species of a similar origin pursued a somewhat similar direction, but migrated eastward to the Black Hills and Lake Superior, viz.,

Salix fluviatilis Nutt. (= P. longifolia Muhl.).
California to British Columbia, east to Missouri and Kentucky.
Artemisia frigida Willd.
Idaho, Montana, Minnesota, Saskatchewan.
Menziesia glabella Gray.
Oregon, British Columbia, Bitterroot mountains, Flathead Lake, Mont. to Lake Superior.
Spiraea lucida Dougl. (= S. betulifolia Pall.).
British Columbia, Oregon, Montana, Black Hills.
Vaccinium membranaceum Dougl. (= V. myrtilloides Hook.).
Flathead Lake, Bitterroot mountains, Alaska, California, east to Lake Superior.

The following twenty six species of Pacific coast shrubs and trees range from California northward, but in Washington and Oregon, they turned eastward and entered the northern Rocky Mountains of the United States and British America, extending only, as far, as the Bitterroot Mountains in Idaho, perhaps in later glacial times when the floral intercommunication of the northern Cascades with the northern Rockies must have been very free.

Pinus albicaulis Engelm.
Monticola Dougl.
Alnus rhombifolia Nutt.
[Artemisia discolor Dougl. var. incompta
Artemisia ludoviciana Nutt., Bitterroots.
Berberis nervosa Pursh, Bitterroots.
Cornus Nuttallii Audub., Bitterroots.
Pubescens Nutt., Bitterroots.]
Crataegus columbiana Howell, Bitter-
> Douglasii Lindl. [roots. Salix sitchensis Sanson, Bitterroots.
Kalmia glauca L. var. microphylla
Hook. Spiraea arbuscula Greene, Bitterroots.
Pentstemon fruticosa Pursh. (= P. Sorbus occidentalis Wats.
> Menziesii Hook.), Bitterroots. Taxus brevifolia Nutt.
> Populus trichocarpa Hook. Thuja plicata D. Don.
Rhamnus Purshiana DC. > gigantea Nutt.
Rubus leucodermis Doug., Bitterroots. Tsuga heterophylla Sarg.
Sambucus melanocarpa Gray, Bitter-
roots. > Pattoniana Engelm. (= T. Mer-
Rosa pisocarpa Gray, while eleven
t roots. > Mertensiana Carr.
occurs only in the Flathead Lake
Region of Idaho and the Bitterroot
Mountains, viz.
Chrysothamnus (Bigelovia) graveolens
> Vaccinium scoparium Leiberg.
Pentstemon mollis Sudw. [Nutt.
Ribes irriguum Doug. (= R. divarica-
tum Doug. var. irriguum Gray).
Ribes niveum Lindl. (= R. gracile
Michx.).
Rubus parviflorus Nutt. (= R. nut-
kanus Michx.).
Rubus vitifolius Cham. & Schlecht.
(= R. ursinus Cham. & Schlecht.).
Salix Nuttallii Sarg.
Vaccinium scoparium Leiberg.
The northeastern and eastern element entered in all probability by a path
which crossed the northern end of the great plains and followed the eastern
flank of the Rocky Mountains southward to Idaho and Montana, where the
migration of this contingent seems to stop.

Abies balsamea Mill. [Ehrh.]. Picea mariana B. S. P.
Alnus viridis DC. (= A. alnobetula Populus balsamifera L.
Atragene americana Sims (= Clematis Prunus virginiana L.
verticillaris DC.). Quercus macrocarpa Michx.
Bryanthus empetriformis Gray. > rotundifolium Michx.
Crataegus macracantha Lod. (= C. Rosa blanda Ait.
coccinea L.). Salix vestita Pursh.
Picea alba Link (= P. canadensis B. Ulmus americana L.
Ulmus ameri

The flora of the northern Rocky mountains is clearly a derivative one,
because it occupies a territory at one time glaciated and because the affinities
of the plants clearly point to a western and eastern derivation and not a con-
tinuation of the flora of the southern Rocky mountains. Its characters are
clearly negative and the forest flora is distinguished more by what is absent
than by what is present. For example, it lacks very many of the peculiar
Part III. Chapter 3.

Pacific coast plants. It lacks almost entirely elements derived from the Great Basin region, as well, as many of the peculiar genera of the eastern, or Atlantic flora. There are, however, many plants restricted to this region which in all probability have been differentiated since the close of the glacial period.

The mountain systems south of the Bighorn valley, which we have chosen as a line of separation, may be denominated the southern Rocky mountain region. Its flora likewise possesses negative characters, but it is clearly distinct from the northern region by the injection of floral elements derived from Mexico and the Great Basin. The northwestern element in this flora is prominent having been in the process of diffusion from the beginning to the end of the last glacial recession, because to have entered the southern Rocky Mountains required a longer time than that subsequent to the final melting of the glaciers and the drying up of the lakes.

Acer glabrum Torrey.
Artemisia dracunculoides Pursh.
Berberis repens Lindl.
Celtis occidentalis L. var. reticulata
Clematis ligusticifolia Nutt. [Torr.
Crataegus rivularis Nutt.
Gaultheria myrsinites Hook.
Juniperus scopulorum Sarg.

Lonicera ciliosa Poir.
Ribes aureum Pursh.
 » cereum Dougl. [Gray.
 » divaricatum Dougl. var. irriguum
 » oxyacanthoides L. var. saxosum
Rosa nutkana Presl. [Hook.
Salix chlorophylla Anders.
Sambucus glauca Nutt.

A number of other trees and shrubs may have entered the southern and northern Rocky Mountains of the United States and Canada by the northwestern route after the Glacial period, but more likely, they represent a relict flora of a period, when as species, they were more widespread during a more humid period before subjected to the arid climate which exists in the region at the present day. To be included in this category in all probability are:

Abies subalpina Engelm. (= A. lasiocarpa Nutt.).
Betula occidentalis Hook.
Picea Engelmanii Engelm.
Pinus Murrayana Balfour (= P. contorta var. Murrayana Engelm.)
 » ponderosa Dougl.

Pseudotsuga Douglasii Carr. (= P. taxifolia Britt. = P. mucronata Sudw.).
Pyrus sambucifolia Cham. & Schlecht.
Salix flavescens Nutt.
 » lasiandra Benth.
Sambucus melanocarpa Gray.
Tetradymia glabrata Gray.

The migrants which came down the Rocky Mountain system long subsequent to the great ice age out of the north and cast from the eastern part of the continent and settled in the southern Rocky Mountain region are:

Alnus incana Willd. to Colorado.
Ampelopsis (Parthenocissus) quinquefolia Michx. to New Mexico.
Cornus canadensis L. to Colorado.
 » stolonifera Michx. to Colorado.
Crataegus tomentosa L. to New Mexico.
Elaeagnus argentea Pursh. to Utah.
Fraxinus pubescens Lam. rare.
 » viridis Michx. f. to Arizona.
Juniperus communis L. to New Mexico.
Recent History of the Rocky Mountain Flora.

Juniperus nana Willd. to Colorado.
 » virginiana L. to Colorado.
Kalmia glauca Ait. to Colorado.
Negundo aceroides Moench (= Acer Negundo L.).
Populus monilifera Ait. (= P. deltoides Marsh.).
 » tremuloides Michx. to Colorado.
Prunus americana Marsh.
 » pennsylvanica L. to Colorado.
Rhus glabra L. to Colorado.
 » toxicodendron L. to Colorado.
Ribes cynosbati L. to Colorado.
 » floridum L’Her. to Colorado.
 » lacustre Poir. to Colorado.
 » oxyacanthoides L. to Colorado.

A considerable number of shrubs have taken a northern route from the east and northeast across the continent, reaching the Pacific coast and California by way of Montana, Idaho and Washington and in some cases migrating southward through the Rocky Mountains. These transcontinental shrubs are:

Amelanchier alnifolia Nutt.
Arctostaphylos uva-ursi Spreng.
Betula glandulosa Michx.
Corylus rostrata Ait.
Juniperus sabina L. var. procumbens Pursh.
Lonicera coerula Linn.
 » involucrata Banks.
Physocarpus opulifolia Maxim.
Potentilla fruticosa L.

Ribes prunatum L’Her. to Colorado.
Rubus strigosus Michx. to New Mexico.
Salix amygdaloides Anders.
 » Bebbiana Sarg. (= S. rostrata Richardson) to Colorado.
 » novae-angliae Anders. to Colorado.
 » phyllicifolia L. (= S. chlorophylla) to Colorado.
 » reticulata L. to Colorado.
Sambucus canadensis L.
Symphoricarpos occidentalis Hook. to Colorado.
Vaccinium myrtillus L. to Colorado.
 Utah and northward to Alaska.
Viburnum paeoniflorum Pylai.
Vitis riparia Michx. to Colorado.

The central and southern Rocky Mountains harbor a considerable number of shrubs and trees which are confined to them, but which have either a wide extension north and south, or more restricted northern, central, or southern range. Those ligneous plants which extend from Montana to New Mexico and Arizona are:

Acer grandidentatum Nutt.
Picea Engelmannii Engelm.
Populus angustifolia James.

A small element consists of those plants which are confined to the central mountains:

Fraxinus anomala Torr.
Rubus deliciosus James.
Rosa arkansana Porter.
Shepherdia argentea Nutt.
Picea engelmanni Engelm.
Salix monticola Bebb.
while the following range from Colorado northward:

<table>
<thead>
<tr>
<th>Alnus tenuifolia Nutt.</th>
<th>Rhamnus alnifolia L'Her.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceanothus sanguineus Pursh.</td>
<td>Salix candida Willd.</td>
</tr>
<tr>
<td>Picea pungens Engelm.</td>
<td>(\ast) desertorum Richards.</td>
</tr>
<tr>
<td>Rosa Sayi Schwein.</td>
<td>(\ast) irrorata Anders.</td>
</tr>
<tr>
<td>Ceanothus ovatus Desf.</td>
<td>(\ast) glauca L. var. villosa Anders.</td>
</tr>
</tbody>
</table>

A Rocky mountain contingent of woody plants occurs from Colorado southward to New Mexico and Arizona, a few extending into Texas:

<table>
<thead>
<tr>
<th>Ceanothus Fendleri Gray.</th>
<th>Philadelphus microphyllus Gray.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forestiera neomexicana Gray, to Texas.</td>
<td>Quercus undulata Torr. var. Gambelii Engelm., to Texas.</td>
</tr>
<tr>
<td>Prunus angustifolia Marsh.</td>
<td></td>
</tr>
<tr>
<td>Fendlera rupicola Eng. & Gray.</td>
<td></td>
</tr>
</tbody>
</table>

The vegetation of the southern Rocky Mountains reaches its southeastern limit in the Cordilleran tableland of Texas, which includes the Stockton plateau and the Edwards plateau. The altitude in several instances is sufficient to increase the rainfall to nearly 20 inches, where the normal for that latitude is 15 inches. This and the fractured condition of the strata render these mountains capable of sustaining rather heavy timber of the southern Rocky Mountain type. There are large tracts also of high grass plains and scattered Mountain masses, with intervening undrained pockets ("bolson flats") 1). The Edwards plateau is a common meeting ground for species from the Atlantic forests, from the southern Rocky Mountains and the Mexican highlands. The principal Rocky Mountain species, represented on this plateau, are Pinus edulis, Quercus Emoryi, Juniperus (Sabina) sabinaoides, while isolated islands of the true mountain forest of Pinus ponderosa, Pinus flexilis, Pseudotsuga Douglasii (= P. taxifolia = P. mucronata), Quercus Emoryi, Pinus edulis are found limited to the Guadalupe, Davis and Chisos mountains.

Great Basin Elements. The Great Basin element consists of those plants which are widely distributed through the arid states of Arizona, New Mexico, Utah and Nevada, and which also extend to the Rocky Mountains, where they occur either sparingly, or relatively abundant. The range of each species in the list below, the Mexican element being marked with asterisk *.

*Acacia Greggii Gray.
Southern Utah, N. Mexico, Arizona, California, N. Mexico.
Ceanothus velutinus Dougl.
Colorado, Utah, Teton and Bitter-root Mountains.

Coleogyne ramosissima Torr.
Southern Colorado, Nevada, Arizona.

Fraxinus pistaciifolia Torr.
Southern New Mexico, Arizona, Nevada, western Texas, Mexico.

Jamesia americana Torr. & Gray.
New Mexico, Colorado, Utah.
Juniperus californica Carr. var. utahensis Engelm.
Central and Southern Utah, Nevada, California, Arizona.
Juniperus occidentalis Hooker var. monosperma Engelm.
Southern Colorado, N. Mexico, Southern Arizona, S. California.
Physocarpus Torreyi Maxim.
Colorado to Nevada.
Pinus Balfouriana Murray var. aristata Engelm. (= P. aristata Engelm.)

Colorado, Utah, Nevada, S. E. California.
Pinus monophylla Torr. & Fremont.
Utah, California, Arizona.
*Prosopis juliflora DC.
Southern Colorado, New Mexico, Southern California, western Texas, Southern Utah, Mexico.
*Prosopis pubescens Benth.
New Mexico, western Texas, Arizona, California, Mexico.
Sarcobatus vermiculatus Torr.
Southern Wyoming, Great Basin, to the Upper Missouri River.

Another group of Rocky Mountain trees and shrubs, if we admit those occurring in New Mexico and Arizona, are those which in all probability have had their origin in Mexico, or the arid region of New Mexico, Arizona and southern California and have either remained near their primitive seat, (A) or have migrated northward from this common center along the Rocky Mountains, (B) or through California and the Rocky Mountains simultaneously (C). In the Rocky Mountains these elements may be classed together, as the Mexican, or southwestern contingent of the flora. In all probability, this migration took place just before the final recession of the glaciers from the mountains and when the great interior lakes Bonneville and Lahontan had shrunk extensively in size with the gradual approach of an arid climate. In each case, the range of the species is given in the list which follows. Those marked by an asterisk are known to occur in Mexico.

A. Acacia millefolia Wats. Arizona.
*Alnus oblongifolia Torr. Arizona, New Mexico, California.
Canotia holacantha Torr. Arizona on dry plateaus.
*Chilopsis saligna D. Don. Southern Arizona.
*Cowania mexicana Don. New Mexico, Colorado, Utah, N. Mexico.
Condalia obovata Hooker. Southern New Mexico, Arizona.
Cupressus guadalupensis Watson. Southern New Mexico and Southern Arizona and southward.
*Juniperus pachyphloea Torr. Southern Arizona, New Mexico, Texas, Mexico.
*Morus microphylla Buckl. Mountain canyons of Southern New Mexico, also in western Texas and Mexico.
Pinus chihuahuana Engelm. Southwestern New Mexico extending into Arizona.
Pinus reflexa Engelm. Southwest New Mexico and southeast Arizona.
*Platanus Wrightii Wats. Mountain canyons southwestern New Mexico, in southeastern Arizona and Mexico.
Part III. Chapter 3.

Ptelea angustifolia Benth. through Colorado, Mexico and Texas.

Prunus capsuli Cav. (= *P. capollin* Zucc.). Through Arizona, New Mexico, western Texas.

Quercus Emoryi Torr. Southern New Mexico, Arizona, western Texas.

Quercus hypoleuca Engelm. High mountain ranges southwestern New Mexico, Santa Rita Mountains, southeastern Arizona, Sonora.

Quercus oblongifolia Torr. Southern Arizona, New Mexico, Mexico.

Sophora secundiflora Lagasca. New Mexico to Gulf coast of Texas.

Ungnadia speciosa Endl. New Mexico (western Texas and northern Mexico).

Yucca elata Engelm. Western Texas, to Utah, Mexico.

**B. Artemisia tridentata* Nutt. Colorado to southwest, Bitterroots.

Baccharis salicina Torr. & Gray. Colorado to Texas.

Berberis Fendleri Gray. Southern Colorado southward, westward to Southern California.

Eupatorium ageratifolium DC. Southern Colorado to Texas.

Juniperus monosperma Engelm. Colorado and California.

Larrea mexicana Moric. Southern Colorado to California also in Texas.

Pinus aristata Engelm. Colorado and Death Valley Region.

Pinus edulis Engelm. Southern Colorado, New Mexico, western Texas.

Populus Fremontii Wats. var. *Wislizeni* Wats. Southern Colorado, New Mexico, western Texas, Arizona, Southern California.

Rhus trilobata Nutt. Colorado and southwest to southern California.

Robinia neo-mexicana Gray. Southern Colorado, southwestern and western New Mexico, Arizona, Southern Utah.

Ribes lepanthum Gray. Colorado, New Mexico, sierras of California.
Ribes sanguineum Pursh. Colorado and California.
Rosa Fendleri Crét. New Mexico, western Texas, sierras of California, and northward beyond boundary.
Symphoricarpos oreophilus Gray. Colorado, Utah, Arizona, California and Oregon.
Tetradymia canescens DC. New Mexico to northern Wyoming, Arizona, California, British Columbia.
Tetradymia spinosa Hook. & Arn. Southern Wyoming to Arizona, southeastern California and eastern Oregon.

Two plants have entered the Rocky mountain region from the southeast, viz., Rhamnus caroliniana Walt. which ranges from Montana through Colorado to northern Florida and northeastward to Long Island, New York, and Sapindus marginatus Willd. from southern New Mexico and Arizona, eastward through the Gulf States to the Atlantic coast.

3. Origin of Alpine and Boreal Floras of Western America 1). Before considering the origin of the flora of the Great Basin, which now concerns us, it is important to study the origin of the alpine and boreal floras of the mountains of western North America, which consist of first, the Rocky Mountains, and second, the Sierra Nevada and Cascade ranges. As, from what follows, the origin of the boreal floras of these mountains can be traced to the same source, it is expedient at this juncture to tabulate the boreal plants of a common origin and group them according to the mountain ranges on which they are found. This will simplify matters, so that when the general floral development of the Sierra Nevada and Cascade ranges is described, a consideration of the boreal floras of these mountains can be eliminated from the discussion.

The two great mountain ranges at their southern ends are widely separated by the deserts of the Great Basin; but in British Columbia the two systems draw closer together, the depressed plains between them become studded with other mountains, and the cold of the northern latitude allows the boreal flora of the mountain crests to descend more nearly to the base level of the country. Under these conditions, we should expect the boreal flora of any portion of one system to be nearly similar to that of other portions of the same system; and, indeed, that each system would constitute a distinct line of southward boreal migration and a distinct center for the differentiation of new forms distinct from their progenitors, the migrating boreal species. The following list adapted from Coville 2) with the addition of the northern Sierran plants constitutes a fair representation of the boreal Sierran flora which has been separated into four groups: a) those confined to the Sierra Nevada; b) those common to the Sierra Nevada and Cascade Mountains only; c) those common

1) See the foregoing page 243.
to the Sierra Nevada and Rocky Mountains only; and **d)** those common to the Sierra Nevada, Cascade Mountains and Rocky Mountains.

a) Confined to the Sierra Nevada.

- Arabis platysperma Gray.
- Arctostaphylos nevadensis Gray.
- Arenaria compacta Coville.
- Artemisia Rothrockii Gray.
- Aster Andersonii Gray.
- Bigelovia Bolanderi Gray.
- Bryanthus Breweri Gray.
- Chrysopsis Breweri Gray.
- Crepis intermedia Gray var. pleurocarpa Gray.
- Draba Lemmoni Wats.
- Epilobium obcordatum Gray.
- Erysimum asperum Nutt. var. perenne
- Gentiana serrata Gunn var. holopetala Gray.
- Hemizonia Wheeleri Gray.
- Hulsea algida Gray.
- Leucothoe Davisiae Gray.
- Lupinus Breweri Gray.
- Lychnis californica Wats.

b) Common to the Sierra Nevada and Cascade Mountains only.

- Allotropa virgata Torr. & Gray.
- Carex Breweri Booth.
- Claytonia triphylla Wats.
- Salix Barclayi Anders.
- Gentiana Newberryi Gray.
- Juncus orthophyllus Coville.
- Lonicera conjugialis Kell.
- Potentilla glandulosa Lindl. var. nevadensis Wats.

c) Common to the Sierra Nevada and Rocky Mountains only.

- Alsine baicalensis Coville (≡ Stellaria umbellata Turcz.).
- Carex incurva Lightf.
- Gilia Nuttallii Gray.
- Helenium Hoopesii Gray.
- Luzula (Juncoides) spicatum Desv.
- Navarretia (Gilia) Breweri Gray.
- Polemonium confertum Gray.
- Potentilla procumbens Sibth.
- Swertia perennis L.
- Pinus flexilis James.
- Scirpus pauciflorus Lightf.

d) Common to the Sierra Nevada, Cascade Mountains, and Rocky Mountains.

- Alsine longipes Goldie.
- Antennaria dioica Gaertn.
- Arabis hirsuta Scop.
- Arnica Chamissonis Less.
- Crepis nana Rich.
- Carex aurea Nutt.
Carex festiva Dewey.
 » filifolia Nutt.
 » tenella Schkuhr.
Claytonia Chamiissonis Esch.
Deschampsia caespitosa Beauv.
Draba stenoloba Ledeb.
Epilobium anagallidifolium Lam.
Erigeron compositus Pursh.
 » salsuginosus Gray.
 » uniflorus L.
Festuca ovina L. var. brevifolia Wats.
Glyceria pauciflora Presl.
Heuchera rubescens Torr.
Saxifraga punctata L.
Spraguea umbellata Torr.
Trifolium longipes Nutt.
Valeriana silvatica Rich.
Juncus Parryi Engelm.
 » subtriflorus E. Mey.
Mitella pentandra Hook.
Phleum alpinum L.
Phlox Douglasii Hook.
Polygonum bistortoides Pursh (= P. bistorta L.).
Pulsatilla occidentalis Wats.
Rumex Geyeri Meisn.
Saxifraga nivalis L.
Sedum roseum L. (= S. rhodiola DC.)
Tellima tenella Nutt.
Trisetum subspicatum Beauv.

It appears from this list, that nearly one half are common to the three regions, a fact which emphasizes the community of origin of all our boreal vegetation. About one-third of the whole number are confined to the Sierra Nevada. This is a large percentage for the endemic constituent of any region which climatically so closely resembles other portions of the same continental area. The broad geographic isolation of the Sierra Nevada, and the great antiquity of this isolation may explain the phenomenon in question. These lists indicate that the flora of the higher Sierra Nevada of California has an affinity quite as close with that of the Rocky Mountains of Colorado, as with that of the Cascade mountains of Oregon and Washington. In suggesting a reason for this remarkable fact, we must consider the theoretic cause of their original migration.

Several glacial periods are recognizable in North America, when the continental ice sheet advanced and then retreated, giving rise to one or two interglacial periods, when the surface exposed by the retiring ice was rapidly occupied by vegetation, which for example in many places in Iowa, Minnesota formed accumulations of peat sometimes to the depth of 25 feet. It was probably during the first stage in the advance of the continental ice sheet, that the first contingent of boreal plants migrated along the Cordilleran system of mountains southward. For in all probability, this stage was not one of maximum glaciation, but one in which only the mountain glaciers existed giving rise to conditions favorable for the rapid advance of many boreal plants. Consequent on the first retreat of the glacial ice and the ushering in of the first interglacial period, this vanguard of boreal plants remained stranded on the mountain summits of the Sierra Nevada, Cascade and Rocky Mountains and during this period of isolation, they were modified into the forms which are confined to these mountains and which characterize them floristically speaking. To this category belong the plants listed under divisions a and b above.
The advent of the later glacial advances inaugurated a change of climate and a more general refrigeration of the northern part of North America. Not only were the mountain valleys filled with glaciers descending from the mountain tops, but the larger valleys themselves with the lower mountain peaks between had their temperature so reduced as to permit the migration of boreal plants into and across them. It was during the period of maximum glaciation, that a second contingent of boreal plants reached the cordilleran system of mountains south of the extremity of the ice sheet. These plants, however, in reaching the Sierra Nevada Mountains evidently did not descend through the Cascade ranges (although some of them did move down these mountains, but not from them into the Sierras), but through the Rocky Mountains. To explain the distribution of groups c and d, we must assume a means of communication between the floras of the Sierra Nevada and those of the southern Rocky Mountains shortly before their final separation. It is believed that this communication may easily have taken place across Nevada and Utah by way of the numerous mountain ranges which traverse those regions. Under their present conditions of isolation, the migration of these species would be impossible; but when the present boreal flora was depressed nearly or quite to the base level of the mountains an excellent route for migration was presented. This explanation is rendered still more probable by the occurrence of nearly all the species of group c upon one or more of the higher desert ranges, such as the White, East Humboldt and Trinity mountains of Nevada, and the Uinta and Wahsatch mountains of Utah.

The plants of group d also advanced during the period of maximum glaciation reaching simultaneously, the Cascade Mountains, and the Rocky Mountains and from the latter by the route mentioned above to the Sierra Nevada Mountains proper.

The explanation of the circuitous route taken by the boreal plants of the second migration to the Sierra Nevada Mountains is afforded by a study of the distribution of species on Mount Shasta. Merriam has pointed out that the Klamath River Valley is the efficient barrier that must be considered in the distribution of boreal species. Klamath Gap represents a break of less than 50 miles separating the boreal fauna and flora of Shasta from that of the Cascades. In studying this gap compared with the breadth of the combined Pitt River and Feather River gaps, about 100 miles separating Mount Shasta from the boreal elements of the Sierra Nevada northwest of Honey Lake, one might expect Shasta to share more species with the Cascades than with the Sierras. The contrary is true. Of the distinctively Cascade species 25 per cent are derived from the mountains farther north, 12 per cent are local types, 12 per cent belong to transcontinental boreal types, and

25 per cent to northwest coast-types

Of the distinctively Sierra species, 50 per cent are especially developed local types, and 50 per cent belong to types common to the Sierra and the southern Rocky Mountains. These facts point not only to the great antiquity and effectiveness of the Klamath Gap, but also to a former east and west continuity of boreal species between the Rocky Mountains of Utah and Colorado and the Sierra Nevada of California, a distance of at least 500 miles.

The following lists of plants will represent the relationships of the boreal-alpine flora of Mount Shasta, the Cascade range and the Sierra Nevada Mountains. In giving these lists, a characterization of the different regions is also established.

a) Boreal-alpine species common to Shasta and the Sierra-Cascade System.

Achillea borealis Bong. (= A. millefolium L.).
Aconitum columbianum Nutt. (= A. Fischeri Reichb.).
Allium validum Wats.
Alnus sinuata E. Regel.
Antennaria media Greene.
Arabis platysperma Gray.
Arctostaphylos nevadensis Gray.
Dicentra (Bicuculla) uniflora Kell.
Cardamine bellidifolia L. var. pachymphylla Boot. [phylla Coville.
Chimaphila Menziesii Spreng.
> umbellata Nutt.
Chrysothamnus Bloomeri Gray.
Cymopterus terebinthinus Torr.&Gray.
Drosera rotundifolia L.
Epilobium obcordatum Gray.
> Pringleanum Hausskn.
Eriogonum pyrolaefolium Hook.
Gentiana simplex Gray.
Habenaria leucostachys Wats.
> unalaschakensis Wats.
Holodiscus discolor Maxim.
Juncus Parryi Engelm.
Kalmia glauca L. var. microphylla Hook.

Mimulus primuloides Benth.
Mitella pentandra Hook.
Oreobroma triphylla Wats. (= Claytonia triphylla Wats.).
Orthocarpus pilosus Wats.
Oxyria digyna Campd.
Pentstemon Newberryi Gray (= P. Menziesii Hook.).
Phlox Douglasti Hook. var. diffusa Gray.
Polemonium pulchellum Bunge
(= P. humile Willd.).
Polygonum shastense Brewer.
Potentilla flabellifolia Hook. (= P. gelida C. A. Meyer).
Pulsatilla occidentalis Wats.
Pyrola picta Sm.
Sagina saginoides L. (= S. Linnaei Pursh).
Saxifraga Tolmiei Torr. & Gray.
Sibbaldia procumbens L.
Sorbus sambucifolia Roem. (= Pyrus sambucifolia Cham. & Schlecht.).
Spraguea umbellata Torr.
Viola blanda Willd.
> purpurea Kell. (= V. aurea Kell. var. venosa Wats.).

1) Merriam l. c. p. 82–86.

Harshberger, Survey N.-America.
b) Boreal and alpine species common to Shasta and the Sierra but not known from the Cascades.

Agoseris monticola Greene.
Arnica Merriami Greene.
Castilleja affinis Hook. & Arn.
Chaenactis nevadensis Gray.
Cheiranthus perennis Coville.
Corallorhiza Bigelovii Wats.
Crepis intermedia Gray.
Cycladenia humilis Benth.
Draba Breweri Wats.
Erigeron armeriaefolius Turcz.
 » compositus var. trifidus Hook.
Eriogonum polyodum Small.
Hieracium albiflorum Hook.

Hieracium horridum Fries.
Hulsea Larseni Gray (= H. nana Gray var. Larseni Gray).
Madia Bolanderi Gray.
Parnassia californica Gray.
Saxifraga bryophora Gray.
Senecio canus Hook.
 » trigonophyllus Greene.
Stellaria crispa Cham. & Schlecht.
Streptanthus orbiculatus Greene.
Vaccinium caespitosum Michx.
Smilacina (Vagnera) stellata Desf.
Veratrum californicum Dur.

Hieracium gracile Hook. (= H. triste var. gracile Gray).
Hulsea nana Gray.
Ligusticum Grayi Coult. and Rose.
Lupinus ornatus Dougl.
Spiraea (Lutkea) pectinata Torr.&Gray.
Machaeranthera (Aster) shastensis Gray.

Hieracium gloriosum Fries.
Hulsea Larseni Gray (= H. nana Gray var. Larseni Gray).
Madia Bolanderi Gray.
Parnassia californica Gray.
Saxifraga bryophora Gray.
Senecio canus Hook.
 » trigonophyllus Greene.
Stellaria crispa Cham. & Schlecht.
Streptanthus orbiculatus Greene.
Vaccinium caespitosum Michx.
Smilacina (Vagnera) stellata Desf.
Veratrum californicum Dur.

Oreostrobus (Aster in part) alpigenum Torr. & Gray.
Pentstemon Menziesi Hook.
Bryanthus (Phylloleoce) empetriformis D. Don.
Polygonum Newberryi Hook.
Silene Suksdorfi Robinson.
Tofieldia occidentalis Wats.
Veronica Cusickii Gray.

Epilobium clavatum Trelease.
Hieracium gracile Hook. (= H. triste var. gracile Gray).
Hulsea nana Gray.
Ligusticum Grayi Coult. and Rose.
Lupinus ornatus Dougl.
Spiraea (Lutkea) pectinata Torr.&Gray.
Machaeranthera (Aster) shastensis Gray.

Pentstemon glaber Pursh var. utahensis.
Phacelia frigida Greene. [Wats.
Scutellaria nana Gray.
Silene Grayi Wats.

C) Boreal and alpine species common to Shasta and the Cascades but not known from the Sierra.

Abies shastensis Lemm. (= A. magnifica Murr. var. shastensis Lemm.).
Epilobium clavatum Trelease.
Hieracium gracile Hook. (= H. triste var. gracile Gray).
Hulsea nana Gray.
Ligusticum Grayi Coult. and Rose.
Lupinus ornatus Dougl.
Spiraea (Lutkea) pectinata Torr.&Gray.
Machaeranthera (Aster) shastensis Gray.

Pentstemon Menziesi Hook.
Bryanthus (Phylloleoce) empetriformis D. Don.
Polygonum Newberryi Hook.
Silene Suksdorfi Robinson.
Tofieldia occidentalis Wats.
Veronica Cusickii Gray.

d) Boreal Shasta species not known from either the Sierra or the Cascades 1). Peculiar to Shasta.

Arnica longifolia Eaton.
 » viscosa Gray.
Campanula Wilkinsiana Greene.
Mimulus impexus Greene.

Pentstemon glaber Pursh var. utahensis.
Phacelia frigida Greene. [Wats.
Scutellaria nana Gray.
Silene Grayi Wats.

Arnica Merriami Greene.
Castilleja affinis Hook. & Arn.
Cheiranthus perennis Coville.
Corallorhiza Bigelovii Wats.
Crepis intermedia Gray.
Cycladenia humilis Benth.
Draba Breweri Wats.
Erigeron armeriaefolius Turcz.
 » compositus var. trifidus Hook.
Eriogonum polyodum Small.
Hieracium albiflorum Hook.

Hieracium gloriosum Fries.
Hulsea Larseni Gray (= H. nana Gray var. Larseni Gray).
Madia Bolanderi Gray.
Parnassia californica Gray.
Saxifraga bryophora Gray.
Senecio canus Hook.
 » trigonophyllus Greene.
Stellaria crispa Cham. & Schlecht.
Streptanthus orbiculatus Greene.
Vaccinium caespitosum Michx.
Smilacina (Vagnera) stellata Desf.
Veratrum californicum Dur.

Oreostrobus (Aster in part) alpigenum Torr. & Gray.
Pentstemon Menziesi Hook.
Bryanthus (Phylloleoce) empetriformis D. Don.
Polygonum Newberryi Hook.
Silene Suksdorfi Robinson.
Tofieldia occidentalis Wats.
Veronica Cusickii Gray.

Campanula Wilkinsiana Greene.
Mimulus impexus Greene.

Mimulus impexus Greene.

Pentstemon glaber Pursh var. utahensis.
Phacelia frigida Greene. [Wats.
Scutellaria nana Gray.
Silene Grayi Wats.

e) Boreal genera and species common to the Sierra and the Cascades, but not known from Shasta.

Genera not known from Shasta.

Arenaria.
Cassiope.
Claytonia.
Clintonia.
Erythronium.
Heuchera.
Iris.
Ivesia.
Listera.
Mertensia.
Pedicularis.
Primula.

Raillardella.
Ranunculus.
Smelowskia.
Streptopus.
Thalictrum.
Xerophyllum.

1) Merriam i. c.
Species not known from Shasta.

Arnica Chamissonis Less. Lonicera involucrata Banks.
Campanula Scouleri Hook. Polygonum bistortoides Pursh.
Crepis nana Rich. (= P. bistorta L.).
Juncus orthophyllus Coville. Saxifraga nivalis L.
Lonicera conjugialis Kell. Saxifraga punctata L.

f) Boreal Sierra species not known from Shasta or the Cascades. (See table adapted from COVILLE. Ante page 254 sub a.)

g) Boreal Cascade species not known from Shasta or the Sierra.

Gaultheria myrsinites Hook. Ribes erythrocarpum.
Menziesia ferruginea Smith. Ribes lacustre Pir.
Rubus lasiococcus Gray. Valeriana sitchensis Bong.
Silene acaulis L. Sorbus occidentalis Wats.
Rhododendron (Azaleastrum) albiflorum Hook. Spiraea arbuscula.
 Vaccinium microphyllum Reinw.

The tabulation of the species here presented may serve to illustrate the fact, that a circumpolar boreal plant, if it occurs in North America at all is usually found over broad areas, or at widely separated points. This principle is supported by the fact that the group of species common to all three mountain ranges contain some that are circumpolar while those that are common to one, or at most two ranges include not a single circumpolar species. Several of these circumpolar species are found also in the high mountains of the Atlantic side of the continent. This indicates that the present boreal flora was at one time diffused over the base level of a large transverse zone south of the Canadian line; in other words the flora of the north in glacial times was far more homogeneous in an east and west direction than our present flora. Finally, our two great western mountain systems do not show marked isolation, as a group, but each has a well-defined individual isolation. Of the species common to the Sierra Nevada, Cascade Mountains and Rocky Mountains, nearly one-half are also Alaskan, or circumpolar; while the number of those common to the three ranges and confined within them is less than the number confined to the Sierra Nevada alone 1).

Attention must be called to the glacial meadows of the high Sierras, because they are covered with many plants which enter largely into the composition of the flora. The glacial meadows are smooth, level, silky lawns, lying imbedded in the upper forests, on the floors of the valleys, and along the broad backs of the main dividing ridges, at a height of about 8000 to 9500 feet above the sea. They are nearly, as level, as the lakes whose places

1) COVILLE, F. V. l. c. p. 30.
they have taken, and present a dry, even surface free from rock-heaps, mossy bogginess, and the roughness of rank, coarse-leaved, weedy and shrubby vegetation. The soil, is close and fine, and so complete that you cannot see the ground and with its vegetation, it may be likened to a garden-meadow, or meadow-garden. Glacial meadows abound throughout the alpine and sub-alpine regions of the Sierra in still greater numbers than the lakes. Probably from 2500 to 3000 exist between the latitude 36° 30' and 39° distributed like the lakes in concordance with all the other glacial features of the landscapes. There are big meadows usually about five to ten miles long. These occupy the basins of the ancient ice-seas, where many tributary glaciers came together to form the grand trunks.

The historic development of the flora of these areas has been, as follows. With the retreat of the ice, a lake was formed, later to be surrounded by tree vegetation. The lake, if large, slowly filled with silt and aquatic plants; if small, more rapidly. A bog resulted by the filling process and bog associations appeared and as the ground became drier and more compact, the meadow species, last in point of time to arrive, covered the area of the former lake basin. The culmination, however, is reached when the meadow plant associations are finally driven out by the encroachment of tree vegetation. All of the vegetation of these areas, then, is subsequent to a period marked by the present of extensive glaciers, which during a period of refrigeration covered all of these mountain summits. In these meadows, species of such genera, as Gentiana, Ixesia, Orthocarpus, Solidago, Pentstemon, Trifolium, Calamagrostis, Bromus, Agrostis, Triticum abound with mosses on the ground, Hypnum, Dicranum, Polytrichum.

Hanging meadows found aslant upon moraine-covered hillsides trending in the direction of greatest declivity occur in the alpine and subalpine regions in considerable numbers. Such plants, as Veratrum album, Aquilegia, Senecio, Allium, Castilleja, Delphinium, Lilium, Lupinus, Mimulus and Pentstemon form a rich vegetal growth with brilliant flowers. These hanging meadows are likewise subsequent to the glaciers for they occur on glacial deposits, morainic material and the like 1).

The eastern slopes of the Sierra Nevada Mountains are forest clad in a great measure; while the western slopes bear the noblest and most remarkable forest of the world. It is remarkable not only for the number of species of evergreen trees occupying a comparatively narrow area, but especially for their wonderful development in size and height. There is no forest to be compared for grandeur with that which stretches, essentially unbroken, though often narrowed and nowhere very wide, from the southern part of the Sierra Nevada in latitude 36° to Puget Sound beyond latitude 49°. The forest, separated by the valley of California, resumes sway in the Pacific coast ranges with altered features. The redwoods of the coast for instance

are little less gigantic than the big trees of the Sierra Nevada, and a thousand times more numerous. Through most of California, these two Pacific forests are distinct but in the northern part of that state, they join and form one rich woodland belt skirting the Pacific and extending through British Columbia into Alaska. To these forests, we must now turn our attention.

Asa Gray long ago called attention to the fact that the Pacific forest has no Magnolias, no tulip-tree, no linden and is very poor in maples; no locust trees, nor any leguminous trees; no cherry large enough for a timber-tree, like the eastern wild black cherry; no gum trees (*Nyssa*, nor *Liquidambar*), nor sorrel-tree, nor *Kalmia*, no persimmon or *Bumelia*; not a holly; only one ash that may be called a timber-tree; no catalpa or sassafras; not a single elm or hackberry; not a mulberry, nor planer-tree, nor *Maclura*; not a hickory nor a beech, nor a true chestnut, nor a hornbeam; barely one birch tree, and that only far north, where the differences are less striking. But as to coniferous trees, the only missing type is the eastern *Taxodium distichum*¹).

5. Flora of the Pacific Mountain Ranges.

General Remarks. The Pacific forest consists of conifers, with non-coniferous trees as an occasional undergrowth, or as scattered individuals, and conspicuous only in valleys, or in the sparse tree-growth of the plains, on which the oaks form open groves. This predominance of coniferous vegetation is remarkable and paradoxical. The Pacific coast is the sole refuge of the most characteristic and wide-spread types of Miocene coniferae, the sequoias. Any attempted explanation of this extreme paucity at present of broad-leaved trees, which existed in the form of magnolias, beeches, chestnuts, elms and gums *Liquidambar* down to the beginning of the glacial period as shown by remains in the auriferous gravels of the west, bristles with difficulties. Much may be attributed to glaciation; something to the tremendous outpours of lava; much to the narrowness of the forestbelt, to the want of a summer rain, and to the most unequal and precarious distribution of that of winter. The coniferous trees essentially xerophytic in constitution were better able to survive when subjected to a combination of such influences, while the broad-leaved trees typic of the Miocene forest succumbed when exposed to the conditions which the conifers were able to resist. This suggests that the difference between the forests of the east and west is to explained by the climatic and other conditions which existed during and at the close of the great ice age, when the conditions which preserved the broad-leaved species of the east were exactly the reverse of those which in the Pacific coast brought about their extinction and the preservation of the coniferous vegetation, which is there dominant at the present day.

The following Pacific coast trees have migrated into the Rocky Mountain region and some have entered from the south (see ante).

Pinus monticola Dougl.
 » flexilis James.
 » albicaulis Engelm.
 » Balsouriana Murr.
 » aristata Engelm.
 » arizonica Engelm.
 » ponderosa Laws.
 » chihuahua Engelm.
 » Murrayana Oreg.Com. (= P. contorta var. Murrayana Engelm.).
Larix occidentalis Nutt.
 » Lyallii Parl.
Picea Engelmanni Engelm.
Tsuga Mertensiana Bong. (= T. heterophylla Sarg.).
 » Pattoniana Jeffr. (= T. Mertensiana Sarg.).
Pseudotsuga Douglasii Carr. (= P. mucronata Nutt., = P. taxifolia Poir.).
Abies subalpina Engelm. (= A. lasiocarpa Nutt.).

Abies concolor Lindl. & Gord.
Thuja plicata Don.
Juniperus occidentalis Hook.
 » californica Carr.
Taxus brevifolia Nutt.
Salix amygdaloides Anders.
 » lasiandra Benth.
 » fluviatilis Nutt.
 » sitchensis Sanson.
Populus trichocarpa Torr. & Gray.
Betula occidentalis Hook.
Alnus rhombifolia Nutt.
Prunus emarginata Walp.
Acacia Greggi Gray.
Acer glabrum Torr.
Cornus Nuttallii And.
Arbutus Menziesii Pursh.
Chilopsis saligna Don.
Sambucus glauca Nutt.

Many of these trees such as *Pinus ponderosa*, *Pseudotsuga Douglasii* form an important element in the Pacific coast region reaching their greatest size there. The enumeration above proves that the Rocky Mountains are comparatively poor in the size of its trees and the number of species; that few of the species are peculiar, and those mostly in the southern part, and of the Mexican plateau type; that most of the Rocky Mountain trees are identical in species with those of the Pacific forest. The Pacific forest in the widest sense extends from central Alaska southward.

Alaska Forests. The Alaska forest has a simple composition, for the bulk is made up of a mixture of two species, *Pinus sitchensis* and *Tsuga Mertensiana* (*T. heterophylla*), with which dominant trees occur: *Pinus contorta*, *Abies subalpina* (*A. lasiocarpa*), *Alnus oregana*, *Acer glabrum*, *Populus balsamifera*, *Thuja gigantea*, *Cupressus* (*Chamaecyparis* ***nootkaensis**), while near the timber-line and farther west, on the lower level grows *Tsuga Pattoniana* (*T. Mertensiana*). Numerically the coast hemlock seems to be the most common species forming usually 70 to 80 per cent of the composition of the forest, the spruce only occasionally preponderates, especially along water-courses and on newly forested moraines, until the western limit of the hemlock is reached at Prince William Sound. Farther west, the spruce alone continues to form forests or open groves, as on the shores of Cook Inlet and Kadiak Island, the western limit of tree growth.

Why trees are limited at this point, it is difficult to say for the rainfall is ample and the climate a little more severe than at Sitka. Perhaps two causes
have been influential. One explanation based on the historic development of the flora here is that the northward migration of coniferous and other trees on the Pacific coast has been checked by the long persistence of numerous local valleys glaciers which descend from the mountains to the sea. Another explanation advanced by Fernow ¹) seems plausible in addition to the reason given above. The Alaska peninsula and Aleutian islands show evidence that they are of recent and volcanic origin. A forest could come to them only from the east, or northeast, by the gradual extension of the coast forest. To secure this extension, it is necessary that the winds should blow from the north and east from September to May, when the spruce and hemlock release their seed. The contrary usually happens; there is during these months a constant succession of southeast and south winds and the air is heavily charged with moisture bad for wind blown seeds. For these reasons, the spread of the forest has been retarded.

Cascade- and Coast ranges. This forest of Alaska is a continuation of the great maritime forest of north-western America, which at the south embraces the redwoods of California and spreads over western Oregon and Washington. This forest resembles the forest of Puget Sound and of western British Columbia, but it lacks _Pseudotsuga Douglasii_ (P. taxifolia), the most abundant tree about Puget Sound, _Abies grandis_ and _Acer macrophyllum_ abundant in all the coast region further south. It represents historically and floristically a forest extension which began with the final recession of the great ice sheet and has continued ever since²).

At Puget Sound the character of the forest, although due to coniferous trees, owes its individuality to new species, which appear and which probably represent the northwestern fragment of that great forest which covered North America in Miocene times with the extinction of the majority of broad leaved trees. In the Puget Sound region, where the Cascade and Coast ranges join, we find the following trees to make up a forest which for denseness and size of its individual trees stand unrivalled.

East and southeast of Puget Sound in a territory well watered by streams are the Washington and the Mount Rainier national forests. In these national forests have been noted the trees given in the table below. (* in the Rainier and not in the Washington).

| Pseudotsuga Douglasii Carr. (≡ P. taxifolia Poir. = P. mucronata Sudw.) | Thuja plicata Don. |
| Bench lands of the valleys and lower mountain slopes. | River bottoms to lower mountain slopes. |

²) The vegetation of the northwest coast region is probably nowhere more highly developed than in the Queen Charlotte islands of the coast of B.C. Columbia. Of coniferous trees at least seven species are found, viz., _Picea sitchensis, Tsuga heterophylla, Tsuga Mertensiana, Thuja plicata, Chamaecyparis nootkaënsis, Pinus contorta_ and _Taxus brevifolia._
Tsuga Mertensiana Bong. (= T. heterophylla Sarg.).
Common up to 4000 feet.
Tsuga Patoniana Jeffr. (= T. Mertensiana Sarg.).
Common up to 4000 feet.
Cupressus (Chamaecyparis) nootkaensis Lamb.
Mountain slopes above 2000 feet.
Picea sitchensis Carr.
Along streams up to an altitude of 2000 feet.
Picea Engelmanni Engelm.
High altitudes.
Abies amabilis Forb.
On moist land and northern slopes up to 4000 feet.
*Abies nobilis Lindl.
Rainier Forest.
*Abies concolor Lindl. & Gord.
Rainier Forest.
Abies subalpina Engelm. (= A. lasiocarpa Nutt.).
On higher slopes and summit.
Pinus monticola Dougl.
Medium altitudes, or bench lands and lower mountain slopes.
Pinus ponderosa Laws.
Dry slopes of the Skagit Valley north of Lightning Creek.
Pinus Murrayana Oreg. Com. (= P. contorta var. Murrayana Engelm.).
Dry bench lands northward to international boundary.
Pinus albicaulis Engelm.
High altitudes.

Larix Lyalli Parl.
Summit Cascade Range northward.
*Larix occidentalis Nutt.
Rainier Forest.
Taxus brevifolia Nutt.
Common as an under tree on moist lands up at an altitude of 3000 feet.
Populus trichocarpa Hook.
Common along streams in lower altitudes.
Cornus Nuttallii Audub.
On bench land in lower altitudes.
Pyrus (Malus) rivularis Dougl.
Common on low wet land.
Populus balsamifera L.
Occurs sparingly on the upper Skagit and eastward.
Populus tremuloides Michx.
Northward and eastward in the Skagit drainage.
Betula papyrifera Marsh.
In the Skagit Valley; abundant above Ruby Creek, rare below.
Acer macrophyllum Pursh.
Along streams below 2000 feet.
Acer circinatum Pursh.
Common below 3000 feet.
Alnus oregana Nutt.
Common along streams in lower altitudes.
Fraxinus Oregana Nutt.
Rainier Forest.
Quercus Garryana Dougl.
Rainier Forest.
Rhamnus Purshiana DC.
Common on moist land in lower valleys as a small under tree.

The trees noted in the list 1) are also dominant west of Puget Sound in the Olympic Mountains, which rise from the Pacific Ocean, so that the above species may be said to represent the forest vegetation of the northwest above

the point where the forest is separated into two southward projecting lobes, the one on the coast, the other following the Cascade-Sierra ranges of mountains.

The forest of the Cascades is overwhelmingly coniferous. This is especially the case on the areas east of the Cascades, where broad-leaved species of trees form but a fraction of 1 per cent of the forest growth, and where two conifers *Pinus ponderosa* and *Pinus Murrayana*, together constitute 88 per cent. West of the Cascades, broad-leaved trees occur more plenti-

![Fig. 6. Coniferous Forest along Columbia River, Oregon, consisting of red fir (*Pseudotsuga Douglasii* = *muronata*) and incense cedar (*Libocedrus decurrens*). The undergrowth is *Acer macrophyllum*, *Mahonia (Berberis) aquifolium*, *Oxalis oregana*, and in clumps the fern *Aspidium munitum*. Reproduced from photograph by Rau.]

fully, forming on a numeric basis, about 6 per cent of the entire forest; and while among the conifers, two species, *Pinus ponderosa* and *Pseudotsuga Douglasii* particularly predominate, there is also a wider range of ratios among the balance than is found on the eastern side of the range. The following species of coniferous trees form sylvan elements in the Cascade range and adjacent territory of Oregon. Those marked by an asterisk * were not noted in the forests of Washington. Fig. 6 is illustrating the guild of *Pseudotsuga* and *Libocedrus*.
Pinus ponderosa Dougl.
» *Lambertiana Dougl.
» monticola Dougl.
» albicaulis Engelm.
» Murrayana Oreg. Com. (= P. contorta var. Murrayana Engelm.).
Abies concolor Lindl. & Gord., including transitional form to the northern Abies grandis.
» amabilis Forb.
» nobilis Lindl.
» subalpina Engelm. (= A. lasiocarpa Nutt.).

Pseudotsuga Douglasii Carr. (= P. taxifolia Poir. = P. mucronata Sudw.).
*Libocedrus decurrens Torr.
Cupressus (Chamaecyparis) nootkaensis Lamb.
Tsuga Mertensiana Bong. (= T. heterophylla Sarg.).
» Pattoniana Jeffr. (= T. Mertensiana Sarg.).
Picea Engelmanni Engelm.
Taxus brevifolia Nutt.
Juniperus occidentalis Hook.

*Quercus californica Torr.
» Garryana Doug.
Arbutus Menziesii Pursh.
Fraxinus oregona Nutt.
Acer macrophyllum Pursh.
Alnus oregona Nutt.
*Castanopsis chrysophylla A. DC.
Pyrus (Malus) rivularis Doug.
Populus tremuloides Michx.
» balsamifera L.
» trichocarpa Hook.
Sambucus glauca Nutt.

Among the various species of broad-leaved trees the following are abundant 2) enough to become conspicuous factors of the forest in the Cascade range and adjacent territory. (* not noted in Washington.)

*Quercus californica Torr.
» Garryan Doug.
Arbutus Menziesii Pursh.
Fraxinus oregona Nutt.
Acer macrophyllum Pursh.
Alnus oregona Nutt.
*Castanopsis chrysophylla A. DC.
Pyrus (Malus) rivularis Doug.
Populus tremuloides Michx.
» balsamifera L.
» trichocarpa Hook.
Sambucus glauca Nutt.

Forests of Sierra Nevada Mountains. The forests of the Sierra Nevada Mountains may be divided into three belts. The lower belt comprises a thinly stocked open forest mostly of oak at the lowest elevations, with a preponderance of scrubby pine at the higher elevations. Interspersed throughout this growth are strips of valley grassland and in the southwestern border low, broad hills of considerable extent frequently covered with chaparral. The middle belt is coniferous, pines predominate at the lower elevations, but in the higher sections cedar and fir are mingled with the pines in more or less equal numbers. The trees are usually of large dimensions such as the big tree Sequoia gigantea, Pinus ponderosa, Pinus Lambertiana. The upper forest belt is likewise coniferous in character, but the bulk of the timber is fir with mingled areas of inferior pines, juniper and hemlock. The lower elevations, including soil-covered, rocky benches and the mucky borders of subalpine meadows, contain the denser growths, while the bare, higher rocky elevations

have only a scattered growth of stunted trees. Those trees') which are noted for the first time as not occurring in Washington are marked thus *, those not occurring in the Cascades thus †.

Lower Belt.

*†Pinus Sabiniana Dougl.
† tuberculata Gord.
†Salix lasiandra Benth.
† sessilifolia Nutt.
†Populus Fremontii Wats.
†Quercus lobata Nutt.
†Douglasii Hook. & Arn.
†dumosa Nutt. var. revoluta Sarg.

*†Quercus Morehus Kell.
† Wislizeni A. D.C.
†Umbellularia californica Nutt.
†Heteromeles arbutifolia Roem.
Acer macrophyllum Pursh.
†Aesculus californica Nutt.
Rhamnus Purshiana DC.
Fraxinus oregona Nutt.
Sambucus glauca Nutt.

Middle Belt.

*Pinus Lambertiana Dougl.
† ponderosa Laws.
† Jeffreyi Oreg. Com.
Pseudotsuga Douglasii Carr. (= P. taxifolia Poir.).
Abies concolor Lindl. & Gord.
† magnifica Muir.
†Sequoia gigantea Decs. (= S. Washingtoniana Winslow, = S. Wellingtonia Seem.?)
*Libocedrus decurrens Torr.
*Taxus brevifolia Nutt.
†Torreya (Tumion) californica Torr.
Populus trichocarpa Torr. & Gray.
†Alnus rhombifolia Nutt.

*Castanopsis chrysophylla DC.
*Quercus chrysolepis Liebm.
* Kelloggii Newberry.
† californica (Torr.) Coop.
† (Pasania) densiflora Hook. & Arn.
† dumosa Nutt.
*Cercocarpus parvifolius Nutt. var. brevifolia Gray.
*Prunus demissa Walp.
† subcordata Walp.
† Acer macrophyllum Pursh.
†Rhamnus Purshiana DC.
†Cornus Nuttallii Aud.
†Arbutus Menziesii Pursh.

Upper Belt.

Pinus monticola Dougl.
† albicaulis Engelm.
† Jeffreyi Oreg. Com.
† Murrayana Oreg. Com.
(= P. contorta var. Murrayana Engelm.).

*†Pinus flexilis James.
† aristata Engelm.
Tsuga Pattoniana Jeffr. (= T. Merritensis Sarg.).
Abies concolor Lindl. & Gord.
† magnifica Murr.

The continuation of the forest south of the Sierra Nevada is to be sought in the Sierra Madre Mountains in southern California. The distinguishing feature of the natural vegetation of southern California is the prevalence of shrubs 1. Over three-fourths of the surface shrubs form the principal growth. Scattered in open order over desert, plain and valley as chaparral, it is seldom that shrubs give way to meadow and forest. At low altitudes the arboreal vegetation is mostly riparian. The streams are scantily fringed with alder, sycamore, cottonwood and a few species of willow. At an altitude of 4000 and 5000 feet the coniferous forest begins. The San Gabriel and San Bernardino mountains form together a portion of the Sierra Madre range. The general course of these mountains is from west to east. The general aspect of these mountains is extremely broken and rugged. The crest line of the main back bone of the range is moderately winding and from it steep declivities descend on the south flanks and north flanks, the latter being more abrupt than the former.

On San Jacinto and Grayback mountains is found an alpine flora which lingers on these summits along the banks of perpetual snow in the cool shaded canyons which descend the north side at altitudes between 10,000 and 10,800 feet. A single species Ranunculus Eschscholtzii has been found on both peaks, Arenaria hirta var. verna and Antennaria alpina have been collected on Grayback, while from San Jacinto, Carex Preslil, Oxyria digyna and the alpine forms of Spraguea umbellata and Aquilegia trunca 2.

The conspicuous vegetation of these mountains, which rise to above 10,000 feet, is however, of two types. 1. A brush or chaparral growth, more or less mixed with an open, thin or aggregated stand of trees, or wholly composed of shrubby plants except where broken by patches of naked rocks; 2. a forest growth, which, while generally heavy enough to deserve the designation of forest, is mostly of a thin stand, and composed of low, scraggy individuals.

The chaparral of the San Jacinto range (which has its northern termination at San Gorgonio Pass, a gap 4 to 5 miles wide separating the San Jacinto Mountains from the San Bernardino range), is similar to that mentioned above with the addition of Adenostoma sparsifolium (25 per cent), Encelia farinosa, Lycium Andersonii, Pentstemon antirrhinoides, Pluchea sericea, Rhus ovata, Ribes sanguineum, Simmondsia californica.

The forest in the three mountain systems, San Gabriel, San Bernardino and San Jacinto, is given in the following list.

Coniferous.

<table>
<thead>
<tr>
<th>Species</th>
<th>San Gabriel</th>
<th>San Bernardino</th>
<th>San Jacinto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abies concolor Lindl. & Gord.</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Juniperus californica Carr.</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Libocedrus decurrens Torr.</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pinus attenuata Lemmon (= P. tuberculata Gord.)</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>» Coulteri Don.</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>» flexilis James</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>» Lambertiana Dougl.</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>» monophylla Torr. & Frem.</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>» Murrayana (= P. contorta Murrayana Engelm.)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>» ponderosa Dougl.</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>» quadrifolia (= P. Parryana Engelm.)</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Pseudotsuga macrocarpa Mayr.</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Evergreen (non coniferous).

<table>
<thead>
<tr>
<th>Species</th>
<th>San Gabriel</th>
<th>San Bernardino</th>
<th>San Jacinto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cercocarpus betulaeolius Nutt.</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>» ledifolius Nutt.</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Quercus chrysolepis Liebm.</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>» Wislizeni A. DC.</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Rhus ovata Wats.</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Yucca arborescens Trel. (= Y. brevifolia Engelm.)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Deciduous-leaved.

<table>
<thead>
<tr>
<th>Species</th>
<th>San Gabriel</th>
<th>San Bernardino</th>
<th>San Jacinto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alnus rhombifolia Nutt.</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fraxinus velutina</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fremontodendron (Fremontia) californicum Torr.</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Chilopsis linearis DC. (= C. saligna Don.)</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Juglans rupestris Engelm.</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Platanus racemosa Nutt.</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>» Fremonti Wats.</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Populus trichocarpa Hook.</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Prosopis juliflora DC.</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Quercus californica Torr.</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>» Morehus Kell.</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Salix lasiandra Benth.</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

The forest trees in these mountains below the 3000 foot contour are *Alnus rhombifolia, Platanus racemosa, Populus trichocarpa, Quercus chrysolepis, Salix lasiandra*. The coniferous trees begin to grow at altitudes of 3000 feet (915 m). The first to appear are *Pinus Coulteri* and *Pseudotsuga macro-
carpa. At 4800 feet (1460 m) elevation, the trees begin to form a forest with
the following species as the chief components: Abies concolor, Libocedrus
decurrens, Pinus Coulteri, Pinus ponderosa, Pseudotsuga macrocarpa, Quercus
californica and Quercus chrysolepis. At altitudes of 5400 feet (1650 m) Pinus
Lambertiana becomes an element in the forest. The forest at the 7000 foot
(2130 m) contour line consists of Abies concolor, Cercocarpus ledifolius, Juni-
perus californica and J. occidentalis, Libocedrus decurrens, Pinus Lambertiana,
Pinus monophylla, Pinus Murrayana and Quercus chrysolepis. This oak ceases
with all other species of oaks at 8000 feet (2440 m). From 9500 to 11,700 feet
(2900—3570 m), which is the highest elevation in the San Bernardino range,
the forest consists almost wholly of Pinus flexilis and Pinus Murrayana.1)

The mountain flora as the above lists show is essentially a Sierra Ne-
vdadan flora projected southward. Aesculus californica, Quercus Douglasii,
Q. Wislizieni var. frutescens, Pinus sabinianna, Myrica californica, Arbutus Men-
ziesii barely enter southern California from the San Joaquin district and hence
are forced into a narrow belt between the desert and the mountains over
which they have been unable to pass to a region better adapted to them.

The following plants form a conspicuous desert element of the flora: Fremontodendron (Fre-
montia) californicurn*, Dalea spinosa, Olneya tesota, Prosopis juliflora*, Prosopis pubescens*, Acacia
Greggii*, Chilopsis saligna (= C. linearis), Yucca baccata*, Yucca brevifolia, Pinus monophylla,
Juniperus californica. Those marked with an asterisk pass to a greater or less extent into the
intramontane area which is essentially occupied by a Californian flora many plants of which were
originally derived from the great Sonoran life area. Among the prominent intramontane species are:
Rhamnus californica, R. californica var. tomentella, Acer macrophyllum, Negundo californicum,
(= Acer negundo var. californicum), Prunus ilicifolia, Prunus demissa, Cercocarpus parvifolius,
Heteromeles arbutifolia, Sambucus glauca, Umbellularia californica, Juglans ruprestris, Quercus chry-
solepis, Quercus agrifolia, Quercus lobata, Alnus rhombifolia, Populus Fremonti var. Wislizeni,
Salix laevigata, Salix lasiopelis, Salix lasiandra var. lancefolia, Platanus racemosa.

The lower limit of the Sierra Nevada element of the flora on the
mountains of southern California coincides with that of Pinus ponderosa. This
ranges according to exposure from 5000 (1524 m) to 7000 feet (2133 m). The
genera given below in the first column are represented by species which be-
long exclusively to the flora of the Sierra Nevada, while the boreal genera
are mentioned which have a more or less wide distribution throughout the
whole boreal zone of the Pacific mountain ranges.

Genera found only in the Nevdadan Territory.

Exclusively Nevada 2).

Libocedrus. Iris. Lewisia.
Veratrum. Spraguea. Heuchera.

1) The elevations above are not absolute, but vary with the slope and exposure.
2) Genera abundant and widely distributed in spread letters: those local and rare in
italics.
From a consideration of this table, it is evident that the flora of these southern mountains coincides with that of the general Sierra Nevada.

Southern Extension of Californian Plants. A number of trees of shrubs of California proper find their southern limit extension in the peninsula of Baja California. Such are: *Pinus Jeffreyi, Pinus Lambertiana, Libocedrus decurrens, Rhamnus californica, Juniperus californica, Abies concolor, Sambucus glauca* and *Symphoricarpus mollis*. This peninsula in conclusion contributed *Pinus Parryana* and *Washingtonia filifera* to southern California.

The Coast range is the general name for the great mountain system which stretches along the Pacific coast from Puget Sound to southern California. It is not a continuous range, but a broken mass of parallel, ridges from forty to seventy miles wide, with many other chains transverse to the general trend of the range. Streams cut through the mountains here and there and through their valleys flow fogs to modify the local climates. In the Coast range, there is no warm belt, but isolated warm spots, which depend on altitude, prevailing wind, fog and exposure. The rainfall is even more capricious than the temperature. The eastern slopes are dry and the western in general wet. Under such conditions, the flora of the Coast range cannot be other than interesting, for plants are much localized and frequently found there out of their usual range. The full explanation of these peculiarities will be given in a short space.

Nowhere in the range is there greater variety than in the area comprised within Mendocino and Lake counties, California. A narrow table-land next the ocean together with sand dunes and salt lagoons are found. *Pinus muri- cata* originally covered the table-lands. A few miles back high terraces lie between the deepcut river channels and up the river cañons on the ocean.

side according to the observations of the writer the redwood forest begins and stretches to the top, of the range which, at twenty miles from the sea, forms a barrier 2000 feet high, between the coast and the interior.

Southern Coast Range Flora. Three mountains in the middle coast ranges of western central California are of interest in depicting briefly the characteristic mountainous flora of these parts of North America, Mount St. Helena (4343 feet, 1324 m), Mount Diablo (3849 feet, 1171 m), Mount Hamilton (4209 feet, 1282 m) may be contrasted for this purpose). On account of its volcanic character (entire summit above 2300 feet covered with ash) and the scarcity of water, the number of species of plants found on Mount St. Helena is very small. Meager as the vegetation is in species, it would be even less were the mountain located in the inner instead of the middle coast ranges. Its situation is in a region of great annual rainfall, and the fogs hang about the mountain at intervals during the rainless season for a portion of the day for a period of several days to a week or more. The conditions on Mount Diablo are similar, distant sixty-seven miles. The vegetation of the mountains is, therefore, more rank than on Mount Hamilton which is not so favorably situated with regard to moisture. Notwithstanding the arid character of the summit of Mt. St. Helena, it possesses a few species characteristic of the humid coast region, or of the high Sierras and other elevated mountain ranges, such as, Pseudotsuga Douglasii, Cornus Nuttallii. Three species of Ceanothus, C. velutinus var. lactigatus, C. prostratus var. divergens, and C. foliosus, all found on Mt. St. Helena are not found in the inner north-coast range, nor yet on Mount Diablo. The vegetation of the summit is distinguished by the prevalence of shrubs of a limited number of species which completely mantle the sides of the mountain above 2300 to 2500 feet. Arctostaphylos Manzanita is very abundant, particularly at the highest elevation, and numerically outranks all other species. Garrya Fremontii, Xylothermia montana, Rhamnus californica and Ceanothus foliosus are common. Castanopsis chrysophylla also occurs and Quercus chrysolepis and Q. Wislizenii in scattered individuals. There is a conspicuous lack of herbaceous species above 3000 feet, only such as Hypericum coccinum, Pedicularis densiflora, Monardella odoratissima and Zygadenus Fremontii being found.

The Chemical, or Chemise brush, covers slope after slope, hill after hill, and mile after mile with a low dense growth of a uniform blue green due to the shrub Adenostoma fasciculatum. A fern, Pellaea ornithopus, grows in dense tufts on the hot slopes where in the chemical some rocks have been broken into fine debris.

The barrier range mentioned above between the coast ranges and the interior is diversified by masses of Pseudotsuga and species of Quercus, thickets

of chemical, open grassy slopes, mountain meadows with small patches of redwood in canyons or on cool slopes. Snow Mountain east of the San Hedrin Mountain has its upper slopes and dry valleys covered with forests of Libocedrus, Pseudotsuga, Pinus Jeffreyi surrounded by thickets of Prunus emarginatus, Ceanothus cordulatus and as herbs Gilia aggregata, Spraguea umbellata, Eriogonum umbellatum with E. ovalifolium and E. Lobbii.

The plants of the Sierra Nevada Mountains found growing in the Coast ranges differ somewhat, in most cases, a difference easily explained by their isolation and difference of situation\(^1\).

A comparison of the species of the genus Ribes\(^2\) richly represented in California brings out the fact that the separation of the two mountain systems by the great valley is sufficient to produce forms different enough to entitle them to rank as distinct species.

Coast Region.

Sierra Nevada.

<table>
<thead>
<tr>
<th>Ribes bracteosum Dougl.</th>
<th>Ribes viburnifolium A. Gray.</th>
</tr>
</thead>
<tbody>
<tr>
<td>sanguineum Pursh.</td>
<td>laxiforum Pursh.</td>
</tr>
<tr>
<td>scuphami Eastw.</td>
<td>viscosissimum Pursh.</td>
</tr>
<tr>
<td>glutinosum Benth.</td>
<td>nevadense Kellogg.</td>
</tr>
<tr>
<td>malvaceum Smith.</td>
<td>variegatum S. Wats.</td>
</tr>
<tr>
<td>viridiflorum Abrams.</td>
<td>adscendens Eastw.</td>
</tr>
<tr>
<td>indecorum Eastw.</td>
<td>glaucescens Eastw.</td>
</tr>
<tr>
<td>hirtellianum Eastw.</td>
<td></td>
</tr>
</tbody>
</table>

Ribes Menziesii Pursh.

hystrix Eastw.	divaricatum Dougl.
californiae H. & A.	quercectorum Greene.
occidentalis H. & A.	speciosum Pursh.
oligacanthum Eastw.	mariposanum Congdon.
victoris Greene.	amictum Greene.
sericeum Eastw.	Wilsonianum Greene.
subvestitum H. & A.	aridum Greene.
Lobbii A. Gray.	saxosum Hook.
Marshalli Greene.	lasianthum Greene.
eruentum Greene.	Congdoni Heller.
hesperium McClatchie.	velutinum Greene.
amarum McClatchie.	

b. Gooseberries.

Only two species *cereus* and *lentum* seem to be common to both the coast region and the Sierra Nevada.

Although possessing many species in common the flora of the Coast ranges is decidedly different from that of the Sierra Nevadas. JEPSON\(^3\) regards the flora of these Coast ranges as decidedly endemic and much the oldest and most unique, as the following lists by Miss ALICE EASTMAN will indicate.

1) **BRANDEGEE, KATHARINE:** Sierra Nevada Plants in the Coast Range. Zoe IV: 168.
3) In a letter to the writer dated December 1, 1903.
1. Genera found in the Coast Mountains and not in the Sierra Nevada. (Those marked with * asterisks are peculiar to the Coast Mountains.)

2. Genera found in the Sierra Nevada not found in the Coast Mountains. (Those marked with an * asterisk are peculiar to the Pacific coast Flora.)

An examination of the first list will show that the Coast ranges lack those northern genera which may be called boreal-alpine, while the second list of genera peculiar to the Sierra Nevada Mountains includes such boreal-alpine genera as Sibbaldia, Cassiope, Bryanthus.

Outside floral elements enter and mix with the true endemic coast flora. The northern element from Oregon and Washington is practically coextensive with the redwood belt and extends, as far southward, as Marin County, although there are two considerable islands south of San Francisco Bay, one in the Santa Cruz Mountains and a smaller one in the Santa Lucia Mountains. All of the typic redwood, or undergrowth plants are characteristically northern.

We have here a mass invasion of a northern species-guild ("Arten-genosssenschaften") into a redwood forest as an undergrowth, the redwood forest with its species-guild antedating by many periods of time the occupancy of the territory. The undergrowth is an alien association thoroughly naturalized in its new quarters. The species characteristic of low altitudes are later invaders and many of them have entered from the south. The Sonoran element overlaps the southern portion of the Coast Range between San Francisco Bay and Tehachapi Pass. In southern California, the Sonoran element reigns supreme. Along the eastern edge of the Coast ranges where they abut on the great central valley of California, we find the influence of the coast range flora extending eastward to the Sacramento and San Joaquin rivers. Similarly, the flora of the plains is felt on the eastern slopes of the mountains.

The district between the San Bernardino Range and the sea may be designated as the Cismontane District. Two fairly distinct sub-districts (territories) are noticeable viz., the coastal territory and the interior territory which includes the San Fernando, San Bernardino and San Jacinto valleys. Where the wide Los Angeles valley opens out to the sea the two territories unite, and some of the most characteristic coastal species are carried inland to the base of the San Gabriel Mountains.
Species restricted respectively to the

Interior Subterritory.

Adiantum Capillus-Veneris L.
Andropogon macrocarpus Michx.
Antirrhinum glandulosum Lindl.
Aplopappus linearifolius DC.
Artemisia Parishii A. Gray.
Boykinia rotundifolia Parry.
Calochortus Plummerae Greene.
 » splendens Dougl.
Carex Barbarae Dewey.
Chorizanthe fernandina Wats.
 » Parryi Wats.
Euphorbia ocellata Dur. & Hilg.
Gilia californica Benth.
Helianthus Parishii A. Gray.
Hemizonia (Deinandra) Wrightii A. Gray.
Lathyrus laetiflorus Greene.

Monardella Pringlei A. Gray.
Opuntia Bernardina Engelm.
Phacelia Davidsonii A. Gray var.
Ribes glutinosum Benth. (= R. sanguineum Pursh. var. glutinosum).
Zauschneria californica Presl.

Coastal Subterritory 1).

Adiantum emarginatum Hook.
Andropogon saccharoides Sw.
Antirrhinum Nevinianum A. Gray.
Aplopappus ericoides H. & A.
Artemisia Palmeri Gray.
Boykinia occidentalis T. & G.
Calochortus Weedii Wood.
 » Dunnii.
Carex spissa Bailey.
Chorizanthe laciniata Torr.
 » fimbriata Nutt.
Euphorbia misera Benth.
Gilia floribunda Gray.
Helianthus Oliveri A. Gray.
Hemizonia virgata A. Gray.
Lathyrus splendens Kell. (= L. vestitus Nutt.).
Monardella hypoleuca A. Gray.
Opuntia prolifera Engelm.
Phacelia Douglasii Torr.
Ribes speciosum Pursh.
Zauschneria californica Presl. var. microphylla A. Gray.

Several desert plants pass into the cismontane district viz. Prosopis juliflora, Encelia farinosa and californica, etc., while hardly a distinctively cismontane species enters the confines of the desert.

Coast Islands of California. The flora of the coast islands of California now demands attention as its history is intimately connected with the development of the flora on the mainland. These islands fall geographically into two groups, a northern and a southern. To the former belong San Miguel, Santa Rosa, Santa Cruz and Anacapa. The islands of the southern group are San Clemente, Santa Catalina, Santa Barbara and San Nicolas with Begg's Rock, which stands in relation to San Nicolas. A minimum elevation of about 175 feet would add to the groups as islands what are now three submarine elevations known as Cortes, Tanner and Osborn banks. One group of these islands has simple topography, with comparatively gentle slopes and moderate, or slight dissection; the other has rugged, sharply incised and serrated forms. Classifying the islands on the basis already given, we have belonging to the

1) Parish, S. B.: l. c. 262.
group with simple topography San Clemente, with extremely young topography in generally hard rocks; San Nicolas, with young topography in soft rocks; San Pedro Hill with modified mature topography, now presenting, on the whole, the forms of adolescence, developed in moderately soft rocks; San Miguel, with modified mature topography, though belonging, according to its general character, with the more rugged islands. To the group with rugged topographic forms belong Santa Catalina, Santa Cruz and the larger part of Santa Rosa. It is probable, that all of the islands originated through crustal deformation, for the most part, as tilted blocks 1).

The botany of the Californian islands is of interest on account of the variations from mainland forms, largely due to isolation and the effect of insular climate. The list of species found on the islands contains about 512 species. Twenty six species of the list have not yet been found on the mainland, though all but three are near relatives of coast forms and twelve of these twenty six plants have been found on the islands off the coast of Lower California, leaving only fourteen species which are probably peculiar to the islands.

There are a number of species and genera peculiar to the islands and these peculiarities in part with other characteristics may be ascribed to the survival of an old flora on the islands, while that of the mainland has been more or less modified by the intrusion of new forms from other regions since the separation of the islands from the continent proper. Lyonothamnus, consisting of two very distinct species, has no very near relative in any other part of the world. Crossosoma another genus of shrubs has one species indigenous to several islands with none on the immediately neighboring mainland, though a second small and insignificant member of the genus occurs on the verge of the interior deserts. Four species of Lavatera are scattered up and down the archipelago, while not a single species is indigenous to the American continents, all the generic allies being of the Mediterranean region, with the exception of three or four, which are confined to remote and truly oceanic islands. Another negative point of divergence between the insular and mainland floras is the almost or total absence from the islands of such prevalent mainland genera as Ribes, Lupinus, Astragalus, Potentilla, Horkelia, etc. Equally remarkable is the fact, that certain trees, shrubs and herbaceous plants long known as extremely rare, or quite local, on the mainland, such as Pinus Torreyana, Malacothrix incana and Leptosyne gigantea, occur on the islands in the most luxuriant abundance. Such plants also as Potentilla anserina, Cressa cretica, Jaumea carnosa and two species of Salicornia confined to salt marshes occur on San Miguel Island and not on the others, because none of the others have as much as a square rod of that kind of ground. Aplopappus ericoides, Troximon grandiflorum, Sidalcea malvaceflora, Gilia micrantha, Plan-

tago hirtella and Scirpus riparius are plants of the northern coasts mainly and their rareness on San Miguel indicates that they formed no part of the old flora of the island, but have appeared there in recent times, owing to the course of winds and currents. In the subjoined list 1) species endemic to Santa Catalina, San Clemente are in italics; species closely connected with continental ones, perhaps mere varieties of them, are designated by an asterisk.

\[
\begin{align*}
\text{Astragalus Nevinii} & \quad \text{A. Gray.} \\
*\text{Ceanothus arboreus} & \quad \text{Greene.} \\
*\text{Cercocarpus Traskae} & \quad \text{East.} \\
*\text{Crossosoma californica} & \quad \text{Nutt.} \\
*\text{Eriogonum giganteum} & \quad \text{Wats.} \\
\text{Eriophyllum Nevinii} & \quad \text{A. Gray.} \\
\text{Galium catalinense} & \quad \text{A. Gray.} \\
\text{Gilia Nevinii} & \quad \text{A. Gray.} \\
\text{Hemizonia Clementina} & \quad \text{T.S.Brandegee.} \\
\text{Lavatera assurgentiflora} & \quad \text{Kell.} \\
\text{Phacelia Lyonii} & \quad \text{A. Gray.} \\
\text{Lyonothamnus floribundus} & \quad \text{A. Gray.} \\
\text{Malacothrix foliosa} & \quad \text{A. Gray.} \\
*\text{insularis} & \quad \text{Greene.} \\
\text{Plantago dura} & \quad \text{Morris.} \\
\text{Quercus tomentella} & \quad \text{Engelm.}
\end{align*}
\]

The fact that the majority of insular species are identical with those of the mainland and that only a few genera and species are endemic to the islands argues for a former land connection. The flora of the islands may be looked upon as the survivors of a coast flora, which was widely distributed along the shores of California before the period of subsidence, when these islands, which are approximately parallel with the present coast line, were isolated by the general subsidence of land beneath the sea. When the subsidence occurred, the old California coast flora was preserved almost unchanged on the islands and, therefore, enables us to determine the character of the original endemic coast flora, while on the mainland after the separation of the islands the species were subjected to the influence of new elements which migrated into the Californian area from the north, south and east after the close of the glacial period. Excluding weeds and other species of wide distribution, we have in the above list an enumeration of species which represent collectively the ancient coastwise flora of California. According to this view all species of the islands did once inhabit the mainland, but the existing differences are due to the destruction of species, or their transformation in their struggles with invaders. There are quite a number of rare and peculiar forms such as Pinus Torreyana found struggling for existence on the mainland. These are probably remnants of Pliocene indigenes still undestroyed, but ready to perish. The distribution of the genus Lavatera also is explained by reference to past conditions. Several species of Lavatera perhaps existed all over the coast region of California which is represented by the present chain of islands. They have all been destroyed by change of environment except those isolated on the islands and thus saved from the effects of invasion and aridity 2).

1) Parish, S.B.: A Sketch of the Flora of southern California. Botanical Gazette XXXVI: 264, where a complete bibliography of papers on the island floras is given.
2) Le Conté, Joseph: The Flora of the Coast Islands of California in Relation to recent Changes of physical Geography. American Geologist I: 76—81. 1888.
That such oscillations have occurred is proved by the record which geologists have determined. During the post-Miocene it is probable that all the islands then differentiated were mountainous masses belonging to the mainland. Judging from their topography, and the apparent genetic relationships of those of the northern group, the forms then existing probably included all the present islands, except San Nicolas and San Clemente. The latter appear not to have been elevated until, the close of the post-Miocene erosion period, or early in the Pliocene depression. The post-Miocene elevation of the coast was followed by the Pliocene depression during which the sea stood for a long time some 1500 feet above its present level and the coast had the aspect of an archipelago. During this depression at first Santa Catalina, San Clemente, San Pedro Hill, Santa Cruz and Santa Rosa all existed as islands, or as in the case of Santa Cruz and Santa Catalina, as two or more small islands. Then as now, Santa Cruz was probably the highest, if not the largest of the existing islands. This depression was followed by a post-Pliocene elevation. This elevation was perhaps sufficient to connect the northern islands with the mainland, none of the southern islands have had such connection since the post-Miocene period of erosion. The most recent movement of the coast, as indicated by drowned valleys and submarine features, is a comparatively slight depression. Paleontologic evidence is not wanting for in the pliocene rocks on the peninsula of San Francisco are found cones of Pinus insignis (P. radiata, Monterey pine), a tree which at the present time grows only at Monterey 1).

With this radical transformation in the physiography of the coast, there have doubtless been very important changes in the climate, and in this fact is to be found, the explanation of certain remarkable and anomalous features in the distribution of the plants of the coast. As a consequence of the general uplift of the coast and southern California, the physiography of the country has been radically changed in the most recent geologic times. The area below the sea or influenced by delta deposits was tenanted in the great central valley and along the slopes of the elevated mountains of southern California with plants derived from the south. These at the present day form the desert and chaparral vegetation of the summits of the lower hills which were once beneath water and on the mountain flanks, while the higher mountain summits which existed as islands during the last submergence are clothed with a forest vegetation which during the Pliocene depression existed nearly at sea-level. With increasing aridity the lower limits of the mountain forests was determined by available moisture. A tentative arrangement of the vegetation elements in southern California according to their age is herewith given:

1. Original coastwise vegetation (now on islands and mainland).
2. Mountain forests.
3. Chaparral.
5. Desert and Great Valley vegetation.

With increased elevation and the exposure of fresh areas to invasion desert species moved into the arid regions and grasses and other plants into moister situations to form the grass-land and tule formations of the great San Joaquin valley and other smaller valleys, that owe their soils to a delta formation.

Great Valley of California. The Great valley of California, which lies between the Sierra Nevada Mountains on the east and the Coast ranges on the west, is an alluvial plain with little departure from a monotonous level surface. It includes three basins of drainage called respectively Sacramento valley (northern), San Joaquin valley (southern) and the depression of Tulare Lake. From the orogenic disturbance at the close of the Miocene, when the coast ranges appeared as a connected mountain chain dates the history of the Great valley. During the Neocene, the Great valley was occupied by a gulf, connecting with the ocean by one or more sounds across the Coast ranges. During Pleistocene times, the Great valley was finally cut off from the sea. The elevation of mountains closed in the valley which became a well defined area of sedimentation, or deposit. With the surface of the ground only 46 feet above sea-level, the occurrence of logs of wood at 340 feet, recent shells up to 600 feet can only be thus accounted for by subsidence and deposition, when sediments 2000 feet in thickness were formed. The Great valley is, therefore, an example of a well defined area of progressive subsidence associated with heavy accumulations of sediments.

A flora older than that of the plain flora of the valley consists of the formations which are found in the tule swamps, or marshy areas which border the rivers for a considerable distance on either bank. The Sacramento River is bounded by brackish marshes for 150 miles from its mouth which stretch away from the river ten to fifteen miles on either hand. These marshes are commonly referred to as tule lands. Along the new and old river channels the deposition of sediments has built up natural levees with brackish water back of them where waving masses of tule (Scirpus lacustris var. occidentalis) occur.

The following trees and shrubs fringe the water ways 1).

Salix nigra Marsh. Platanus racemosa Nutt.
 » lasiandra Benth. Populus Fremontii Wats.
 » longifolia Muhl. Cephalanthus occidentalis L.
 » sessilifolia Nutt. Fraxinus oregana Nutt.

Part III. Chapter 3.

Juglans californica Wats.
Alnus rhombifolia Nutt.
Vitis californica Benth.
Rosa californica C. & S.
Rubus vitifolius C. & S.

Acer californicum Greene.
Rhus diversiloba T. & G.
Quercus Wislizeni DC.
Cornus pubescens (= C. occidentalis T. & G.) Nutt.

On small islands in the swamps, the indigenous growth is rank: Hypericum mutilum, Eclipta alba, Bidens frondosa, Lippia lanceolata, Amaranthus hypochondriacus, Lippia cuneifolia. An evident relationship exists between this flora and the riparian one of the lower Mississippi River and its tributaries. The plants to be mentioned in this connection are: Isnardia palustris, Pluchea camphorata, Eclipta alba, Lippia lanceolata, Cyperus diandrus var. castaneus, C. erythrorhizos, C. stenolepis. Fully fifty per cent of plants in the following list are common, although not peculiar to this region and the Mississippi.

Lathyrus Jepsoni Greene.
Psoralea macrostachya DC.
Glycyrrhiza glutinosa Nutt.
Euphorbia serpillifolia Pers.
Hibiscus californicus Kell.
Hypericum mutilum L.
Polygonum Muhlenbergii Wats.
 » Hartwrightii Gray.
 » acre H. B. K.
 » nodosum Pers.
Atriplex coronata Wats.
 » spicata Wats.
 » hastata L.v. oppositifolia Moq.
Epilobium paniculatum Nutt.
 » holosericeum Trelease.
 » californicum Haussk.
Boisduvalia densiflora Lindl. & Wats.
Isnardia palustris L.
Jussaea diffusa Forsk. var. californica
Ammannia coccinea Rottb. [Wats.
Nasturtium (Roripa) dictyotum Greene.
Hydrocotyle prolifera Kell.
Sium heterophyllum Greene.
Solidago californica Nutt.
 » elongata Nutt.
Euthamia occidentalis Nutt.
Aster exilis Ell.
 » Douglasii Lindl.

Lathyrus Jepsoni Greene.
Psoralea macrostachya DC.
Glycyrrhiza glutinosa Nutt.
Euphorbia serpillifolia Pers.
Hibiscus californicus Kell.
Hypericum mutilum L.
Polygonum Muhlenbergii Wats.
 » Hartwrightii Gray.
 » acre H. B. K.
 » nodosum Pers.
Atriplex coronata Wats.
 » spicata Wats.
 » hastata L.v. oppositifolia Moq.
Epilobium paniculatum Nutt.
 » holosericeum Trelease.
 » californicum Haussk.
Boisduvalia densiflora Lindl. & Wats.
Isnardia palustris L.
Jussaea diffusa Forsk. var. californica
Ammannia coccinea Rottb. [Wats.
Nasturtium (Roripa) dictyotum Greene.
Hydrocotyle prolifera Kell.
Sium heterophyllum Greene.
Solidago californica Nutt.
 » elongata Nutt.
Euthamia occidentalis Nutt.
Aster exilis Ell.
 » Douglasii Lindl.

The herbaceous plants of the Californian plain are chiefly annual, and the rapidity with which they attain their full size, perfect their seed and pass
away is remarkable. The wide plain is covered with plants belonging to the following genera: Lupinus, Trifolium, Calandrinia, Platystemon, Eschscholtzia (notably the orange-flowered E. crocea), Bacria, Gilia, Nemophila, Allocarya, Bahia, Madia, Madaria, Burrielia, Chrysopsis, Penstemon, Corethrogyne, Phacelia, Grindelia, growing in close association and blending with the purples of Clarkia, Orthocarpus, Oenothera. The shallow streams and pools are edge with species of Eunanus and Boletia. The tide of plant life reaches its maximum from April fifth to twentieth. In one, two or three weeks more, the brilliant colors have faded and the vernal aspect is succeeded by the dullness and aridity of summer. June, July, August and September is the season of rest and sleep, of dry heat, followed in October by a second outburst of bloom at the very driest time of the year. Hemizonia virginia appears and carpets the ground remaining in flower until November, uniting with two or three species of Eriogonum, which continue the floral chain through December until the spring flowers appear again.

In contrast to the Spring growth on the plains, the height of the season for the herbaceous growth of the river region is in September and October, when the landscape is as fresh and green as the landscape in April on the plains. Verbena hastata, Euthamia occidentalis, Aster Douglasii, Stachys albens, and Guaphalium californicum are mere instances of decided color. Annuals are commonly four to five feet tall.

Clearly the flora of the tule swamps is sharply demarcated from and older than the plains flora, for there is geologic and physiographic evidence that in addition to a subsidence of great recency to the extent of at least 378 feet at the mouth of the Sacramento River, flooding the lower portion of the valley, giving us the magnificent harbor at San Francisco 1), there were series of preceding subsidences, followed by the deposition of sediments 2).

During this entire period of subsidence and sedimentation, the edaphic conditions were such in the brackish marsh areas along the coast line of the landlocked sea, now represented by the Great valley as to permit the growth of a marsh flora which still persists in similar situations at the present day. Then too, the present marsh flora, closely related to that in eastern marshes must have entered the region, when the divergences between the eastern and western floras were still less pronounced and before sedimentation permitted the later and present plains flora to occupy the now dry central valley.

There are also certain plants that are confined to the immediate shores of the ocean in southern California 3), either on the sand of the beach, or in the tidal marshes or meadows. These are exhibited in the subjoined table.

2) See ante page 277.
Arenicolous Species.
Abronia maritima Nutt.
» umbellata Lam.
Amblyopappus pusillus H. & A.
Aphanisma blitoides Nutt.
Atriplex leucophylloa Dietr.
» microcarpa Dietr.
Calandrinia maritima Nutt.
Convolvulus soldanella L.
Franseria (Gaertneria) bipinnatifida Nutt.
Mesembryanthemum aequilaterale Haw.
» crystallinum L.
» nodiflorum Haw.
Oenothera viridescens Hook. (= O. cheiranthifolia Hornem.).

Halophilous Species.
Astragalus pycnostachyus A. Gray.
Atriplex hastata L.
Batis maritima L.
Jaumea carnosa A. Gray.
Juncus acutus L. var.
Monanthochloe littoralis Engelm.
Salicornia ambigua Michx.
» herbacea L.
» mucronata Bigel. (= S. Bigelovii Torr.).
Scirpus Tatora Kunth (= S. riparius J. & C. Presl.).
Spartina glabra Muhl. [A. Gray.
Statice limonium L. var. californica

A small group of plants which have entered southern California directly from lower California inhabit a narrow strip along the coast. Some barely pass the border; few penetrate very far within it, and the last one disappears at Santa Barbara. However, the plants below form a southern element of invasion and must be mentioned in this connection.

Acalypha californica Benth.
Agave Shavii Engelm.
Arctostaphylos diversifolia Parry.
Baccharis sarothroides A. Gray.
Beloperone californica Benth.
Cereus Emoryi Engelm.
Cneoridium dumosum Hook.
Dithyrea californica Haw.
Frankenia Palmeri Wats.
Isomeris arborea Nutt.
Iva Hayesiana A. Gray.
Opuntia prolifera Engelm.
» serpentina Engelm.
Simondsia californica Nutt.
Viguiera laciniata A. Gray.

6. Western Desert Regions.

General Remarks. A physiographic, floristic and meteorologic study of western North America has resulted in the delimitation of two great desert regions. These may be designated as the Sonora-Nevadan Desert and the Chihuahuan Desert. The Sonora-Nevadan desert region embraces portions of Utah, Idaho, Oregon, Washington, Nevada, California, Arizona, Baja California, Sonora and Sinaloa. The northern portion of the region is mainly comprised in the Great Basin and includes the beds of a number of ancient lakes and the surviving Great Salt Lake. Other special physiographic features of interest in this connection are the areas which bear the name of Snake River Desert of Idaho; the sage plains of Washington; the lava beds of Oregon; the Ralston Desert in Nevada; Death Valley; Mohave, Colorado, Salton deserts in southern California and Arizona; the Painted Desert in Ari-
zona and New Mexico; and the Sonora Desert in Mexico. The southern portion of the region consists of a series of slopes and terraces with many ranges of hills and mountains with peaks of same altitude. Along the shores of the Gulf of California and of the Pacific Ocean, the desert area includes the entire surface to within a few feet of the water's edge and the xerophytic vegetation of the plains comes into direct contact with the mangrove and strand flora.

The sources and distribution of the floral element of this great western desert region now claim our attention. The northern desert, occupying portions of Washington, Oregon and Idaho, is a huge sage brush plain, broken by numerous low mountain ranges having little or no timber. Between these mountains are the desert sinks and "sleek deserts" (alkaline stretches entirely destitute of vegetation). All except the "sleek deserts" are covered with a shrubby growth of sage, salt bushes and greasewood.

Pine Forest range in Oregon has on the highest elevations a scanty growth of pine, Pinus albicaulis as found at the extreme upper limit of timberline on Mt. Shasta, California (Fig. 7), while neighboring mountains such as Steins Mountain have no pines at all. The latter have much more of Juniperus virginiana than the former. Pinus ponderosa var. scopulorum, Populus tremuloides, P. trichocarpa, constitute the remainder of the arborescent species of the northern Great Basin. The desert regions of the north are very different from those of Arizona and these differences are sufficient to delimit a northern phytogeographic area. There is a very noticeable absence of the creosote bush Larrea mexicana, and the various species of Cactaceae, their place being taken by the spiny salt bush Atriplex confertifolia, bud sage Artemisia spinescens, and black sage Artemisia tridentata. There is, however, a strong similarity. The ephemeral spring vegetation of Polemoniaceae, Cruciferae and Boraginaceae (Gilia, Amsinckia, Eritrichium) corresponds very closely, as far, as it goes, with the conspicuous fugacious spring plants of the Arizona desert 1).

No portion of the central desert region (Nevada and Utah) is destitute of some vegetation, even in the driest seasons, excepting only the alkali flats, which are of limited extent. Even those have a scattered growth of Sarco-

flora is marked by senecoid and ligulate Compositae, species of *Astragalus, Oenothera, Gilia, Hydrophyllaceae* and annual *Erigoneae*). The mountains are as destitute of trees as the valleys. *Pinus monophylla, Juniperus occidentalis* (5000–7000 feet), *Cercocarpus ledifolius* (6000–8000 feet), *Populus tremuloides* (in upper canyons), *Populus balsamifera* var. *angustifolia, Pinus flexilis*,

Pinus Balfouriana, Picea Engelmanni, Abies grandis, form the list of trees which occur on the central mountain ranges, associated with which are *Ceanothus velutinus* (7000–9000 feet), *Ribes cereum, Symphoricarpos montanus, Prunus demissa, Ribes irriguum, Sambucus glauca, Cornus pubescens* (*C. occidentalis*), *Crataegus rivularis, Alnus incana.* Among the herbaceous species there is a marked predominance of certain orders, genera or section of genera, mostly perennials. The number of alpine and subalpine plants is proportionately very large.

The alpine and subalpine flora of the higher mountains of the Great Basin is largely a derivative one with the admixture of some purely endemic forms which have originated as species since the last great ice age, when, as we have shown in discussing the origin of the alpine flora of the Sierra Nevada Mountains, it was indicated that a communication probably existed across Nevada and Utah from the Rocky Mountains to the Sierra Nevada ranges by way of the numerous desert mountain ranges. Under their present condition of isolation, the migration of these species would be impossible, but when the present boreal flora was depressed nearly or quite to the base level of the mountains, an excellent route for migration was presented ¹. The boreal element of the mountain flora is clearly recognizable in the lists of alpine and subalpine plants which have been presented. The plants of the alpine region and of the subalpine region of the higher mountains of the Great Basin will be found in Engler's lists ².

Great Basin Elements. A critic study of the plant life of the Great Basin has shown it to consist of a southward extension of boreal plants on the high mountains with an admixture of southern forms resulting from an intrusion or migration of representatives of the Sonoran flora some of which, from long residence in the region, have undergone enough modification to be recognized as distinct sub species, or even species. The arid species of the valleys and lower mountain slopes are species which extend northward even from Mexico through the states of Sonora and Chihuahua. This southern or Sonoran element will now be considered after which attention will be given to some of the peculiarly endemic Great Basin species, which probably originated in the region under consideration. As examples of the contact of the Mexican flora with that of the Great Basin may be mentioned the *Yuccae.* In all probability the Mexican table-land is the original home of the entire group of Yuccas, and such tree forms, as *Yucca Treculeana* in the Chihuahuan Desert (Fig. 8), indicate the high degree of development to which such forms have reached.

The following species of Yucca which constitute an element of the Basin flora may, therefore, be looked upon as originally of southern derivation, viz., *Yucca Schottii* (Utah), *Yucca baccata* (Utah, Arizona, N. Mexico), *Yucca angustissima* (S. E. Nevada, N. W. Arizona), Cleistoyucca

1) See ante page 250; 256.
arborescens (S. Nevada, S. E. California), Yucca mohavensis (S. California, S. Nevada), Hesperaloe parviflora (Arizona), Yucca radiosa, Yucca macrocarpa (S. Arizona, S. New Mexico), Yucca brevifolia (S. Arizona).

The papaveraceous genus *Hunnemania* of Mexico is related to the genus *Eschscholtzia* of California and Great Basin. *Dalca* is represented by numerous species on the table-land of Mexico and by eleven species in Arizona and the Great Basin. Likewise *Larrea mexicana* is common. Among the *Rosaceae*, we find *Coleogyne, Cowania, Fallugia* only in Mexico, the Great Basin and California, *Cercocarpus* perhaps also is a Mexican form of extensive northern distribution. *Brickellia* a genus of the *Compositae-Eupatoriaceae* which includes many species in Mexico is represented by one species in the Atlantic states and one also in Texas and the Great Basin. As representatives of the southern contingent (not necessarily Mexican) may be mentioned:

Alkali formation.

Thelypodium Nuttallii (= T. torulosum), Cleomella parviflora.
Great Basin Elements.

Xerophyte formation.

Astragalus Nuttallianus, lentiginosus, dentatus,
Gilia inconspicua. [scapoides, albicaulis.
Eriogonum gracile, plumatella, deflexum, inf-
flatum, cernum, angulosum, Wrightii.
Chorisazthe brevicornata, rigida.
Tetradynia spinosa.
Anisocoma acaule.
Stephanorhiza (Piloria) minor (= S. tenuifolia).
Glyptopleura marginata.
Eschscholtzia californica.
Argemone mexicana.
Mirabilis californica.
Oxybaphus angustifolius.
Sphaeralcea Emoryi.
Eitrichium mieranthum, angustifolium.

Pentstemon Palmeri.
Abronia fragrans, turbinata.
Townsendia strigosa.
Aristida purpurea.
Myosurus aristatus.
Lepidium flavum, Fremontii, alyssoides.
Thysanocarpus elegans.
Capsella divaricata.
Lupinus pulillus.
Hosackia (Lotus) Heermannii.
Psoralea lanceolata.
Malvastrum Munroanum (= M. coccineum).
Sida hederaea.
Cymopterus montanus, pterocaryum.
Amsinckia lycopsoides.
Nicotiana attenuata.

The following alkaline species have been found, so far as known only
within the limits of the Great Basin and, therefore, form an endemic ele-
ment:

Arabis longirostris, Thelypodium sagittatum, Cleomella plocasperma, Astragalus pterocarpns,
Iresia (Horkelia, Kingii, Aster Nutallii, Aploppappus (Pyrocoma) tenuicaulis, Crepis Andersonii,
Lycium Andersoni, Erythraea Nuttallii, Monolepis pusilla, Atriplex (Obione) phyllostegia, A. (O.)
pusilla, Kochia prostrata, Spirostephys (Halostachys) occidentalis, Fimbristylis thermalis. But five
species of aquatic plants can be considered to be peculiar to the Great Basin occupying the
margin of lakes and streams, marshes, etc. though the localities in which they are found may
often be to a considerable extent alkaline: Nasturtium (Roripa) lyratum, Selinum Kingii, Potat-
omogeton marinus, Scirpus nevadensis, Carex Watsonii 1).

The remaining plants of the valley flora including a large proportion of
endemic species are those which occupy the drier sandy or gravelly portions
of the valleys and the foothills and are consequently subject to a greater
extreme of heat and drought. Many of them are low, or dwarfed, annuals,
often varying much in size and habit with the circumstances of their growth,
usually starting with the rains of autumn, flowering in early spring and hast-
tening to a quick maturity. With the first heats of summer, they vanish.
Others are stouter and harder, more or less woody biennials, or perennials,
springing from bulbs, roots, or rootstocks and persisting longer until July
under the protection of the shrubs which remain.

A large number of (one third) peculiarly desert species, are strictly con-
fined to the Great Basin and on the whole southern, quite a large number
extending into the Mohave and Colorado deserts and a few into New Mexico
or even western Texas. Many of the endemic species of the drier valleys
and foothills are described in Part IV, Chapter III. In the absence in many
cases of any forest growth to indicate the limit of arborescent vegetation, it is

1) WATSON, SERENO: Botany United States Geological Exploration of the Fortieth Parallel.
difficult to arrange the species zonally, because the flora of any mountain locality is greatly influenced by a warm and sunny exposure, or the opposite. The endemic mountain species of the Basin are described in Part IV, Chapter III, 3.

The Great Basin has supplied many species to the Rocky Mountain region and beyond to the east, while a similar element is found in Oregon and Washington and western Texas. These elements have been previously described and a discussion of them will be omitted at this place. Looking at the Basin flora, as a whole, it appears to be to a considerable extent a distinct one. Though the position of the territory would rather indicate as probable an intermingling of the surrounding floras, of the Californian with that of the Rocky Mountains, and of the extreme northern descending along the mountain ranges, with that of the deserts of Arizona, spreading northward in the valleys, yet it has a marked character of its own. This consists partly in the absence of many of the peculiarities of the surrounding floras. A very large portion of the Pacific species, not only arborescent, but shrubby and herbaceous, stop abruptly upon the eastern slope of the Sierras and do not reappear eastward. A like demarcation is shown on the eastern side at the base of the Wahsatch Mountains by the intermediate accession of new orders and species, characteristic of the eastern flora. Again many of the forms prevalent farther south are wanting, or appear only on the borders of Nevada and Utah, as most of the Cactaceae and of the Daleas and other large leguminous genera and suborders, characteristic rutaceous, zygophyllaceous species, the Cucurbitaceae, Loranthaceae, a large portion of the Solanaceae, Euphorbiaceae and Nyctaginaceae. The mingling with northern species is necessarily more intimate. The general preponderance of senecioi composites (Artemisia tridentata, the prevailing representative) and the marked number of chenopodiaceous genera and species many of which do not extend beyond the limits of the Basin, make the flora a singular one and warrant designating the district as one of Artemisias and chenopods. The abundance of species of Astragalus, Eriogonum, Oenothera, Pentstemon and Phacelia is also more or less distinctive. The southwestern portion of the Sonora-Nevdadan Desert includes the limits of two very distinct districts, comprising the territories of the Mohave Desert and of the Colorado Desert. The Mohave Desert district, may be looked upon as belonging to the Great Basin Region, while the Colorado Desert has greater affinities with the desert flora of Mexico (see the map: Sonoran Desert region).

The Colorado and Mohave Deserts. These have many plants which are common to both, but each possesses also a distinctive flora. It appears from the table following that the desert genera fall into three nearly equal groups, namely, those which are found in one or the other of the two territories; and those which occur in both of them. Two sections of each are distinguished; a northeastern section for the plant whose extensions are into Nevada, Utah and the Great Basin; and a southeastern section to include the genera whose extensions of range are into northern Mexico. A number of species have diverse ranges and the genera to which they belong are indicated. Genera
which are represented by species which also extend into the peninsula of Lower California are marked by an asterisk *.

Genera peculiar to the Mohave-Colorado Deserts.
Genera abundant and widely distributed in spread letters; rare and local in italics.

<table>
<thead>
<tr>
<th>Colorado Desert.</th>
<th>Mohave Desert.</th>
<th>Both.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northeastern Element.</td>
<td>Northeastern Element.</td>
<td>Northeastern Element.</td>
</tr>
<tr>
<td>Southeastern Element.</td>
<td>Amsonia.</td>
<td>Grayia.</td>
</tr>
<tr>
<td>*Argyrothamnia (= Dietaxis).</td>
<td>*Bouteloua.</td>
<td>Tricardia.</td>
</tr>
<tr>
<td>Ayenia.</td>
<td>Cleomella.</td>
<td></td>
</tr>
<tr>
<td>*Calliandra.</td>
<td>Forestiera (= Adelia).</td>
<td></td>
</tr>
<tr>
<td>Cercidium.</td>
<td>Glossopetalon (= Forsellesia).</td>
<td></td>
</tr>
<tr>
<td>Chloris.</td>
<td>Glyptopleura.</td>
<td></td>
</tr>
<tr>
<td>*Condalia.</td>
<td>Kochia.</td>
<td></td>
</tr>
<tr>
<td>Dicoria.</td>
<td>Lygodesmia.</td>
<td></td>
</tr>
<tr>
<td>*Fagonia.</td>
<td>Monoptilon.</td>
<td></td>
</tr>
<tr>
<td>Fouquiéra.</td>
<td>Phellopterus.</td>
<td></td>
</tr>
<tr>
<td>*Hibiscus.</td>
<td>Purshia.</td>
<td></td>
</tr>
<tr>
<td>*Horsfordia.</td>
<td>Stanleya.</td>
<td></td>
</tr>
<tr>
<td>*Hoffmanseggia.</td>
<td>*Salazaria.</td>
<td></td>
</tr>
<tr>
<td>*Hofmeisteria.</td>
<td>*Syntrichopappus.</td>
<td></td>
</tr>
<tr>
<td>*Hyptis.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Leptochloa.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Martynia.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Southeastern Element.</td>
<td>Southeastern Element.</td>
</tr>
<tr>
<td></td>
<td>Canotia.</td>
<td>Acamptopappus.</td>
</tr>
<tr>
<td></td>
<td>Coleogyne.</td>
<td>Achiyronichia.</td>
</tr>
<tr>
<td></td>
<td>Fallugia.</td>
<td>Baileya.</td>
</tr>
<tr>
<td></td>
<td>Purshia.</td>
<td>Berardia.</td>
</tr>
<tr>
<td></td>
<td>Stanleya.</td>
<td>Cladothrix.</td>
</tr>
<tr>
<td></td>
<td>*Salazaria.</td>
<td>Hilaria.</td>
</tr>
<tr>
<td></td>
<td>*Syntrichopappus.</td>
<td>*Krameria.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Larrea.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mohavia.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nolina.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thamnosma.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Trichoptilium.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indefinite.</td>
<td>Indefinite.</td>
</tr>
<tr>
<td>Prathyrotes.</td>
<td>*Palafoxia.</td>
<td>*Washingtonia (= Neo-</td>
</tr>
</tbody>
</table>

Harshberger, Survey N.-America.
It is to be noted that *Astephanus*, the single northeastern genus peculiar to the Colorado Desert, is known from a single collection. All the others are southeastern, and all but ten extend into Lower California. On the other hand, *Canotia* and *Fallugia*, two of the southeastern plants of the Mohave Desert are found only in the Providence Mountains, which may prove to be included in the Colorado Desert region. Only four of the peculiar Mohavan plants have been reported from Lower California.

Geographic affinities may be exhibited by different species of certain genera which are differently represented in each territory, as shown in the following table:

<table>
<thead>
<tr>
<th>Colorado Desert</th>
<th>Mohave Desert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agave deserti Engelm.</td>
<td>Agave utahensis Engelm.</td>
</tr>
<tr>
<td>Aster Orcuttii Aut.</td>
<td>Aster tortifolius A. Gray.</td>
</tr>
<tr>
<td>Cassia Covesii A. Gray.</td>
<td>Cassia armata Wats.</td>
</tr>
<tr>
<td>Coldenia canescens DC.</td>
<td>Coldenia Nuttallii Hook.</td>
</tr>
<tr>
<td></td>
<td>Dalea Fremonti Torr.</td>
</tr>
<tr>
<td></td>
<td>> polyadenia Torr.</td>
</tr>
<tr>
<td>Dalea (Parosela) Emoryi A. Gray.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gilia dichotoma Benth.</td>
</tr>
<tr>
<td></td>
<td>> Matthewsii.</td>
</tr>
<tr>
<td></td>
<td>> setosissima A. Gray.</td>
</tr>
<tr>
<td>Gilia bella A. Gray.</td>
<td>Lupinus brevicaulis Wats.</td>
</tr>
<tr>
<td></td>
<td>Pentstemon glaucus Graham.</td>
</tr>
<tr>
<td></td>
<td>Phacelia Ivesiana Torr.</td>
</tr>
<tr>
<td></td>
<td>Psathyrotes annuus Nutt.</td>
</tr>
</tbody>
</table>

All the species in the Colorado column have southeastern affinities; all those in the Mohave have northeastern affinities. In the former, ten out of sixteen extend into Lower California. The facts already accumulated indicate that in the Colorado Desert the Sonoran flora which extends over the entire desert area is slightly modified by any other. The Mohave desert flora, on the contrary, shows a marked influence from the Great Basin flora. The limit to which this extends appears to be defined by the Chuckawalla Mountains. The difference in the character of the two floras is only in part due to climatic causes, but is largely influenced by the topography of the region. In the one case, a current of migration was able to pass up, encountering no physical barriers, from Arizona and Lower California into the Colorado Desert; in the other a current from eastern Utah and Nevada entering the Mohave desert and Death Valley, a part of the desert, would meet no considerable obstacle until it reached the San Bernardino Range and its continuation.

The geographic relationship of the Death Valley flora is clear. The arid plants of the valley almost without exception are species which extend south-
ward into Mexico and which are there confined to the arid interior plateau of that country. The course of migration has been perhaps through the Mexican states of Chihuahua and Sonora via, the southern part of the Great Basin, into Death Valley and the Mohave Desert 1).

The Desert of the Little Colorado, or Painted Desert, is a deep basin on top of the great Colorado Plateau. From its topographic position, the only possible channel through which the fauna and flora of the Painted Desert could have reached this territory during existing climatic conditions is by way of the Grand Canyon of the Colorado. The inference is that the life of this desert is derived from the deserts of western Arizona, and that it came by the round-about way of the Grand Canyon of the Colorado. It behooves us, therefore, to examine briefly the elements of the flora of this great depression (6000 feet in depth). This canyon has ledges, terraces and mesas, barren crags and grassy slopes, lofty mountains and deep valleys, cool hillsides clad in forests of balsam fir, and hot bottoms filled with subtropic thickets; it has arid stretches of sand bearing a scattered growth of cactus and yucca, marshes and springs, that never become dry and are hidden by the verdure of a multitude of plants requiring a moisture-laden atmosphere for their existence.

Descending from the plateau level to the bottom of the canyon a succession of belts is encountered equivalent to those stretching from the coniferous forest of northern Canada to the cactus plains of Mexico. They result from the combined effects of altitude and slope exposure, the effects of the latter being here manifested in an unusual degree. Where the walls of the canyon face north, or northeast, the uppermost tree-belt consists of *Pseudotsuga Douglasii* and *Abies concolor*. Below this is a belt of pines, *Pinus ponderosa*, succeeded in turn by a belt of junipers and piñon, usually more or less mingled with pines. Immediately below the piñon belt is a belt which corresponds in the main to the Desert of the Little Colorado; but since it has humid as well as arid areas, forms of vegetation unknown on the desert interrupt its stretches of cactuses, yuccas and greasewood. Still lower down another belt is encountered which may be recognized by the presence of huge cactuses, arborescent opuntias, agaves and many plants characteristic of the Lower Colorado and Gila regions 2) together with subtropic humid forms and a certain percentage of species not found elsewhere.

Situated at the western edge of the painted Desert stands San Francisco Mountain, a peak, the flora of which demands a passing notice, rising as it does in the southern part of the Colorado Plateau to an elevation of 12,794 feet (3900 m). Two trees *Picea Engelmannii*, *Pinus aristata* reach timber line and become stunted. They are accompanied by a number of hardy little plants which attain their maximum development here:

19*
Arenaria biflora var. carnulosa, Cerastium alpinum var. Behringianum, Corallorhiza multiflora, Draba aurea, Epilobium saximontanum, Gentiana barbellata var. tenella, Heuchera rubescens, Luzula (Juncoidea) spadicea var. parviflora (≡ L. parviflora), Pedicularis Parryi, Phleum alpinum, Potentilla dissecta, Primula Parryi, Saxifraga debilis, Sedum rhodanthum, Veronica alpina.

Above timber line 11,500 feet (3500 m) are found on the bleak and storm-beaten summit of San Francisco Mountain the following alpine plants:

Androsace septentrionalis, Arenaria verna, Cerastium alpinum, C. arvense, Cystopteris (Filix) fragilis, Festuca brevifolia, Oxyria digyna, Pilemonium confertum, Sagina Linnaei (S. Saginoides), Saxifraga decipiens (*caespitosa), S. debilis, S. flagellaris, S. nivalis, Silba procumbens, Silene acaulis, Stellaria umbellata (S. baicalensis), Thlaspi alpestre, Trisetum subspicatum.

The spruce belt 9200 — 10,500 feet (2800 — 3200 m) is occupied by Picea Engelmannii and Pinus aristata with Aquilegia chrysantha, Lathyrus arismonicus, Mertensia paniculata, Moneses uniflora, Pentstemon glaucus var. stenosepalus, Pyrola chlorantha, Ribes setosum, Solidago multiradiata, Zygodennus elegans. The fact of present interest is that many of the plants here enumerated, as growing in the spruce zone of this mountain, are equally characteristic of the higher Alleghanies, the Rocky Mountains and northward.

The next belt below 8200 — 9200 feet (2500 — 2800 m) is characterized by Pseudotsuga Douglasii, Pinus flexilis var. macrocarpa, Populus tremuloides and such smaller plants as *Actaea spicata, Barberis repens (≡ B. aquinfolium), Ceanothus Fendleri, Gentiana affinis, *Gymn triflorum, *Potentilla (Dosiophora) frutitosa, Ribes Rusbyi, *Viola canadensis var. scopulorum. Those marked with an asterisk have a wide range in the Canadian flora of the east and north. Ceanothus Fendleri may be safely regarded, as the western representative of C. ovatus, which ranges eastward from the Rocky mountains to Vermont.

The pine belt 7000 — 8200 feet (2100 — 2500 m) has one characteristic tree, Pinus ponderosa, which forms an unbroken forest. As a tree, it ranges at middle elevations from the highlands of western Texas and northern Mexico, northward along the Rocky Mountains and the Sierra Nevadas to the dry interior of British Columbia in latitude 51, 30 N. avoiding the region of excessive downfall along the coast from northern California northward. Among the more conspicuous species occurring in the pine belt of San Francisco Mountain, and having a more or less coincident distribution with the pine are: Campanula Parryi, Frasera speciosa, Gilia aggregata var. attenuata, Oxybaphus (Allionia) angustifolius (= linearis), Oxytropis (Aragallus) Lambertii, Pentstemon barbatus and P. Torreyi*.

The distinctive trees of the piñon belt 6000 — 7000 feet (1800 — 2100 m) are Pinus edulis, Juniperus occidentalis var. monosperma, and the rare Juniperus pachyphloca. Several large shrubs are present: *Barberis Fremonti, Rhus aromatica var. trilobata, Spiraea discolor var. dumosa. Near the Grand Canyon of the Colorado and again at Walnut Canyon, these shrubs are joined by Cowania mexicana, Spiraea millefolium, Robinia neomexicana, Juniperus californica var. utahensis, Fallugia paradoxa, while Yucca angustifolia (≡ Y. glauca)

1) Merriam, l. c.
is in places replaced by *Yucca baccata*. Both the piñon and the cedar occupy elevations of corresponding temperature in the arid lands from western Texas through New Mexico, Arizona and north to central Colorado, and the cedar extends westward to southern California. Closely related and strictly representative forms extend northward through the Great Basin to the plains of the Columbia; some other species push northward over the Great Plains as well as the interior basin.

The desert flora ¹), the origin of which has been previously discussed (altitude 4000—6000 feet; 1200—1800 m), is scattered and scanty, and consists of such genera, as *Atriplex, Sarcoptopus, Oxytaenia, Tetradyemia, Yucca*, and cacti of several genera, while in the rainy season *Bouteloua, Lupinus capitatus, Mirabilis multiforma, Riddellia tagetinae* and *Zizania grandiflora* are conspicuous.

South of the mountain ranges, which embrace San Francisco Mountain, a practically pure Mexican flora may be said to occur. Over against the valley, of the Gila River, *Cirsus giganteus* 30—50 feet high is found. Also *Fouquieria*, species of *Agave, Dasyliorion, Canotia, Mimosa, Acacia, Calliandra, Baccharis* and *Tessaria borealis*. Near Tucson, Arizona, the previously abundant Chenopodiaceae disappear to be replaced by numerous Cactaceae and *Larrea mexicana*. The northern boundary of many Mexican forms is found in the ranges of mountains which extend northwest and southeast, while between the Gila River and the Rio Grande, the Mexican types are predominant ²).

The time element enters into a consideration of the origin of the different elements of the Great Basin and desert florais of the southwestern states. Topographically the Great Basin is an enclosed surface diversified by hundreds of basins suitable for holding broad lakes, but the present aridity of the region precludes their being occupied by perennial water bodies. In many instances, the annual rainfall in these desert basins is so meager, that it is at once absorbed by the thirsty soil, or returned to the atmosphere as vapor, and not even ephemeral lakes are formed. Should the Great Basin and contiguous regions experience a change of climate of such a nature that the rainfall would be increased, or evaporation diminished, the most obvious result would be the appearance of lakes in the valleys that are now either dry throughout the year, or hold playa lakes, and the expansion of perennial lakes ³). The study of the surface geology of the Great Basin has shown that a more humid climate of the nature just suggested was prevalent in the region at a time not remote. The streams from the mountains increased in volume many channels were occupied by flowing water, that are now dry throughout the year, and large lakes denominated respectively Lahontan and Bonneville covered a large

¹) See ante page 285—291.

²) **ENGLE, A.:** Versuch einer Entwicklungsgeschichte der Pflanzenwelt, II. Theil, 1882: 219.

³) Since the above was written, the Colorado River broke through its banks and flooded the lower part of the Colorado Desert, during the winter of 1904—1905, producing a large inland lake, the Salton Sea. See **MACDOUGAL, D. T.** The Desert Basins of the Colorado Delta. Bulletin American Geographical Society. Dec. 1907.
extent of territory. These lakes existed during the Pleistocene and we have every reason to believe that the desert flora which now reigns supreme was not then widely spread, but its place was taken by a vegetation more typic of a humid climate with its forests and other plants dependent on a more abundant rainfall. Two elements of the desert flora may be distinguished, viz., a Great Basin element and a Mexican element. It is probable that the differentiation of the Great Basin element began before the great glacial period and was preserved and still further developed, as an arid type during the period of more humid climate in the enclosed valleys, such as Death Valley and in the Mohave Desert region cut off from the prevailing source of rain supply and on the drier hillsides. With the gradual coming on of a dry climate and the disappearance, or contraction of the Pleistocene lakes in all probability the endemic Great Basin element of the present flora extended its range northward and downward into the areas left bare by the disappearance of the fresh water lakes. A present day illustration of this succession is afforded by the Salton Sea which was formed in the Colorado Desert by the diversion of water from the Colorado River. The freshwater of the lake dissolved out much of the alkali of the new shore soil, and as the water recedes, since the break in the bank of the river has been closed by engineers, the alkali plants occupy the shore line of recession with difficulty. Many thousands of the arrow weed, Pluchea sericea, and cat tail, Typha angustifolia, as well, as other species which occupied the shores of the new lake find it difficult to maintain their hold as the shore soil becomes drier and more alkaline, so that it is only a question of time when the freshwater vegetation will have disappeared and will have been replaced by other vegetation, as noticed by MacDougal. 1)

At about this time, the Mexican element migrated into the Basin and as the plants constituting it were already from their origin in the ancient deserts of Mexico suitably adapted both morphologically and physiologically to dry soil and a dry climate, they naturally spread and usurped much of the territory formerly controlled by a more humid climate and covered by a more mesophytic vegetation. In all probability, therefore, the spread of the Great Basin element began in the Pleistocene and has continued ever since and that the Mexican element was introduced into the region at the close of the Pleistocene at a period subsequent to the disappearance of the Pleistocene lakes.

The desert flora, on the other hand, in all probability, entered southern California before the Pleistocene for we have evidence of this in the presence of many typic desert plants in southern California, not present in the Great Basin, and yet the course of their migration would have been more direct into the Great Basin region. In this statement, we refer to the flora south of the San Bernardino range; for from what has preceded in a discussion of the flora of the Mohave Desert, there is a clear evidence of its affinity with the

1) Year Book of the Carnegie Institution of Washington, 1908: 56—57.
Great Basin flora and is perhaps older to the region in point of time than the flora of the Colorado Desert, for from a previous statement, it is not presumptuous to suppose that the Mohave desert supplied to the drying Great Basin many of its most typic plants.

Flora of Northern Mexico. The flora of northern Mexico is characterized by the absence of thirty nine natural orders, which are represented in central and southern Mexico, the absent orders being essentially tropic or consisting of hygrophilous plants. Three orders, the Frankeniaceae, Elatinaceae and Santalaceae, represented by one species each, are not known to occur in the central and northern positions of the country. The Cruciferae, Polygalaceae, Malvaceae, Malpighiaceae, Leguminosae, Crassulaceae, Onagraceae, Cactaceae, Compositae, Asclepiadaceae, Polemoniaceae, Hydrophyllaceae, Boraginaceae, Convolvulaceae, Solanaceae, Scrophulariaceae, Labiatae, Nyctaginaceae, Amaranthaceae, Chenopodiaceae, Polygonaceae, Euphorbiaceae, Cupuliferae, Coniferae, Amaryllidaceae, Gramineae, and Filices are the orders predominant in the number of species. Such genera as Beschormeria, Fouquieria and Nolina have their center in north Mexico and probably originated there. The number of Mexican species extending northward west of the Mississippi is almost double that extending northward east of that river. The extensions into eastern North America are largely south Mexican plants and not north Mexican. Such genera as Magnolia, Asimina, Tilia, Robinia, Liquidambar, Ilex, Diospyros, Bunelia, Ulmus, Morus, Ostrya, Carpinus and Carya (Hicoria) are absent from the Pacific forests, but all these genera are represented in Mexico, yet, so far as we know, only four out of the fourteen in north Mexico. Sometimes the species of eastern North America and in the mountains of south Mexico, are identical Liquidambar styraciflua, Ostrya virginiana, and Carpinus americana. In the belt of oaks in south Mexico according to Engler are found Ulmus, Alnus, Clethra, Cornus, Viburnum, Deutzia, Triumfetta, Rubus, Vitis, genera which occur in the Atlantic states of the American Union, and this relationship between two widely separated floras extends to many genera of herbaceous plants: Thalictrum, Ranunculus, Anoda, Hypericum, Desmodium, Rhexia, Cuphea, Lobelia, Salvia, etc. Many of the species inhabiting pine-woods belong to genera which are widely prevalent in the extra tropic portion of the northern hemisphere: Veratrum, Salix, Trifolium, Arcnaria, Polygala, Helianthemum, Castilleia, Gerardia, Chelone etc.

There is, therefore, ample evidence that north Mexico is the center of a special xerophilous flora which, there are good grounds for assuming originated in this area, though this flora by migration now has considerable northward and southward extensions. A considerable part of the flora of California, still more of Nevada, Utah and western Texas and, yet more, that of Arizona and New Mexico may be regarded as a northward extension of the flora of the Mexican plateau 1).

The Edwards Plateau region in central Texas an area roughened by erosion, exposing the limestone strata to the reception of rainfall is a meeting ground for species from the Atlantic forest, the southern Rocky Mountains and from the north Mexican highlands. Such Mexican plants are *Juglans rupestris*, *Morus celtidifolia*, *Arbutus xalapensis*, *Sophora secundiflora*, *Burmaria lanuginosa*. The trans-Pecos territory is characterized by a covering of strongly xerophytic chaparral which embraces the northern Mexican plateau, the arid plateaus of New Mexico, Arizona and southern California. It is floristically different from the Rio Grande chaparral, which represents a northern tongue of the great coastal scrub extending southward, for the trans-Pecos chaparral represents the northern extremity of the Mexican plateau flora. As a consequence of this, we find the Mimoseae and Caesalpinae represent less than 10 per cent of the species, individuals occur less abundantly, and excepting *Prosopis juliflora* are different species from those of the Rio Grande plain. A more striking array of ecologic types is found in the species of this formation, as illustrated in the *Ephedra*-type, the felt-covered *Eurotia-* and *Croton*-types, the resin containing *Larrea* and *Flowersonia*, and the thorny-stemmed *Fouquieria*. About thirty species are more or less prominent constituents of the chaparral of the trans-Pecos area. *Larrea mexicana*, the Mexican greasewood, is characteristic of high gravelly mesas and of bosson deserts extending even to the alkali soils of such basins. All of these facts presented above demonstrate the predominant Mexican character of the plant formations described above 1).

Cactus-Vegetation. The Cactaceae afford an interesting proof of the fact that the Mexican tableland forms a center of origin of many peculiar plant forms. The headquarters of the family is found in Mexico and one is forced to believe that the family had its origin here 2). The territory richest in species is in the neighborhood of Pachuca, Tula, Queretaro, Guanajuato, San Luis Potosi and northward to Saltillo, Monterey, Montclova and Laredo on the Rio Grande River. Less rich, but by no means poor in species, are the northern states of the Mexican Republic, Chihuahua, Coahuila and Sonora, the last is connected with the richest territory of the United States in cacti, viz., that covered by the states of New Mexico, Arizona and California, especially in their southern portions and Texas. Lower California is also rich in forms. The distributional headquarters is especially rich in species of the genera *Mammillaria* and *Echinocactus*. In the moist valleys of southern Mexico, *Pilocereus* is regnant, only a single species, *P. Schouttii*, is present in northern Mexico. Such small genera as *Ariocarpus*, *Anhalonium*, *Pelecyphora*, *Leuchtenbergia* are found at headquarters. The genus *Cereus* has its development north of the center, for example, *C. gigantes*, on the Rio Gila, and such species, as *Cereus pecten-aboriginum* (Fig. 9) show the prominence which plants of this character have in the landscape. The Opuntias are numerous both at the center and in the

United States. From the central point of distribution, the number of species rapidly diminishes in a north and east direction.

Fig. 9. *Cereus pecten-aboriginum* Engelm. Lower California District, Mexico. After Contributions U. S. National Herbarium V, Plate LVIII.
The Central American states of Guatemala and Costa Rica are according to our present knowledge very poor in cactuses. This is evidently due to the fact that these states were originally covered with a dense forest, but on the dry interior plains species of Peireskia abound, and such epiphytic forms of the family as Phyllocactus and Rhipsalis occur here in the moist tropic forest. The writer has seen at Orizaba abundant proof of this in the presence of Phyllo-
cactus growing in the forks of the forest trees. On the other hand, the small number of species found on the dry plains of the leeward side of the larger West Indian islands is enigmatic, unless one considers, that these islands were never intimately connected, even when a land bridge existed with the arid Mexican table-land.

The southern peninsula of Florida, which belongs in many respects as shown by many other families to the West Indian Region, has only three species of cactuses.

The fact, that we have in South America another cactaceous headquarters, does not militate against the Mexican origin of the family for between arid Mexico and arid South America there is no place where the family could thrive. Once the forms originating in arid Mexico reached arid South America, where we are compelled to consider the conditions somewhat different, we would expect to find the rapid multiplication of new forms distinct from those in the north such as Pfeiffera and Cariata in Brazil. Perhaps in the past, the Isthmian region was not as humid as at present and the Cactaceae had a better chance to spread southward. Or, that under similar conditions of environment in such widely separated localities, the progenitors of the present cactaceous forms mutated along similar lines both in arid Mexico and arid South America, so that the present distribution may be explained by the polygenetic origin of the cacti and perhaps in some instances by polyphylesis or the approach in morphologic structure of two or more different species, at different places at the same time, or at different times, so as to form a new species. Since the agricultural Indians have occupied Central America (and vast prehistoric mines, as at Copan and Palenque indicate a long occupancy) the original forest has been destroyed by fire and by other means over extensive areas and desert conditions have been established, where such plants, as Peireskia guatemalensis (Fig. 10), form a prominent feature of the flora.

Yucca-vegetation. The phytogeographic distribution of the species of the genus Yucca is of interest in connection with the Mexican origin of the genus. Trelease 1) believes that the Mexican table-land is the original home of the entire group and that it has followed the customary sweep around the Gulf with a reflex wave northwest into the Appalachians. Other species have entered the

1) In a letter to the writer dated Jan. 20, 1904. The northern and southern limits of the genus Yucca are indicated in the colored map. Beginning in Southern California, the northern line runs in a sinuous course across the continent to the month of Chesapeake Bay, while the southern line similarly extends from the head of the Bay of Lower California across Mexico to the mouth of the Rio Grande.
great Basin and still others southern California and the great plain regions of Texas, Colorado and Nebraska. The capsular Yuccas are more primitive than the baccate species, which may be looked upon as derivatives, while the spongy fruit of Cleistoyucca is a desert tumble fruit.

Fig. 10. *Peireschia guatemalensis* Rose in a desert near El Rancho above Zacapa, Guatemala. Photograph by O. F. Cook.
The genera *Agave* and *Dasylirion* have their headquarters in Mexico. There are recognized 140 species of *Agave* native to that country, while some are found north in Texas, Arizona and California; several in the West Indies and a number south in Honduras and Guatemala. The following list 1) gives those occurring out of Mexico:

Agave
- asperrima J., Texas.
- aurea T. S. B., California.
- caribaea B., West Indies.
- dasylirioides J. & Bouché, Guatemala.
- deserti E., California.
- excelsa J., Honduras.
- geminiflora Ker-Gawl., Peru.
- hexapetala Jacq., West Indies.
- huachucensis B., Texas.
- maculata Regel, Texas.
- Margaritae T. S. B., California.
- Morrisii B., Jamaica.

Agave
- Newberryi E., Arizona.
- Palmeri E., Arizona.
- Parryi E., Arizona, Mexico.
- Pringlei E., California.
- Sebastiana Gr., California.
- Seemanniana J., Guatemala.
- Shawii E., California.
- sobria T. S. B., California.
- spicata Cav., Cuba.
- subinermis M. Roem., Brazil.
- virginica L., North America.
- Wallisii J., New Granada.

Besides these are found earth inhabiting Bromeliaceae, *Sedum* and *Echeveria* species, *Mimosa, Cassia, Ephedra* and a host of other plants, which had their origin and are peculiar to the Mexican plateau.

While the vegetation of a desert type reigns supreme over the greater part of Mexico and although differing widely in the different phytogeographic regions, it may be said in general to belong to one and that a xerophytic type, there are other elements in the vegetation of the country mainly confined to the higher mountains and the lower elevations along the sea coasts that demand our attention.

7. Non-Desert Floral Elements of Mexico and Central America.

Mangrove Formations of Tropics. The mangrove formation common also to the West Indian islands extends along the entire east coast of Mexico and perhaps, as far north, as Corpus Christi in Texas. On the West coast, it extends, as far north, as the Gulf of California above Mazatlan 2). As an element found also in the West Indies, it represents one which has probably existed among the sea coasts of the Caribbean Sea and Pacific Ocean during all the vicissitudes to which those coasts have been exposed since the evolution of the higher groups of plants to which the mangrove are phytogenetically related. There has, however, been a gradual northward extension of the mangrove vegetation, so that its present area is more extended than its past.

1) With abbreviated authors: J. = Jacobi, T. S. B. = Brandegee, B. = Baker, E. = Engelmann and others.
2) See colored map: *Rhizophora Mangle.*

Chaparral Vegetation. A chaparral region occupies the coastal plain in eastern Mexico above which the rain clouds sail high and it is, therefore, rather arid. This chaparral strip expands above Tampico and comprehends the valley of the lower Rio Grande River and all of that portion of southern Texas below a line which stretches from Eagle Pass on the Rio Grande through San Antonio, Texas to the coast. No fewer than forty species, according to Bray 1), associate in this formation in many cases a limited area is tolerably uniformly covered by at least half of all the species and sometimes a single species constitutes almost the entire formation over extensive tracts. There is a distinction of species into those of semitropic and even tropic affinities and those able to endure the freezing winter temperatures of the warm temperate zone. The prevalence of Mimoseae and Caesalpinieae in the Rio Grande chaparral deserves special mention. No less than 30 per cent of the number of species and a far higher per cent of actual individuals represent the strength of these elements in the formation. This also emphasizes the semitropic affinities of the flora and there cannot be, therefore, any doubt but what the Rio Grande chaparral represents a northern extension of the one found extending southward on the eastern coastal plain of Mexico and connecting with the scrub, or chaparral, of northern Yucatan, where the arboreal elements belong to the Leguminosae among which are species of *Cassia, Acacia cornigera* and others associated with *Cereus peruvianus, C. flagelliformis* and *Cactus opuntia* 2).

Forty years ago, it would never have occurred to one that this arid region of the Rio Grande could ever lay claim to being in any sense a wooded country. Yet we see the spectacle of an invasion of chaparral, a horde of shrubby Mexican species pushing their vanguard into the agricultural lands of the state. A journey of the writer some few years ago across Texas confirmed the fact that of these Mexican trees the mesquite (*Prosopis juliflora*) is the dominant and strenuous species. Its spread northward and eastward by the seeds voided in the feces of cattle from the Rio Grande country during the past fifty years has been a marked phenomenon. By its invasion, mile after mile of treeless plain and prairie have been won and reduced to the characteristic orchard-like landscape. In the coast country, and likewise in the Black Prairie region, it has passed the Brazos River. It has pushed northward over the Staked plains, covering half their area. Along their eastern front, it has migrated into Kansas and Oklahoma 3).

Tropic Forest. The tropic forest vegetation represents another important element in the flora of Mexico. It extends between the coastal chaparral and the arid plateau on the upper and middle slopes of the mountains which

represent the eastern rim of the Mexican table-land. Here the rainfall reaches its greatest total, for the clouds which pass over the chaparral region without depositing their moisture strike the mountains higher up and deposit their moisture in copious showers. This tropic forest may be considered as a northern extension of the forests of Tehuantepec and Central America. It sends an arm up the west coast, as far, as San Blas and gradually gives way to a semitropic forest above Tampico on the east coast, which finally loses its identity, as a semitropic forest in the northwestern part of the Mexican state of Nuevo Leon.

Mountain Flora of Mexico. The high mountain flora of Mexico deserves more than a passing notice. Generically the alpine flora is related to that of the Rocky Mountains, for we find in fact a large number of northern genera (Draba, Viola, Potentilla, Alchemilla, Hieracium, Pedicularis, Juncus, Carex) scattered along the mountains of Mexico and South America south to Fuegia and southern Chile where between sixty and seventy northern genera occur. Very few of the peculiarly American, or Mexican genera reach the altitudinal limit of vegetation where the plants of northern and Andine derivation are about equally balanced, thus at 13,000 feet out of 17 genera, 12 are northern, 2 endemic and 3 Andine. At 14,000 feet out of 15 genera, 11 are northern, 3 Andine and 1 endemic. Above 14,000 feet (4267 m), the few northern plants are balanced by the others and at snowline Arenaria and Alchemilla are confronted by the Andine Chionolaena. The number of species common to the higher cordilleras and peaks of Mexico and the Rocky mountains is extremely small. Mexico and Central America possess a great many endemic species pointing to a long separation floristically speaking of the two mountain systems and to the fact that a connection never was established between the snow deposits on the Rocky mountains and those found on the higher Mexican summits. Specifically the high mountain flora of Mexico is related to that of the Andes of South America. Consequently these mountains possess a mixed flora of northern plants; endemic ascendants from the temperate plateau base, most abundant in the middle levels and diminishing upwards; thirdly, southern plants ascendant from the tropics, and fourthly, the Andines, such as Acaena, Pernettya and Chionolaena 1).

Guatemalan Flora. The central, or Guatemalan region 2), which includes Guatemala, San Salvador and Honduras comprises three elements of unequal development. There is the tropic element, largely consisting of the littoral belt, which is comparatively unimportant. The xerophilous element of the dry regions of the plateau, which may be considered to be an extension of the characteristic flora of North Mexico. This element is the dominant one in many districts of Guatemala which were formerly covered with dense forests before the occupation of the country by the agricultural Indians. COOK states that in all denuded areas on the desert plains and in regions now covered with forest,

2) Hemsley, l. e., see p. 83, Bibliography.
Mountain Flora of Mexico-Guatemala.

303

there are indications of prehistoric agriculture and human occupation, so that the entire vegetation has been altered by fire used to clear the land of the continuous forest growth. — Finally, there is the distinct preponderating element which furnishes the prominent features of the whole flora. Setting aside those plants characteristic of a dry climate, we find evidence of an enormous development in certain groups of plants which flourish only where there is considerable humidity. These are the plants that inhabit the eastern slopes and ravines, and constitute what we should call the special flora of this province in contra-distinction to the southward extensions of north-Mexican flora. Cook among other interesting observations states that in Guatemala after the fire-swept areas have been cultivated and then abandoned to grass land, the process of reforestation may be traced through a succession of temporary types, such as pines, oaks, and other tropic trees, such as Acrocomia, Cecropia and Attalea 1). Yet here northern and southern types meet and commingle in a most remarkable manner; and the endemic element is specific, rather than generic. The diversified oak-forests laden with epiphytic orchids, bromeliads and other plants equally characteristic of the vegetation south of the Isthmus of Panama afford the best illustration of the correctness of this statement. It is true the oak type is not peculiarly characteristic of a moist climate, but it is essentially northern, and although it has reached the Andes of South America, its development there is quite insignificant. On the other hand, the orchids associated with the oaks of Mexico belong almost wholly to genera equally, or more strongly represented in South America. Thus only nine out of upwards of a hundred genera are endemic in our central region; and only fourteen are restricted to the country north of the Isthmus of Panama. Further, ten of the fourteen genera are monotypes, and the others number very few species; moreover, it is noteworthy that nearly as many genera reach eastern, as western South America.

The flora of Guatemala is essentially of the same composition as that of South Mexico, though apparently less rich in specific diversity. Of the eastern North American deciduous arboreous types in South Mexico, just alluded to, some as Tilia and Ulmus are not known to reach Guatemala, while others such as Liquidambar, Morus, Ostrya and Carpinus are present, and the two latter have here their southern limit. As might be expected, too, some characteristic South American types find their northern limit in Guatemala. Noteworthy among these are the Vochysiaceae; the genera Vochysia and Trigonia, being both represented.

South American Element. The southern floral province, comprising Nicaragua, Costa Rica and Panama exhibits much closer relationship with the South American tropic flora, and may be of more recent derivation, but the large number of South American types which reach Mexico or Guatemala, and not the West Indies, indicate a more remote connection though of course it may not have

been continuous. The composition of the flora of Costa Rica 1) and Panama, so far as investigated is decidedly South American. Taking some of the mainly tropic orders, such as Dilleniaceae and Anonaceae, we note a gradual thinning out northward, and an extension into the southern province of many South American species. The essentially eastern South American Lecythideae is represented by four genera and seven species, one of which is common in Nicaragua, the northern limit of these trees. *Podocarpus* replaces *Pinus* in the mountains of Costa Rica extending to Cuba in two species: *P. angustifolia*, *P. aristulata*, and to Jamaica in *P. Urbanii* and *P. Purdieana* (see colored map), and the Cylanthaceae are relatively numerous in the lower regions. Noteworthy examples of southern limits of northern types are offered by *Liquidambar*, *Sabiaceae* and *Juglandaceae* in Costa Rica, and *Pinus* in northern Nicaragua. The oak-vegetation of Volcan de Chiriqui comprises at least three species; and *Arbutus* and *Arctostaphylos* give way to South American genera of the Vacciniaceae in the mountains generally. *Chamaedorea*, the characteristic genus of palms in the oak forests of south Mexico, is represented in the southern province by at least half a dozen species, but the majority of palms belong to genera having their greatest development south of Panama, as is excellently exemplified by the genus *Attalea* (Honduras-palm, *Attalea Cohune*, Plate V), which is found through the whole of Brazil extending, as far, as Guiana and Colombia, and next to *Cocos* is a prevailing genus of brazilian palms. Many other examples of a change in the vegetation nearly coincident with the northern boundary of Nicaragua might be given.

Nearly, if not quite, all of the genera of the mountain flora there recorded from 8000 feet and upwards in our southern province are such as range from Mexico to the Andes of South America and some of them farther. The alpine forms of the Andes of South America belong for the greater part to the same genera which inhabit the higher regions of the mountains of Central America and Mexico, though the species are rarely identical. There seems to have been an northward extension of temperate and alpine forms, as well, as tropic, and such genera as *Drimys*, *Fuchsia*, *Colobanthus*, *Calceolaria*, *Roupala*, etc. are perhaps of southern origin. It follows that northern Mexico is the focus of a xerophilous flora extending into the dry regions of South Mexico, and into territories north of Mexico. The central province, disregarding the purely tropic and the xerophilous overlappings, is a mingling of northern and southern types which exhibit an extraordinarily rich production of local species, associated with about 12 per cent of indigenous genera 2). The southern region is an outlying portion of the American tropic flora, and in composition is almost limited to specific differentiations. The tropic element in this region is more closely allied to that of eastern South America, even

2) Hemsley, l. c.
Attalea Cohune Mart.,
Cohune Palm, growing at San Pedro, Honduras.
Reproduced by Permission of the Philadelphia Museum.
than it is to that of the West Indies, and includes types of the former, which are not known to reach the West Indies.

The facts here considered relative to the composition and the distribution of the flora of Central America and Mexico demonstrate that, apart from the peculiar Mexican element and the southward extensions of northern types, there are two other distinct elements, namely, the tropic and the Andine.

The relationship existing between the past and present distribution of species in Mexico, Central America and the West Indies, as controlled by the geologic and physiologic changes accompanying elevation and subsidence, and the change of climate, as well, as the relative distribution of the land and water areas is here briefly set forth. It should be stated that a separate description of the various West Indian elements has been purposely omitted from the foregoing discussion because of ignorance, but will now be referred to in the following description of the factors underlying and determining the distribution of plants in Mexico, Central America and the islands forming the Greater Antilles.

According to the evidence that we have, the evolution of new forms was most rapid in Mexico, for from the facts we must believe, that the cacti, agaves and yuccas originated there. The period at which this development took place must have been subsequent to the upper Cretaceous period for the greater part of Mexico except a narrow strip along the west coast was under the ocean during the lower Cretaceous. During the upper Cretaceous period, Mexico was elevated above the sea and during the lower Tertiary was connected with the West Indian islands. During the upper Tertiary, the West Indian bridge was severed and the North American continent reached its present shape. It was during the Tertiary, that the physiographic and geologic changes were taking place in Mexico when the valleys were filled to their brim by erosion and volcanic discharges, recorded in an earlier part of this work. We have, therefore, no reason to doubt that during these physiographic upheavals, that mutation was active in the development of new species and that many of the forms of vegetal life peculiar to the Mexican plateau then had their rise as new forms. Let us briefly trace the history of the vegetation of North America as illuminated by the discussion of the facts presented above.

If Ortmann's 1) views as to the distribution of the land and water decapods are correct, many tropic forms came into Mexico during the upper Cretaceous when Mexico was connected with South America and the West Indies by a land bridge which was severed in early Tertiary times. But the writer believes, that the tropic element of the continental flora was of later derivation than this, although many forms no doubt migrated northward during the upper Cretaceous period.

Origin of the Antillean Flora. The West Indies and Central America constitute an evolutionary region of their own distinct from the North American

Harshberger, Survey N.-America.
continent of past geologic times. Central America, the West Indies and northern South America formed in the Mesozoic period (certainly during the Jurassic and Cretaceous), a continental mass (Antillean continent) which was bounded by sea to the north and south

This continent broke up at the end of the Cretaceous, the chief factor in its destruction being the formation of the Caribbean Sea, which connected with the Pacific Ocean during the lower Tertiary period across the submerged Isthmus of Panama. The northern remnant of this continent, consisting of the Greater Antilles and parts of present Central America, probably remained a unit up to the Eocene, for during the Eocene elevation, there was probably a landway from Cuba across the Bahama Banks to the Floridan area, so that we have an explanation of the exceptional association of Pinus cubensis and Serenoa serrulata (see Plate VI) in southern Florida, although it is well known that the northern coniferae stop where the tropic-subtropic palms begin to occur. At the end of the Eocene, and during the Oligocene and Miocene, the connection between the Greater Antilles and the mainland was severed. But it was re-established toward the end of the Tertiary for before the close of the Tertiary period, the West Indian lands were more extensive than now, and the Greater Antilles were once continuous. The botanic evidence goes to show that there existed in the past (upper Cretaceous), an Antillean continental flora which developed as such when the West Indian islands, Central America and northern South America formed a distinct continental area with rivers, mountains and plains covered with a tropic forest of great luxuriance which represents the progenitors of the present tropic flora. The table by Hemsley unquestionably points to such a conclusion.

Proportional Distribution of Mexican and Central American Species in South America and the West Indies

<table>
<thead>
<tr>
<th>Common to both the West Indies and South America</th>
<th>West Indies only</th>
<th>Western South America only (including Andine)</th>
<th>Eastern South America included Venezuela only</th>
<th>Western and Eastern South America only</th>
<th>Numbers of South American types reaching Mexico or Guatemala, but not the West Indies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polypetalae (Monocotyledoneae)</td>
<td>190</td>
<td>55</td>
<td>143</td>
<td>66</td>
<td>212</td>
</tr>
<tr>
<td>Gamopetalae (Monocotyledoneae)</td>
<td>182</td>
<td>112</td>
<td>129</td>
<td>65</td>
<td>80</td>
</tr>
<tr>
<td>Incompletae (Monocotyledoneae)</td>
<td>97</td>
<td>43</td>
<td>36</td>
<td>30</td>
<td>34</td>
</tr>
<tr>
<td>Monocotyledonae (Dicotyledoneae)</td>
<td>179</td>
<td>71</td>
<td>64</td>
<td>99</td>
<td>103</td>
</tr>
<tr>
<td>Gymnospermae</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Totals</td>
<td>648</td>
<td>284</td>
<td>374</td>
<td>261</td>
<td>429</td>
</tr>
</tbody>
</table>

This table is only tentative, because so much remains to be done in elaborating the details of the distribution of species in the West Indies and the northern and eastern parts of South America. The western only are in

1. See ante page 120.
Serenoa serrulata (Michx) Hook (saw palmetto)
associated with Pinus cubensis Griseb. (= P. heterophylla = P. bahamensis = P. Elliottii = P. caribaea, slash pine)
to form pine barrens of Southern Florida.
Reproduced by permission of the Philadelphia Museum.
considerable excess of the eastern only. The most striking feature in the table is the large number of species common to South America, but not known to inhabit the West Indies.

The distribution of the following species of the following genera, selected at random, it seems represent part of the tropic flora which may be called Antillean, because the plants enumerated in their present distribution occupy the edge of the Caribbean basin which geologists tell us has been formed by the depression to great depths of a former land surface. North South America represents the southern rim of this basin, Central America the western edge with the Galapagos islands, perhaps an outlying extension of this ancient continent into the Pacific ocean, and the greater Antillean chain of islands representing the northern limit of this Caribbean landmass. The species now mentioned represent, but a small number of those plants which have a similar range about the shoreline of the Caribbean Sea, viz.

Cassia alata L. Nicaragua, Panama, West Indies and tropic America.
- *atomaria* L. South Mexico, Central America, Colombia to Peru.
- *bacillaris* L. South Mexico, Yucatan, Tabasco, Nicaragua, Costa Rica, northern part of South America, West Indies.
- *bicapsularis* L. North Mexico, South Mexico, Yucatan, Tabasco, Guatemala, Costa Rica, southward to South Brazil and Chili.
- *biflora* L. South Mexico, Guatemala, Nicaragua, Costa Rica, West Indies and northern part of South America.
- *chamaecrista* L. Canada to Mexico, Guatemala and southward to Uruguay.
- *diphylla* L. South Mexico, Guatemala, Nicaragua, Panama, West Indies and tropic South America.
- *grandis* L. Panama, West Indies, Colombia, Guiana and Brazil.
- *riparia* H. B. K. Central America, West Indies, Guiana, North Brazil.
- *sericea* Sw. Texas, North Mexico, South Mexico, Central America, West Indies and North Brazil.
- *spectabilis* DC. South Mexico, Costa Rica, West Indies, northern part of South America.
- *tagera* L. South Mexico, Costa Rica, Panama, north part of South America.
- *virgata* Sw. Guatemala, Colombia, Guiana and the West Indies.
Cuphea balsamona Ch. & Schl. South Mexico, Nicaragua, Guatemala, Panama, southward to Uruguay and in the Galapagos islands.
- *spicata* Cav. South Mexico, West Indies, South America to Uruguay and Chili.

Passiflora adenopoda DC. South Mexico, Venezuela, Panama, Colombia.
- *coriacea* Juss. South Mexico, Panama, Jamaica, Colombia, Peru.
- *lunata* Willd. South Mexico, Costa Rica, Panama.
- *sexflora* Juss. South Mexico, West Indies.
- *suberosa* L. var. minima Mast. Mexico, West Indies, Central America.
- *tuberosa* Jacq. South Mexico, West Indies, Guiana.
Sechium edule Sw. South Mexico, Panama, West Indies, tropic South America. Ipomoea acuminata Roem. & Schult. Guatemala, West Indies to Brazil.

- capillacea Don. (I. armata Roem. & Schult.). Arizona, New Mexico, North Mexico, South Mexico, Guatemala, Colombia, Venezuela.
- cathartica Poir. Florida, Mexico, Bahamas, Jamaica, St. Vincent, Brazil.
- hederacea Jacq. Pennsylvania to Florida, Louisiana, Mexico, Central America, tropic America, West Indies.
- longicuspis Meissn. (I. bicolor Lam.) Mexico, West Indies, to Peru and Brazil.
- purpurea Roth. Texas to California, Mexico, Colombia, Venezuela, West Indies.
- quinquefolia L. Guatemala, Nicaragua, Panama, southward to Peru and Bolivia, West Indies.
- setifera Poir. Guatemala, Nicaragua, Panama, West Indies, Guiana to North Brazil.
- sidaefolia Choisy. South Mexico, Panama, West Indies, north part of South America.
- sinuata Ort. Georgia to Texas, North Mexico, South Mexico, Guatemala, West Indies, Guiana, Brazil.
- umbellata Mey. South Mexico, Guatemala, Nicaragua, tropic south America, West Indies.

Escobedia scabrifolia Ruiz et Pav. South Mexico, Colombia, to Peru, Guiana, Brazil.

Lippia americana L. Panama, Colombia, Ecuador.

- geminata H. B. K. Texas, North Mexico, South Mexico, Nicaragua, Costa Rica, Panama, South America, West Indies.
- reptans H. B. K. South Mexico, West Indies to Brazil and Peru.

Stachytarpheta cajanensis Vahl. South Mexico, West Indies southward to Brazil.

- jamaicensis Vahl (S. indica Vahl). Florida, Mexico, Central America, West Indies, south to Brazil.
- mutabilis Vahl. Mexico, Cuba, Trinidad, Guiana.

Tropic American Element. The origin of the tropic American flora is to be looked for in the lost Antillean continent, northern and eastern South America. Certainly many Brazilian species occur in Central America and the West Indies and Ball ¹) says that in a general survey of the South American flora in addition to the elements derived from distant regions there is a large number of types either absolutely peculiar to the continent, or which, in some cases appear to have spread from that center to other areas. According to him the tropic forms had their primitive home in Brazil, and it is precisely on the ancient mountains of this region, which perhaps formed one of the greatest mountain regions of the earth, their summits exceeding in a height any now existing in the world, and worn down by erosion in a region of heavy

rainfall, that we should look for the ancestors of many forms of vegetation which have stamped their character on the vegetation of the continent. In addition, the mountains of Venezuela and Guiana, representing the southern part of the Antillean land extension may be considered also as a center from which the tropic flora has spread. This region during lower and upper Cretaceous periods was severed from eastern Brazil and during that time an endemic tropic flora was in process of development. This flora is characterized by the great richness in Araceae and Orchidaceae. While separated from the south and also with several distinct orographic systems small areas existed which developed peculiar endemic forms for which this region is noted. No part of America has been more frequently visited by European plant importers in search of aroids, palms, orchids and bromeliads than this.

Later northern South America was connected with eastern Brazil and it was then that the plants mentioned by Ball migrated north to Guiana, where they form an important element, and subsequently into Central America and the West Indies. The tropic element of the North American flora represents three distinct elements of development, viz., the subandine region, which according to Engler furnished a large contingent of species, the Antillean continent including Venezuela and the eastern Brazilian district, which subsequent to the Cretaceous period furnished a considerable number of migrant forms which found their way northward, while the higher Andes contributed many types to the higher Mexican mountains. We are not in a position to clearly separate from each other the plants derived from all these areas, but we have proceeded far enough to discover that the Mexican, Central American, West Indian and Brazilian tropic floras are all connected by identic species of plants. If diversity has occurred, it has been through the isolation of areas of great physiographic difference permitting the differentiation of new types of plant life from old forms. This separation of land masses into groups by the encroachement of the sea has also separated widely distributed forms which remain as relicts in circumscribed areas, or it has led to the extinction of many forms once widely prevalent.

West Indian Flora. Grisebach 1) early compared statistically the flora of the different West Indian islands under English control and the facts discovered by him bear out the statement just made, that although, the Central American, northern South American and West Indian floras are genetically related historically, yet sufficient time has elapsed since the disruption of the Antillean continent to bring about a rich endemism in the several regions. Our knowledge of the West Indian flora has vastly increased since 1864, but we still lack sufficient data on which to make a satisfactory and complete statistic comparison of this flora with others adjacent to it. We have brought out some of the salient features in a preceding chapter. It only remains to say in this connection, that the table in Grisebach’s great work is helpful in

1 Grisebach: Geographische Verbreitung der Pflanzen Westindiens.
elucidating the fact that there is a greater endemism in each of the Greater Antillean islands than in those of the Lesser Antilles, for the simple reason that the large islands are continental in aspect, have sedimentary rocks and represent part of the original Antillean landmass, which was covered by an Antillean flora of great richness, while the islands of the Lesser Antilles are volcanic and of comparatively recent creation, representing a line of weakness of the earth's crust through which volcanic material has been extruded along the eastern edge of the lost Atlantis (Antillean continent), when it sank out of sight with the formation of the American Mediterranean, the Caribbean Sea. The flora of these islands, therefore, is a recently derived one and represents one that has not had sufficient time for the differentiation of new endemic types, hence the discrepancy in the number of endemic types in the two groups of islands which the table of Grisebach sets forth. Presumably the appearance of the Caribbean Sea by the depression or sinking down of the former land surfaces of the Antillean continent to great depths below the surface separated the Antillean flora into three parts, viz., the West Indian, the Central American and the northern South American. The West Indian flora was at one time perhaps remarkably uniform for during the close of the Tertiary period, we have evidences that the West Indian land areas were much more extensive than now, and the greater Antilles were once continuous. With the depression of the islands in subsequent periods, the West Indian landmass was broken up into physiographically distinct regions and the present differentiation of the flora began at this time. So that for the several larger islands of the Greater Antilles, we have a diversification of the flora which has been statistically stated in a foregoing chapter of this book.

The Bahamas are very recent geologically speaking and their elevation above the sea has been placed not earlier than the late Tertiary, so that excellent opportunities are afforded in this group to study plant migration and evolution. The flora has been remarked in a former page is of southern derivation, a large number of the known indigenous species being common to the nearby and older islands of Cuba and Haiti, while many other species are closely related to plants from these islands. The chief agents in the introduction and distribution of the plant population are according to Britton 1) migratory birds, supplemented by winds and ocean currents. Notwithstanding the geologically short period that the Bahama islands have been above the sea, they have witnessed the evolution by mutation, or otherwise, of numerous species, there being many endemic species known and many more which will be made known as the result of recent explorations. We have then to deal before the glacial period with seven distinct regions with types of vegetation developed during the Cretaceous and Tertiary periods in situ, and which to some extent migrated from area to area, as the relative position of the land

and waters were altered. These seven types are: the circumpolar arctic flora, the north temperate continental forest flora, the Pacific forest vegetation, the grass land vegetation, the Mexican highland flora, the South American and Antillean continental tropic floras. It was by the combination and recombination of these several types of vegetation, the sorting and geographic re-arrangement of species in geologic periods subsequent to the Cretaceous period, especially during the glacial period, that the distribution of the plants of the present North American flora is directly traceable.

Chapter IV. Affinities of North American Flora.

1. Arctic America.

In considering the affinities of the flora of arctic North America, it is necessary to present a few facts and statistics about the arctic flora of the world in general. The arctic flora occupies a circumpolar area north of the arctic circle. There is no abrupt break in the vegetation anywhere along this belt, except at Baffin Bay, where a sudden change from an almost purely European flora in Greenland on its east coast, to one with a large admixture of American plants on its west. Regarded as a whole, the arctic flora is decidedly Scandinavian, for arctic Scandinavia, or Lapland, though a very small tract of land, contains by far the richest arctic flora, amounting to three fourths of the whole; more over, according to Hooker, upwards of three-fifths of the species, and almost all of the genera of arctic Asia and America are likewise Lapponian, leaving far too small a percentage of other forms to admit of the arctic Asiatic and American floras being ranked as anything more than subdivisions of one general arctic flora. The American district, omitting Greenland, is separable into two districts, the eastern American and the western American, separated from each other by the estuary of the Mackenzie River.

The North-American districts. Arctic western America extends from Cape Prince of Wales on the east shore of Bering Strait to the estuary of the Mackenzie River, and as a whole, it differs from the flora of the district to the east by the far greater number of both of European and Asiatic species by containing various Altaic and Siberian plants, which do not reach so high a latitude in more western meridians and by some temperate plants peculiar to western America. The number of phanerogamic plants found in arctic western America is approximately 364 species. Of these 364 species almost all but the littoral and purely arctic species are found in west temperate North America, or in the Rocky Mountains, 26 in the Andes of the tropic, or subtropic America and 37 in temperate or antarctic South America. Comparing this flora with that of temperate and arctic Asia, no less than 320 species are found on the north-western shores and islands of that continent, or in Siberia, many extending to the Altai and Himalaya Mountains. A comparison with
The flora of arctic east America differs from that of the western part of the continent, in possessing more east American species. The western boundary is an artificial one, but the eastern is natural both botanically and geographically, for Baffin Bay and Davis Strait have very deep water and different floras on their opposite shores. The portion of this province richest in plants is the tract between the Coppermine and Mackenzie rivers. East of this the number of plants rapidly diminishes and also to the northward. The flora of arctic east America consists according to Hooker of 379 species. Of these 379 species, 323 inhabit temperate North America, east of the Rocky mountains; 35, the Cordilleras; and 49, temperate antarctic South America. Comparing this flora with that of Europe, it is found that 239 species are common to the arctic regions of both continents, while but little more than one third of the arctic European species are arctic east American. Of 105 non-European species in arctic east America, 32 are Asiatic; leaving 73 species confined to America.

Douglasia arctica and Pleuropogon Sabinii are the only plants absolutely peculiar to arctic east America. Compared with Greenland, the flora of arctic east America is rich including many species not found in Greenland. The following are found on the arctic islands, and many of them on the west coast of Baffin Bay, but not in west Greenland.

<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caltha palustris</td>
<td>L.</td>
</tr>
<tr>
<td>Parrya arctica</td>
<td>R. Br.</td>
</tr>
<tr>
<td>Arenaria (Merkia) physodes</td>
<td>Fisch.</td>
</tr>
<tr>
<td>Stellaria crassifolia</td>
<td>Ehrh.</td>
</tr>
<tr>
<td>Astragalus alpinus</td>
<td>L.</td>
</tr>
<tr>
<td>Oxypotris campestris</td>
<td>D.C.</td>
</tr>
<tr>
<td>» uralensis</td>
<td>D.C.</td>
</tr>
<tr>
<td>» nigrescens</td>
<td>Fisch.</td>
</tr>
<tr>
<td>Geum (Sieversia) Rossii</td>
<td>Ser.</td>
</tr>
<tr>
<td>Saxifraga hieracifolia</td>
<td>Waldst. & Kit.</td>
</tr>
<tr>
<td>» virginiensis</td>
<td>Mich.</td>
</tr>
<tr>
<td>Valeriana capitata</td>
<td>Pall.</td>
</tr>
<tr>
<td>Nardosmia corymbosa (= Petasites frigidus Fries)</td>
<td>Hook.</td>
</tr>
<tr>
<td>Chrysanthemum arcticum</td>
<td>L.</td>
</tr>
<tr>
<td>Artemisia vulgaris</td>
<td>L.</td>
</tr>
<tr>
<td>Salix phlebophylla</td>
<td>Anderss.</td>
</tr>
<tr>
<td>Llydia serotina</td>
<td>Sweet (= L. alpina</td>
</tr>
<tr>
<td>Glyceria fluitans</td>
<td>R. Br. (Salisb.).</td>
</tr>
<tr>
<td>Bromus pungans</td>
<td>L. (= B. ciliatus L.)</td>
</tr>
<tr>
<td>Senecio frigidus</td>
<td>Less.</td>
</tr>
<tr>
<td>» palustris</td>
<td>Hook.</td>
</tr>
<tr>
<td>» pulchellus</td>
<td>D.C.</td>
</tr>
<tr>
<td>Solidago virga-aurea</td>
<td>L.</td>
</tr>
<tr>
<td>Aster salsuginosus</td>
<td>Hook. (= A. pere-</td>
</tr>
<tr>
<td>Crepis nana</td>
<td>Richards. [grinus Pursh].</td>
</tr>
<tr>
<td>Saussurea alpina</td>
<td>D.C.</td>
</tr>
<tr>
<td>Andromeda polifolia</td>
<td>L.</td>
</tr>
<tr>
<td>Arctostaphylos alpina</td>
<td>Spreng.</td>
</tr>
<tr>
<td>Kalmia glauca</td>
<td>Ait.</td>
</tr>
<tr>
<td>Phlox sibirica</td>
<td>L.</td>
</tr>
<tr>
<td>Castilleja pallida</td>
<td>Kunth.</td>
</tr>
<tr>
<td>Pedicularis capitata</td>
<td>Adams.</td>
</tr>
<tr>
<td>» versicolor</td>
<td>Wahlenb. (= P.</td>
</tr>
<tr>
<td>Oederi</td>
<td>Vahl].</td>
</tr>
<tr>
<td>Androsace septentrionalis</td>
<td>L.</td>
</tr>
<tr>
<td>» Chamaejasme</td>
<td>Willd.</td>
</tr>
<tr>
<td>Hierochloe pauciflora</td>
<td>R. Br.</td>
</tr>
<tr>
<td>Pleuropogon Sabinii</td>
<td>R. Br.</td>
</tr>
<tr>
<td>Elymus mollis</td>
<td>Trin.</td>
</tr>
</tbody>
</table>

No fewer than 184 of the 379 arctic east American species (full half) are absent in west Greenland, whilst only 105 (much less than one-third) are absent in Europe. Of the 379 arctic east American species only 56 are not found in temperate east America, of which two are absolutely confined to this area; two others, *Parrya arenicola* and *Festuca Richardsoni*, to arctic east and west America; 25 are found in temperate west America, and about 20 are Rocky Mountain species, and not found elsewhere in temperate America.

Algae. The strong endemism of the purely arctic marine flora points to it as no immigrant flora, but one that possesses its center of development in the Arctic Sea. Other circumstances lead cogently to the same conclusion, indicating at the same time that the present purely glacial marine flora must have been formerly more widely spread towards the south than it is now. This results from a comparison of the flora of the Arctic Sea with that of the northern Atlantic and the northern Pacific. The Arctic Sea possesses 184 species in common with the North Atlantic and only 11 of these species are exclusively American, for by far the greater number occur on the Atlantic coasts of Europe according to KJELLMAN 1). The present flora in the northern part of the Pacific differs so essentially in composition from that of the northern Atlantic, that is to say, it contains many species that are so sharply distinguished from those of the Atlantic, even belonging to quite different types, that in order to account in any way for this fact, one is necessarily obliged to assume that these two divisions of the ocean appertain to different areas of development within which different forms have continued to be evolved during a very long time. (Confer *Phyllospadix*: Fig. 11, p. 314.) However, on the other hand, it is a well known fact that the northern Atlantic has no inconsiderable number of species in common with the northern Pacific.

Comparison of North Temperate and Arctic Liverworts. In the north temperate and arctic zones, according to UNDERWOOD 2) (1892), there are known about 575 species of liverworts, Musci hepaticae. Of these 375 belong to the flora of Europe, 300 to that of America, and perhaps 150 to that of Asia. Of these, we may take, as representing the boreal and sub-boreal portions, 173 species for northern Europe, 163 for northern America, and 98 species for northern Asia. Of the 214 boreal and sub-boreal species, eighty per cent are European, seventy-six per cent are American, and forty-six per cent are Asiatic. While the larger part of the species of Europe and America have been brought to light, it is quite likely that the smaller number known from the more extensive Asiatic continent is due to the limited exploration of that region. Of the 163 American species, 129 or seventy-eight per cent are of the European flora; 69 are also Asiatic, while 32, or twenty per cent, are endemic.

1) **Kjellman, F. R.:** The Algae of the Arctic Sea. 50. 1883.

2) **Underwood, Lucien M.:** A preliminary Comparison of the hepatic Flora of boreal and sub-boreal Regions, Botanical Gazette XVII: 305. October 1892.
Fig. 11. *Phyllospadix Scouleri* J. W. Hook., a marine plant of the family Potamogetonaceae ranging from Vancouver Island to Santa Barbara, California. After Die Natürlichen Pflanzenfamilien II 1, p. 205.
2. Plants common to Europe and northeast America.

The species of plants which are common to Europe and northeast United States can be divided into four classes. First, the strictly alpine species, all having a north or northwestward range found mostly on the highest summits of the White Mountains, the Adirondacks and in other elevated situations, may be enumerated as follows:

Cardamine bellidifolia L.
Viola palustris L.
Silene acaulis L.
Sibbaldia procumbens L. (= Potentilla Sibbaldi Hall. f.).
Potentilla frigida Vill.
Saxifraga rivularis L.
» stellaris L. var. comosa Poir.
Epilobium alpinum L.
Epilobium alpinum L. var. majus Wahl. (= E. origanifolium Lam.).
Gnaphalium supinum L.
Vaccinium uliginosum L.
Arctostaphylos alpina Spreng.
Cassiope hypnoides D. Don.
Bryanthus taxifolius A. Gray.
Rhododendron lapponicum Wahlenb.
Loiseleuria procumbens Desv.
Veronica alpina L.
Castilleja pallida Kunth.
Euphrasia officinalis L.
Diapensia lapponica L.

Polygonum viviparum L.
Oxyria digyna L.
Empetrum nigrum L.
Salix herbacea L.
Luzula arcuata Sw.
» spicata DC.
Juncus trifidus L.
Scirpus caespitosus L.
Carex scirpoides Michx.
Carex capillaris Michx.
Phleum alpinum L.
Agrostis canina L.
Poa laxa Haenke.
Festuca ovina L.
Triticum violaceum Hornem. (= Agropyron violaceum Vasey).
Aira atropurpurea Wahlenb.
Hierochloe alpina Roem. & Schult.

The forty species comprise all those found in the alpine region of the northeastern states, and there are but nine species found here, which are not also found in Europe. These are as follows:

Arenaria groenlandica Spreng.
Geum radiatum var. Peckii (= G. macrophyllum Pursh).
Solidago thyrsoides E. Mey.
Arnica Chamissonis Less. (= A. mollis Hook.).
Prenanthes (Nabalus) nanus DC.
» (Nabalus) Bootii D. Dietr.
Vaccinium caespitosum Michx.
Salix Cutleri Tuckerm.
Calamagrostis Pickeringii A. Gray.

1) See plate II, p. 188. — Cornus canadensis is nearly allied to the European species Cornus suecica L.
The following plants, not found north of 48° in America, are not met with north of 55° in Europe:

Myriophyllum verticillatum L.
Zannichellia palustris L.
Valisneria spiralis L. (Europe: 46° n.l.).
Typha augustifolia L.
Najas major All.

Najas flexilis Delile.
Ruppia maritima L.
Potamogeton compressus L.
» obtusifolius Mert.&Koch.
Carex riparia Curt.

The following ten species are all found in this country at least, as far north, as latitude 50° and few of them extend north of latitude 55° in Europe 1).

Sagina procumbens Hook.
Circaea lutetiana L. (Norvegia: 61° n.l.)
Scrophularia nodosa L. (Norvegia: 70°)
Salsola Kali L. [n. l.]
Lythrum hyssopifolium M. A. Curt. (= L. alatum Pursh).
Centunculus minimus L.
Rumex maritimus L.
Carex muricata L. (Norvegia: 64° n. l.)
» laevigata Sm.
Hordeum pratense Huds. (= H. secalinum Schreb.).

Since Asa Gray by a comparison of the elements of the flora of North America with those of other regions established the fact that the flora of eastern America is related to that of eastern Asia, his conclusions have been accepted as expressing a phytogeographic principle of wide application. This comparison 2) will bring out the salient features of our flora. If we compare the United States with Japan, Manchuria and northern China, i. e. eastern North America with eastern north Asia we find an astonishing similarity. The larger part of the genera of the eastern region which are wanting in California are present in Japan, or Manchuria, along with other peculiar plants divided between the two. There are plants of the one region which have no representatives in the other. There are types which appear to have reached the Atlantic states from the south; and there is a larger infusion of subtropic Asiatic types into temperate China and Japan; in the case of these there is no relationship between the two countries. There is also, no small number of genera with some species which, being common all around or partly around the northern temperate zone, have no special significance because of their occurrence in these two antipodal floras. The point to be made is, that many, or even most, of the genera and species which are peculiar to Atlantic North America, as compared with Europe, and largely peculiar to Atlantic North America, as compared with the Californian region, are also represented in Japan and Manchuria, either by identic or closely similar forms. The same rule holds

1) James, Joseph F.: On the geographical Distribution of the indigenous Plants of Europe and the northeast United States. Journal Cincinnati Society Natural History April 1887.
on a more northward line, although not so strikingly. If we compare the plants, say of New England and Pennsylvania with those of Oregon, and then with those of northeastern Asia, we shall find many of our own repeated in the latter, while only a small number of them can be traced along the route even so far as the western slope of the Rocky Mountains. And these repetitions of east American types in Japan and neighboring districts are in all degrees of likeness. Sometimes, the one is indistinguishable from the other; sometimes, there is a difference of aspect, but hardly of tangible character; sometimes, the two would be termed marked varieties if they grew naturally in the same forest, or in the same region; sometimes, they are representative species, the one answering closely to the other, but with some differences regarded as specific; sometimes, the two are merely of the same genus, or not quite that, but of a single, or a very few species in each country. In the paper above cited by Asa Gray and also in the classic work of A. Engler, 1879 (see Bibliography page 47, vol. I. 22—43) a comparison is made by means of tables of the floras of three widely separated regions, Atlantic North America, Pacific United States and north eastern Asia, Japan to Altai and Himalayas. Alpine plants on the one hand, and subtropic plants on the other, are excluded, as also species which extend through Europe into north-eastern Asia, the object being to exhibit the peculiar relations of the floras of eastern North America and eastern temperate Asia. Only seven genera are peculiar to north-eastern Asia and north-western America: viz., Phellipterus (Glehnia), Fatsia (Oplopanax) and Lysichitum, each of a single species common to both coasts; Achlys, of which there is a Japanese species said to differ from the American; Boschniakia, of a common high northern species, and a peculiar one to California; Echenais (Cnicus) of one or two Asiatic species, one of them lately found in California and Colorado, but possibly of recent introduction; and Castanopsis, a rather large and characteristic east Asian genus, represented by a single, but very distinct, species in Oregon and California.

4. Tropic and Subtropic Affinities.

In addition to the European element and the element which shows relationship to the flora of eastern Asia, the flora of eastern North America has a very strong admixture of species which belong to the tropic and subtropic countries. Growing amid the very large body of Carolinian forms which characterize the lower slopes of the mountains and the valleys between there occurs a much smaller number of species which are most abundant in and characteristic of the austro-riparian area of the lower Austral climatic zone of some phytogeographers. Only two or three trees and a few shrubs, which are distinctly of the lower Austral zone, extend into the mountain region. There is, however, a respectable number of herbs, a hundred species and over, which, most

abundant and widely distributed in the austro-riparian area, are known to occur on the mountains at an elevation of 300 meters (1000 feet), or more. A faint indication of this southern element is perceptible as far north, as West Virginia, and southeastern Kentucky; while on the isolated granitic outcrops in northern central Georgia and northern Alabama, of which Stone Mountain is the type, it is so extensive as somewhat to obscure the main element of the flora round about. Confining our attention to the mountains of Tennessee and North Carolina above an elevation of 300 meters (1000 feet), we proceed to trace the peculiarities of the flora and its affinity to the other floras.

The presence at this elevation of a considerable number of austro-riparian species, which nowhere venture beyond the limits of their life zone, is on the whole the most noteworthy fact in regard to this element in the highland flora of the southern states. In studying this floral element, one soon reaches the conclusion that it comprises two categories of species, which are different

Fig. 12. *Sassafras officinale* Nees, an element of the deciduous forest formation of eastern North America from Maine to the Gulf of Mexico. After Die Natürlichen Pflanzenfamilien III 2, p. 118.
not only in their systematic relationships, present distribution in the region and probable past history, but even, to a considerable degree in their ecologic constitution.

The first category includes plants of probable neotropic origin which have in all likelihood made their first appearance in the Appalachian region in geologically very modern times, probably after the close of the glacial period. The second category includes plants probably not of neotropic origin which are in several cases, probably the more or less modified descendants of the flora of later Eocene and Miocene times that extended to high northern latitudes. The number of plants in this group occurring both in the coastal plain and in the Appalachian region is notably smaller than in the first group. Most of the species, as well, as many of the genera, comprised in this category are characteristic neither of tropic, or high northern regions. They belong in great part to groups which are most largely represented at present in the mountainous parts of the warm belt of the northern temperate zone, in both the eastern and western hemispheres. Some of them, however, are of floral types which are to-day most highly developed in the tropics, such as the species of Arundinaria, Berchemia scandens, Cissus ampelopsis (Ampelopsis cordata), Aralia spinosa and Symplocos tinctoria. Yet the groups to which several or all of these species belong, formerly had a much wider extratropic distribution than is now the case.

Fig. 13. _Hamamelis virginiana_ L., witch hazel. An element of the deciduous forest formation of eastern North America from Nova Scotia to Texas, producing its flowers in early winter.

After Die Natürlichen Pflanzenfamilien III 2a, p. 128–129.
To be considered in connection with this second category of species is a very significant group of genera which are represented in eastern North America by two closely allied species, one in the coastal plain, the other in the Appalachian region. With the exception of Clethra (which is largely tropic) all these genera, like many of those represented by species of the second category, have their present center of distribution in the warmer part of the north temperate zone. This may also be said of the larger groups to which many of them belong, e.g. the families Calycanthaceae, Sarraceniaceae, Hamamelidaceae and Monotropaceae and the tribes Hydrangeae of Saxifragaceae and Andromedeae of Ericaceae. Some of them are known to belong to floral types which were very widely distributed in the northern hemisphere during the early part of the Tertiary, in not a few cases ranging as far north, as Greenland and Alaska. Several of these genera, broadly speaking, appear to be on the wane, as distinguished from the dominant and aggressive types of presumably neotropic origin to which species of the first category chiefly belong. The following list, according to Kearney, includes some of the plants which are represented by the same or closely related species found in the Appalachian region and also in the coastal plain, viz.

<table>
<thead>
<tr>
<th>Genus</th>
<th>Coastal Plain Species</th>
<th>Appalachian Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calycanthus (Butneria)</td>
<td>florida L.</td>
<td>glauca Willd. (= fertilis Walt.)</td>
</tr>
<tr>
<td>Sarracenia</td>
<td>flava L.</td>
<td>inodorus L.</td>
</tr>
<tr>
<td>Philadelphus</td>
<td>grandiflorus Willd.</td>
<td>radiata Walt.</td>
</tr>
<tr>
<td>Hydrangea</td>
<td>quercifolia Bartr.</td>
<td>cinerea Small</td>
</tr>
<tr>
<td>Fothergilla</td>
<td>Gardeni Murr. (= carolina L.)</td>
<td></td>
</tr>
<tr>
<td>Stuartia</td>
<td>virginica Cav. (= Malacodendron L.)</td>
<td></td>
</tr>
<tr>
<td>Schweinitzia (Monotropsis)</td>
<td>Reynoldsiae Gray</td>
<td>major Lodd.</td>
</tr>
<tr>
<td>Leucothoe</td>
<td>{ axillaris D. Don. }</td>
<td>{ acuminata D. Don. }</td>
</tr>
<tr>
<td>Andromeda (Pieris)</td>
<td>{ racemosa Gray. }</td>
<td>{ Catesbaei Gray. }</td>
</tr>
<tr>
<td>Halesia (Mohrodendron)</td>
<td>phillyreifolia Hook.</td>
<td>floribunda Pursh.</td>
</tr>
<tr>
<td></td>
<td>diptera L.</td>
<td>carolina L. (= tetraptera L.)</td>
</tr>
<tr>
<td></td>
<td>parviflora Michx.</td>
<td></td>
</tr>
</tbody>
</table>

5. Relationship in Western North American Flora.

Rocky Mountain Flora; its Affinities. The Rocky Mountain Region may for the purposes of our comparison be divided vertically into three belts:

1. An alpine treeless belt above the belt where trees grow.
2. A wooded belt, in some places covering, in others locally adorning, the mountain slopes.
3. An arid and woodless belt which occupies by far the greater part of the region.

Botanically the alpine regions of the temperate zone in the northern hemisphere are southward prolongations of arctic vegetation, almost pure in the boreal parts, but more and more mixed with special types in lower latitudes, these special types being part of the flora which is characteristic of each continent in those latitudes. Leaving out of view a considerable number of temperate species which here and there become alpistine, or persist in dwarfed forms within some truly alpine regions, the alpine flora of the United States does not comprise a large number of species.

The bulk of the forest of the Rocky Mountains 1) consists of coniferous trees. Most of these are common to the region of the Pacific Coast, but none of the trees are found in the Alleghany Mountains or around the Great Lakes. The white spruce, *Picea alba (canadensis)*, has been reported from northern Montana and Alberta, but probably erroneously; *Picea columbiana*, which resembles it in habit and the glabrous branches, has been mistaken for it. *Picea columbiana* is otherwise much more closely related to *P. Engelmannii*. Two prostrate shrubby species of *Juniperus*, *J. sibirica* and *J. prostrata* range across the continent. Both are sub-arctic and sub-alpine. Besides these none of the Rocky Mountain conifers are found in the east, although they are often represented there by closely related species 2). (See ante Chapter 3, § 4.)

Among the deciduous trees and shrubs, the number of species common to the Rocky Mountains and the East is much larger. Many of these common species are boreal, but some are truly transcontinental or nearly so. Of the Salicaceae about three-fifths of the Rocky Mountain species are endemic, or western. The rest are nearly all boreal. The only ones that cannot come under the categories, perhaps are *Salix Bebbiana*, *S. candida* and *S. cordata*. The eastern *Populus monilifera (= P. deltoides)* is represented in the Rocky Mountains by a western variety. Of the Betulaceae, *Betula papyrifera*, *B. glandulosa*, *Alnus viridis (= A. alnobetula)* and perhaps *Alnus incana* are found both in the Rocky Mountains and in the east. The other four Rocky Mountain species are western. Of Fagaceae, *Corylus rostrata* is common to the Rocky Mountains and the east. Besides by this species, the family is represented in the region by a few endemic low species of oaks of the white oak group.

Ulmaceae is represented by three or four species of *Celtis*, of which *C. occidentalis* is found in the east. *Ulmus americana* is found here and in the valleys of the Great Plains, but scarcely reaches the Rocky Mountains. All the woody species of Hydrangeaceae, Grossulariaceae, Rosaceae, Rhamnaceae, Drupaceae, Papilionaceae, Rutaceae, Aceraceae, Celastraceae and Anacardia-

Harshberger, Survey N.-America.
ceae are endemic or western, except four species of Ribes, four of Rosa, Rubus strigosus, Potentilla fruticosa, Sorbus (Pirus) sambucifolia, Prunus americana, P. pennsylvanica, Amorpha fruticosa, Rhamnus alnifolia, Negundo aceroides and Rhus glabra, which are also found in the east. The two species of Vitaceae found in the Rockies, viz., Vitis vulpina and Ampelopsis (Parthenocissus) quinquefolia, extend to the Atlantic coast, and so also the three species of Elaeagnaceae.

Taken as a whole, scarcely 20 per cent of the woody plants of the Rockies are found in the Alleghany Mountains, or around the Great Lakes. Nearly all those common to both regions are transcontinental, or boreal species. If on the contrary, the woody flora of the Rocky Mountains were compared with that of the mountains of the Pacific coast, one would find that at least 50 per cent of the former would be represented in the northern Cascade Mountains, which in British Columbia are more or less contiguous to the Rockies.

Affinities of Californian Flora. It is important at this juncture to compare the flora of southern California with that of other floras in order to represent the affinities of one of the phytogeographic regions of the Pacific coast. Southern California is chosen, because, we have available for such a comparison in the statistics compiled by PARISH 1).

The accompanying table exhibits the relations of the native genera and species of southern California to the flora of North America. The number of each which extend beyond the North American continent is shown; and those which are confined to it are separated into four geographic subdivisions; namely, those whose range is restricted respectively to southern California, to California, to the region west of the Rocky Mountains, and those which extend further eastward. While the line has been drawn very strictly between plants which are, or are not ex-

<table>
<thead>
<tr>
<th>Taxonomic Groups</th>
<th>Genera</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Endemic</td>
<td>Endemic</td>
</tr>
<tr>
<td>Gamopetalae</td>
<td>13</td>
<td>54</td>
</tr>
<tr>
<td>Choripetalae</td>
<td>9</td>
<td>42</td>
</tr>
<tr>
<td>Dicotyledoneae</td>
<td>22</td>
<td>96</td>
</tr>
<tr>
<td>Monocotyledoneae</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Angiospermae</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>Gymnospermae</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Spermatophyta</td>
<td>25</td>
<td>101</td>
</tr>
<tr>
<td>Pteridophyta</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>101</td>
</tr>
<tr>
<td>Per cent of native flora</td>
<td>4</td>
<td>17</td>
</tr>
</tbody>
</table>

clusively North American, as accurately as possible for those confined to western North America, a somewhat laxer rule has been observed for the two smaller subdivisions. These are merely politic, and have little phytogeographic significance, and the limits of many of their plants as yet are not known accurately. For these reasons they are included in the number accredited to California and to southern California, some plants which, while properly belonging to them, extend a little beyond their boundaries. This table brings out the distinctively west American character of the flora.

Two-thirds of the genera, it is true extend their range beyond North America; but of the remaining one-third, only 14 per cent are found east of the Rocky Mountains, while 86 per cent of this third are confined to the territory west of them, and of these about one half are restricted to California. This local differentiation is much more pronounced in the species than in the genera. Less than one-eighth of the indigenous species extend beyond North America. Among the North American species less than 8 per cent pass beyond the Rocky Mountains; of the species occurring west of the range nearly 60 per cent are exclusively Californian; of the Californian species over one-half are confined to the southern counties of the state. In the Pteridophyta, the species are about equally divided between those of North America and those of wider distribution, the development of the Gymnospermae is entirely North American; the Monocotyledoneae are 80 per cent North American, the Choripetalae 88 per cent, and the Gamopetalae 92 per cent.

The coast islands of California show a few peculiarities worthy of mention. According to Le Conte 1), out of 296 species of plants collected on the island of Santa Cruz, no less than 48 are entirely peculiar to the coast islands, and 28 peculiar to Santa Cruz itself. Of the remaining 248 species, nearly all are

distinctively Californian, that is, species peculiar to California are very abundant, while common American species, i.e. those common to California and other parts of North America are very few and rare. (See also ante, Chap. 3 § 5.)

6. Relationship of the Floras of Mexico, Central America and West Indies.

Without attempting exact definitions of boundaries, we may repeat that there are three distinct floral provinces to be recognized in Mexico and Central America. Thus part of Nicaragua, all of Costa Rica and Panama (Fig. 15) constitute a region of the neotropic province. Salvador, Honduras, Guatemala and south Mexico, south of the Isthmus of Tehuantepec form another region, while north Mexico with portions of western Texas, New Mexico and Arizona constitute another well defined region.

The California genera not represented in Mexico amount approximately to 350, where of 77 are peculiar1). They consist largely of herbaceous plants, with additional genera of the Coniferae and Cupuliferae; the latter in the north.

The expression "extensions into South America and the West Indies", used by Hemsley, is used for convenience and to avoid ambiguity, though strictly speaking the extensions are, as a rule, rather in the opposite direction. The

proportional distribution of Mexican and Central-American species in South America and the West Indies according to Hemsley is displayed in the accompanying table.

<table>
<thead>
<tr>
<th>Common to both the West Indies and South America</th>
<th>West Indies only</th>
<th>Western South America only</th>
<th>Eastern South America only</th>
<th>Western and Eastern South America only</th>
<th>Numbers of South American types reaching Mexico or Guatemala, but not the West Indies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polypetalae</td>
<td>190</td>
<td>55</td>
<td>143</td>
<td>66</td>
<td>212</td>
</tr>
<tr>
<td>Gamopetalae</td>
<td>182</td>
<td>112</td>
<td>129</td>
<td>65</td>
<td>80</td>
</tr>
<tr>
<td>Incompletae</td>
<td>97</td>
<td>43</td>
<td>36</td>
<td>30</td>
<td>34</td>
</tr>
<tr>
<td>Monocotyledoneae</td>
<td>179</td>
<td>71</td>
<td>64</td>
<td>99</td>
<td>103</td>
</tr>
<tr>
<td>Gymnospermae</td>
<td>—</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Totals ..</td>
<td>648</td>
<td>284</td>
<td>374</td>
<td>261</td>
<td>429</td>
</tr>
</tbody>
</table>

It should be mentioned that the divisions of South America into eastern and western regions is a very rough one, the main object in view being the separation of the western and Andine elements from the eastern. Thus Venezuela is reckoned eastern, and New Granada western.

Of the 1849 genera of vascular plants represented in Mexico and Central America, 787 recur in some part or parts of the old world, or in the Pacific islands, and of these, no fewer than 609 range widely, leaving only 178 which are restricted to one country or region outside of America. Of the 12,233 species, 454 extend beyond America; 337 of them are widely diffused, and the rest, 117 in number, are of comparatively limited range.

Affinities of the Jamaican Flora. The affinities of the flora of Jamaica to the other Antillean islands and the mainland displayed below was obtained by taking Fawcett's provisional list of the indigenous and naturalised plants of Jamaica (1893) and checking off the plants found also in the other islands and the mainlands adjacent. As this list is largely based on Grisebach, and as the other lists used also conform more or less closely to his nomenclature, the data necessarily, owing to our lack of information, are very incomplete and discrepancies occur. The following figures, however, have been given with the understanding that they suggest probable affinities, rather than absolute relationship, because the incomplete state of our knowledge of the flora of the West Indies and the absence of a complete systematic manual for any of the larger islands prohibits an exact statement of the facts. The true relationship of the flora of these several islands to Jamaica is only determined by excluding the littoral plants, weeds and other naturalized plants, as also the species of a wide range common to a number of the islands and the mainland (Fig. 16). The tabular matter expresses the relationship of the flora of Jamaica to Haiti, Cuba, the Bahamas, St. Croix, the southern United States, Mexico and Central America. Some peculiarities are worthy of mention which elucidate the probable past geographic distribution of the species, which comprising the Jamaica flora are found on other of the Antillean islands and the mainland. In the table.
the Jamaican species are counted, which are common to the islands mentioned in the right hand column.

![Diagram](image)

Fig. 16. Mammea americana L., mamnee-apple, wild apricot; a large tree native to the West Indies and cultivated for its edible fruit. Tropic Forest Formation. After Die Natürlichen Pflanzenfamilien III 6, p. 220.

<table>
<thead>
<tr>
<th>Jamaican Plants Common to</th>
<th>Apetala</th>
<th>Binanpetala</th>
<th>Incompleta</th>
<th>Monocotyledoneae</th>
<th>Gymnospermae</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mexico, Central America</td>
<td>5</td>
<td>2</td>
<td>10</td>
<td>6</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>Cuba</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>Haiti</td>
<td>66</td>
<td>127</td>
<td>28</td>
<td>71</td>
<td>2</td>
<td>333</td>
</tr>
<tr>
<td>St. Croix</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cuba and Haiti</td>
<td>70</td>
<td>79</td>
<td>28</td>
<td>71</td>
<td>2</td>
<td>250</td>
</tr>
<tr>
<td>Cuba and Bahamas</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Haiti and Bahamas</td>
<td>11</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>Haiti and St. Croix</td>
<td>16</td>
<td>27</td>
<td>15</td>
<td>5</td>
<td>1</td>
<td>63</td>
</tr>
<tr>
<td>Cuba, Haiti & St. Croix</td>
<td>16</td>
<td>27</td>
<td>15</td>
<td>5</td>
<td>1</td>
<td>63</td>
</tr>
<tr>
<td>Mexico, Central America, Haiti</td>
<td>32</td>
<td>29</td>
<td>16</td>
<td>26</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>Cuba, Haiti, Mexico, Central America</td>
<td>59</td>
<td>44</td>
<td>21</td>
<td>54</td>
<td>1</td>
<td>178</td>
</tr>
<tr>
<td>Cuba, Haiti, Bahamas</td>
<td>15</td>
<td>13</td>
<td>8</td>
<td>6</td>
<td>1</td>
<td>42</td>
</tr>
<tr>
<td>Cuba, Haiti, St. Croix, Mexico, Central America</td>
<td>20</td>
<td>18</td>
<td>8</td>
<td>11</td>
<td>1</td>
<td>57</td>
</tr>
<tr>
<td>Cuba, Haiti, Mexico, Central America, Southern United States</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td>13</td>
<td>1</td>
<td>31</td>
</tr>
<tr>
<td>Cuba, Haiti, Bahamas, Southern United States</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Cuba, Haiti, Bahamas, Mexico, Central America</td>
<td>9</td>
<td>11</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>Cuba, Haiti, Bahamas, Mexico, Central America, Southern United States</td>
<td>7</td>
<td>10</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>28</td>
</tr>
</tbody>
</table>
It is seen from this table that the closest relationship exists between the flora of Haiti and Jamaica, 333 species being common to both. If the flora of Cuba and Jamaica be compared directly, only 19 species are peculiar to both, whereas 250 plants common to Jamaica and Haiti are also found in Cuba. Seventeen phanerogams and gymnospermae are found in common in Mexico (Fig. 17) — Central America and Jamaica, while if those which are found in these countries, as well, as those which have extended their range to Haiti and Cuba, 178 species of indigenous plants are common to all these places. The affinity of the Jamaican flora to that of the island of St. Croix is interesting, but not dependable because based on incomplete lists. (See under Bahama Islands.) Only one species is peculiar to both according to our table, yet, if the species common to St. Croix, Jamaica, Cuba and Haiti are considered 63 plants are found in all. The plants which have extended themselves in Jamaica, Mexico — Central America and Haiti number one hundred and three. Britton (Science new ser. XXIV: 853) after a study of the Jamaican sedges holds that the South American relationship of the Jamaican flora is more intimate than that of Cuba, Haiti or Puerto Rico. However, the results given above can be tentative only until the recent collections of plants have been studied critically. It has been established that there is a strong interrelationship of the flora of the different islands and with the mainland of Central and South America, while the flora of the hammocks of southern Florida and the flora of the Bahamas are strongly West Indian.

Fig. 17. Exogonium Purga Wend., jalap, a climbing plant native of the eastern slopes of the mountains of Mexico at an elevation of 5—8,000 feet in the tropic rain forest, cultivated for its cathartic roots. After Die Natürlichen Pflanzenfamilien IV 3a, p. 28.
Bahama Islands. The flora of the Bahaman islands shows a larger contingent of southern plants on account of the greater similarity of the climate, and because the prevailing winds and currents are from that direction. Taking the larger islands of New Providence and Andros, the total number of plants, exclusive of cultivated and escaped plants found on these islands is 453 species, according to ALICE R. NORTHROP of which are reported 176 species from other islands of the group, 335 from Cuba, 250 from south Florida, 108 from southern United States, 286 from Jamaica, 190 from Virgin Islands, 223 from Windward islands, 197 from Mexico and Central America and 190 from South America. Of the 453 species mentioned above, 76 are widely distributed, being common in warm countries on both continents.

The recent work of the botanists of the New York Botanic Garden and that of the scientists of the expedition of the Geographical Society of Baltimore have enlarged our knowledge of the flora of the Bahama Islands, so that the figures given above are true for the two larger islands and only approximately so. COKER¹, the botanist of the expedition of the Baltimore Geographical Society has tabulated the results obtained by himself and others also the unpublished results of CURTISS, BRITTON and MILLSPAUGH.

He shows that of the 795 flowering plants and ferns indigenous to the Bahama Islands, 536 are common to that group and Cuba; 311 are common to the Bahamas, Mexico and Central America; 282 are common to the Bahamas and South America; 322 common to these islands and Florida; 170 common to the southern United States and the Bahama group and 55 species peculiar to the Bahama islands. It is evident that a study of the Bahama flora does not furnish any proof either for or against land connections either between Cuba on the one side, or Florida on the other, which we have assumed elsewhere to have been the case. At this point, it may be well to disclaim any intention on the part of the writer to emphasize that the migration of plants into newly elevated land has always been by means of land connections, or bridges. Ocean currents, winds, birds, and other agencies have been active, but on the other hand, a land connection emphasizes the probable continuity of a particular flora and also provides a way by which plants can enter new land areas raised from the ocean.

The majority of the plants common to the Bahamas and to the southern United States, extend also into other tropic countries, and it seems probable, that these more widely distributed species have invaded both the Bahamas and Florida from the south, namely from the larger islands which represent fragments of a formerly existing Caribbean landmass covered by the original American tropic flora. Of the 492 plants common to the Bahamas and the United States, there are 49 that are found only in these two regions.

In discussing the relationship of the Bahama flora, it is important not to

¹ COKER, WILLIAM C.: Vegetation of the Bahama Islands. The Bahama Islands 1905: 194-201 Published under the auspices of the Geographical Society of Baltimore.
forget that the limestone soil and exposure to salt, the low elevation of the land, the drought and wind, to which the flora is subjected would preclude the occurrence in the Bahama islands of many groups of plants, such as Araliaceae, Piperaceae, Selaginellaceae, Lycopodiaceae, Equisetaceae, that are particularly partial to certain kinds of soil, or fresh water, shade and low temperature. For example Mrs. NORTHROP found on the damp open savannas of Andros, a considerable number of plants confined to that environment. They occur on New Providence island, where similar environmental conditions are found. The pines and cedars are confined to the northeastern group (New Providence, Andros, Great Bahama, Abaco and Berry islands), while the Cactaceae are mostly southern in their distribution). There are at present, as far as our information permits us to go, 55 endemic species reported from the Bahama islands), as follows:

Eragrostis bahamensis Hitch. Inagua.
Thrinax bahamensis Cook. New Providence, Andros, Green Bay, Eleuthera, Cat, Watlings.
Paurotis androsana Cook. Andros.
Cyclospathe Northropi Cook. Andros, Eleuthera.
Epidendrum altissimum Bateman. Cat, Eleuthera.
 - gracile Lindl.
 - rufum Lindl.
 - bahamense Griseb.
Torrubia Cokeri Britton. Eleuthera.
Acacia chlorophylla Benth. New Providence, Andros.
Phytelephas mouconatum Britton. Long Island.
 - bahamense Northrop, New Providence, Andros.
Cassia caribaea Northrop. Andros.
 - Mimosa bahamensis Benth. Fortune, Inagua.
Linum bahamense Northrop. New Providence, Andros.
Erythroxylon reticulatum Northrop. Andros.
Euphorbia cayensis Mills. Rum and Joulters Cays.
Salvia bahamensis Britton. New Providence.
Croton Hjalmarsonii Griseb. Fortune, Inagua.
Crossopetalum coriaceum Northrop. Andros.
Sphaeralcea abutiloides Endl. New Providence.
Malvaviscus Cokeri Britton. Watlings.
Pavonia bahamensis Hitch. Fortune.
Waltheria bahamensis Britton. New Providence.

1) COKER, l. c. p. 200.
2) COKER, l. c. p. 197.
Passiflora pectinata Griseb. New Providence, Andros, Turks.
Bourreria thyridifolia Griseb. Rum Bay, Turks.
Terminalia spinosa Northrop. Andros.
Casearia bahamensis Urban. Andros.
Metastelma Eggersii Schtr. Fortune.
Cordia bahamensis Urban. Acklin.
Heliotropium nanum Northrop. Andros.
Tecoma bahamensis Northrop. New Providence, Andros.
Jacaranda bahamensis R. Br. Andros.
Eupatorium bahamense Northrop. Andros.
Vernonia bahamensis Griseb. New Providence, Andros, Cat, Inagua.

Affinities of Bermuda Flora. The flora of the Bermuda islands consists of 326 species belonging to 231 genera and 78 orders while the indigenous element consists of 144 species belonging to 109 genera and 50 orders arranged taxonomically, as follows:

<table>
<thead>
<tr>
<th>Orders</th>
<th>Genera</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dicotyledons</td>
<td>37</td>
<td>74</td>
</tr>
<tr>
<td>Monocotyledons</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>Vascular Cryptogams</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>109</td>
</tr>
</tbody>
</table>

The cellular cryptogams probably number 201 species comprising 8 mosses, 6 hepatic mosses, 31 lichens, 24 fungi and 132 algae showing that the lower flora is comparatively little known.

From Hemsley we learn that 109 species of the Bermudan flora inhabit southeastern North America and within one of the same number the West Indies. Further, eighty-six of the Bermudan plants are common to the West Indies and continental North America, or at least reach the Keys of Florida. It is only a comparatively small number of the eighty-six that does not reach the mainland of Florida, where there is a much greater overlapping of the essentially North American and the West Indian elements than was formerly suspected. To add to these there are twenty-three West Indian species in the Bermudas.

1) Hemsley, W. B.: Report on the Botany of the Bermuda, etc. Report of the scientific Results of the Voyage of H. M. S. Challenger. Botany 1. 1885. (These figures will have to be modified when the results of the exploration of the islands under the auspices of the New York Botanical Garden are published.)
not hitherto recorded from North America. Most of the foregoing are represented in North America by closely allied species, and there are twenty-two North American plants which are apparently indigenous in the Bermudas, but do not extend to the West Indies.

Of the 144 species comprising the indigenous flora, some 46 are widely dispersed, by which is meant that, independently of their distribution in the New World, they extend to some part of the Old.

As compared with other islands in similar and different latitudes and similarly situated to the nearest continents, the flora of the Bermudas is singularly poor in endemic species. The endemic element in the flora of the islands is limited, as far as known, to 11 species, namely, _Juniperus bermudiana_, _Galium bermudianum_, _Erigeron Darrellianus_, _Static Le Royi_, _Sisyrinchium bermudianum_, _Sabal Blackburniana_, _Carex bermudiana_, _Adiantum bellum_, _Asplenium Laffanianum_, _Nephrodium bermudianum_ and a moss _Tortula bermudiana_.

Relationship of North and South American Floras. The relationship of the floras of North and South America will be discussed under the following heads: 1st, the Gulf neotropics; 2nd, the alpine and arctic-alpine and 3rd, the warm temperate and semi-tropic xerophilous elements embracing (a) high plateau and mountain forms of the transition and upper Sonoran climatic zones; (b) enclosed basin and valley forms of the lower Sonoran climatic zone; (c) semitropical xerophilous forms of Gulf distribution. It should be mentioned that the terms transition, upper Sonoran and lower Sonoran, proposed by Merriam, are used here in the sense of areas controlled by the same climatic conditions and not as defining phytogeographic regions, which according to the writer are not dependent altogether upon the temperate control of plant phenomena, but upon rainfall, relation of rainfall to evaporation, physiography and the historic element. According to Bray, the Gulf territory includes those regions which have had a common history in the development of their flora during the fluctuating geologic conditions of the Gulf area. While this zone is but a part of the greater neotropic, its association with a common sequence of geologic changes has as Engler thinks, given it a degree of distinctness from the Brazilian region.

The regions so associated are: The coast lands, plains and sub-Andean parts of Guiana, Colombia and Venezuela; the Central American region except the tierra templada, the tierra fría of Guatemala and the isolated elevations (above 8000 feet) in Nicaragua and Costa Rica; the tierra caliente of Mexico which on the west reaches northward to include the lower Colorado Valley in California and Arizona, and embraces the point of the lower California peninsula, and on the east coast is a narrow belt extending northward to the lower Rio Grande Valley in Texas, the lower third of Florida and the Greater and Lesser

Antilles. On the west, the tropic elements pass vertically rather than gradually into the vegetation of the tierra templada of Mexico and Guatemala, and at the north, a semitropic Gulf strip from the mouth of the Rio Grande to and including upper Florida, marks the transition to the subtropic flora of the Gulf states which, though distinctly a part of the Atlantic coast plain flora has numerous elements of tropic extraction as, for example, the Palmae, the Tillandsias (Fig. 18), some Euphorbiaceae (*Argithamnia, Acalypha, Sebastiana, Stillingia* and *Hippomane*), *Bignonia, Phoradendron, Persea* and many others.

At the west, the northward extension of the tropic flora is checked by xerophytic conditions, so that a very meager tropic element reaches the United States in that quarter. On the other hand, the free northward extension to the Florida province, whose physical conditions favor a purely tropic flora, has been retarded by interruptions in the continuity of the landmasses, so while the flora of south Florida is not a part of the Atlantic coastal plain flora and subtropic, it is comparatively meagerly provided with South American species. It has, however, many elements in common with the Antilles. The sharp distinction between south Florida and the remaining Gulf states and north Florida, is shown in the following data compiled by Drude from Chapman's Flora. There are 360 species in Florida which do not extend north of the 29th parallel; of these 169 belong to 132 genera which have no distribution further northward, or 16 families reach a northern limit in this peninsula. According to the discoveries of Dr. J. K. Small in the Miami neighborhood,
these figures will have to be considerably altered because of a large number of new species of West Indian affinity found there. The close relationship of the flora of the Florida hammocks, or everglade keys to that of the West Indies is now established by the fact that considerably more than one half of the species found on the islands south of Miami are also native in Cuba and the Bahamas.

It is interesting to note that some of the genera cited above, as marking the transition from tropic to sub-tropic United States, also extend into extra tropic South America, namely to Argentine. Those cited by Engler 1 are Arnithamnia, Bignonia, Lippia, Chaptalia and Galphinia, to which may be added many amaranths and others.

We have given by Mohr 2 some accurate statistic data as to the relationship of the flora of Alabama to those of the West Indies, Mexico and South America. Not less than 290 genera containing nearly 40 per cent of the plants indigenous to the Alabama flora are represented in the West Indian islands, Mexico, Central America and more rarely in South America, as far south, as Argentina. On the western coast of the continent, but a few genera occur which also occur in Alabama. About 140 species are common to Central America, Mexico and the West Indian islands. This relationship is most evident between the coastal plain flora and the flora of the more elevated regions of tropic America with climatic conditions somewhat similar to those prevailing in southeastern North America. The flora of the sub-tropic regions of Alabama exhibits, according to Mohr, the features of the vegetation of the neighboring tropics by the presence of a few genera of epiphytes, Tillandsia, Epidendrum, Polypodium. A stronger tropic character in this flora is afforded by the presence of the dwarf palmettos, Sabal, Serenoa, while the deciduous-leaved trees are represented by ten genera common to both regions. The slash pine or Cuban pine Pinus heterophylla (= P. caribaea, P. bahamensis, etc.) extends from the West Indian islands to Honduras; Taxodium inhabits Mexico and the savin, Juniperus barbadensis the West Indies with other species of Juniperus in Mexico.

The following species common to the southern United States and Venezuela have been listed by A. Ernst 3 of Caracas. The enumeration of the species is derived from the observations of Ernst compared with Chapman’s Flora (New York 1860).

<table>
<thead>
<tr>
<th>Divisions</th>
<th>Number of species in Chapman’s Flora</th>
<th>In Venezuela</th>
<th>Per cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apopetalae</td>
<td>768</td>
<td>81</td>
<td>10.55</td>
</tr>
<tr>
<td>Gymnopetalae</td>
<td>935</td>
<td>90</td>
<td>9.63</td>
</tr>
<tr>
<td>Apetalae</td>
<td>236</td>
<td>36</td>
<td>15.25</td>
</tr>
<tr>
<td>Gymnospermae</td>
<td>20</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Monocotyledonae</td>
<td>655</td>
<td>60</td>
<td>9.16</td>
</tr>
<tr>
<td>Cryptogamae</td>
<td>70</td>
<td>16</td>
<td>22.85</td>
</tr>
<tr>
<td>Totals</td>
<td>2684</td>
<td>283</td>
<td>10.54</td>
</tr>
</tbody>
</table>

Arctic and Arctic-Alpine Flora. An analysis of the floral elements of the north-south arctic and arctic-alpine flora distributed along the elevated continental axis from Alaska to Cape Horn and broken only from the southern downfall of the Guatemalan highland 15° N. to the Colombian Andes 5° N. shows the following interesting phenomena. 1. The flora of the higher Rocky and Sierra Nevada Mountains, the Mexican Cordilleras (8,000 to 12,000 feet) of the Guatemalan tierra fria and the tropic Andes (above 12,500 feet) is one of northern extraction, abounding in genera associated with the colder zones of North America, Europe and Asia. Such for example, are: Ranunculus, Anemone, Berberis, Geranium, Spiraea, Geum, Rubus, Ribes, Saxifraga, Hydrocotyle, Gaultheria, Vaccinium, Veronica, Eritrichium, Gentiana, Polemonium, Hircacium etc.

2. While possessing many genera in common, by far the greater per cent of species in the Mexican cordilleras are endemic, as are those of the alpine Andes. This points to a long and effective isolation of the Mexican and South American Andes from each other and from the Rocky Mountains. 3. The arctic-alpine genera are the most common which belong to the element common to the Himalayan and east Asiatic regions and the Rocky Mountains from Alaska to Colorado. Such genera occur sparingly in the Mexican and tropic Andes, and then with endemic species. There is an increase of this element in the extra-tropic Andes toward the Straits of Magellan. Here should be noted the fact that certain species of the Rocky Mountain arctic-alpine region reappear in the extra-tropic Andes toward the southern extremity of South America, being so far as known absent from the Mexican and tropic Andes. Among these are: Gentiana prostrata, Trisetum subspicatum, Primula farinosa, and var. magellanica, Draba incana (D. magellanica), Alopecurus alpinus (A. antarcticus), Saxifraga caespitosa (S. cordillerarum), Polemonium micranthum (P. antarcticum), Collomia gracilis 1).

Warm Temperate and Subtropic Xerophilous Elements. The warm temperate and sub-tropic xerophilous elements common to North and South America deserve special emphasis. They embrace for the most part, the flora of the arid regions of the western and south-western states and north Mexico. This flora occupies the mountain slopes of the transition climatic zone and plateaus of the upper Sonoran and the hot deserts of the lower Sonoran climatic zones. This area has been the field of development of many groups peculiarly American. It is the region of xerophytic composites, Nyctaginaceae, Polygonaceae-Eriogoneae, Onagraceae, Amaranthaceae-Gomphrenae, Malvaceae, Boraginaceae-Eritricheae, Gilias, the Yucca and the Agave kinships (Fig. 19, 20) and the Cactaceae.

When this peculiar flora was in the vigor of its development and occupation of new territory, the climatic conditions seem to have exerted a pressure

to the southward which geologic conditions favored, with the consequence of carrying a great richness of forms into the South American region. There has also apparently, been an encroachment of elements developed in South America northward, as shown in the Loasaceae (*Mentzelia*) and species of *Prosopis*, whose great development occurs in the Chilean and Argentine regions respectively.

Greater details of distribution may be discussed as follows: (1) the mountain forms; (2) forms of the arid basins and valleys of the lower Sonoran climatic zone; (3) sub-tropic xerophilous forms of Gulf distribution. According to Bray, the mountain

Fig. 19. *Dasylirion acrotrichum* Zucc. a desert plant native of the Mexican tableland with stem 1.5 m high, stiff spiny-margined leaves and flower-spike 2—3 m long. After *Die Natürlichen Pflanzenfamilien* II 5, p. 72.

Fig. 20. *Beschorneria yuccoides* Hook., a Mexican xerophyte frequently cultivated. After *Die Natürlichen Pflanzenfamilien* II 5, p. 116.
xerophilous Sonoran elements occupy the arid mountain slopes and high plateaus of the transition and upper Sonoran climatic zones, extending also into the deserts of the lower Sonoran climatic zone. Its southward distribution

Fig. 21. *Gilia congesta* Hook., a perennial, wooly plant with densely clustered white flowers, native to the Sierra Nevada and Rocky Mountains at an elevation of 10,000 feet. After Pflanzenreich Abtlg. IV 250, p. 122.

has been favored by the existence of an arid zone comprising the moistureless west slopes and enclosed plateaus of the Mexican and tropic Andes, lying mostly below the altitudes of alpine conditions. Both the aridity and continuity of this zone have been varied with the changes in elevation, and in all
probability a north-south distribution of xerophilous mountain elements was much easier at some earlier period than at present. Illustrations include xerophilous ferns of 6 genera, many of which range from west Texas, New Mexico, Arizona, etc., to Mexico, Guatemala and in the South American Andes to Chili. The illustrations afforded by the Leguminosae include such genera, as *Astragalus, Dalea, Lathyrus, Lupinus, Vicia*. Other orders represented are Rosaceae-Quillajeae; Compositae-Astereae, Compositae-Solidaginae; Cactaceae; Boraginaceae-Eritricheae. The genus *Gilia* (Fig. 21) is included as well as many others. *Gilia* includes some eighty North American species and about fifteen Chilian species.

Western North America.

<table>
<thead>
<tr>
<th>Gilia laciniata Ruiz & Pav.</th>
</tr>
</thead>
<tbody>
<tr>
<td>» multicaulis Benth.</td>
</tr>
<tr>
<td>» achilleaefolia Benth.</td>
</tr>
<tr>
<td>» inconspicua Sweet (= G. parviflora Spreng.).</td>
</tr>
<tr>
<td>» intertexta Stend.</td>
</tr>
<tr>
<td>» minima A. Gray.</td>
</tr>
<tr>
<td>» pusilla Benth.</td>
</tr>
<tr>
<td>Collomia linearis Nutt.</td>
</tr>
<tr>
<td>» grandiflora Dougl.</td>
</tr>
<tr>
<td>» gracilis Dougl.</td>
</tr>
<tr>
<td>Polemonium micranthum Benth.</td>
</tr>
</tbody>
</table>

Chili.

<table>
<thead>
<tr>
<th>Gilia laciniata Ruiz & Pav.</th>
</tr>
</thead>
<tbody>
<tr>
<td>» crassifolia Benth.</td>
</tr>
<tr>
<td>» copiapina Phil.</td>
</tr>
<tr>
<td>» longifolia.</td>
</tr>
<tr>
<td>» involucrata (incl.</td>
</tr>
<tr>
<td>» Navarretia Steud., and</td>
</tr>
<tr>
<td>» eryngioides Lehm.).</td>
</tr>
</tbody>
</table>

dwarf forms of *G. involucrata* in Chili.

Gilia pusilla Benth.

Collomia coccinea Lehm.

Polemonium antarcticum Griseb. (= *P. micranthum* Benth.).

The most extreme xerophytes and halophytes occupying the most arid deserts of both North and South America in the extra-tropic regions, and generally unrepresented in the moist tropic and high mountain areas between. Such are the Mimoseae, *Prosopis* § Strombocarpa with 3 species in Argentine; 3 species in west Texas, north Mexico and westward; § *Algarobia* with 19 species mostly in Argentine; but including *Prosopis juliflora* of wide range; Polygonaceae-Eriogoneae with eleven genera characteristic of southern California and adjacent arid regions (except some *Eriogonum*) and the peculiar subgenus *Chorizanthopsis* of *Chorizanthe*, endemic in Chili, and three species common to both zones, namely; *Oxytheca dendroidea, Chorizanthe commissuralis* and *Lastarriaca chilensis*, all originally from the Californian region; Frankeniaceae with the very distinct *Frankenia Jamesii* of the west Texas region, *F. Palmeri* of the southern California region, *F. triandra* of the Puna region six nearly allied Chilian species, one of which is in California and Arizona, and *Niederleinia juniperoides* of the Argentine salt steppes, more nearly related to the lower Sonoran than to the Chilian species. The largest genus of Loasaceae furnishes many desert species for the Atacama and Argentine deserts, and while developed mostly in these regions and in the Andes, some species push north
into Mexico (Saccatae, 13 species, including Loasa triphylla, Peru to Mexico). Mentzelia is the genus, however, most conspicuous because of its distribution in the two zones under discussion, although quite abundantly distributed elsewhere, and particularly along the intervening Andes). These, apparently, constitute remnants of a previously widespread development. Perhaps no plant is more prominent as an indicator of extreme desert areas than Larrea mexicana

Fig. 22. Lewisia rediviva Pursh, the bitter-root, spatillum; an acaulescent, fleshy perennial with large rose-colored flowers, native of the mountains of California and extremely tenacious of life. Root used by Indians as food. After Die natürlichen Pflanzenfamilien III 1 b, p. 60.

which is abundant and widespread. This genus is represented at the Rio Colorado by three species which are sharply distinct from each other and from Larrea mexicana. The intervening territory between Mexico and South America is without a representative of this genus.

The critic work done by Professor Engler\(^1\) on the family Zygophyllaceae makes it of special value for our purpose. With few exceptions the Zygophyl-

lanceae in the western hemisphere are limited to the lower Sonoran climatic zone in North America and its corresponding zone in Chili and Argentine. The following is a tabular statement.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Larrea mexicana Morie.</td>
<td></td>
<td>Larrea diversicata Cav., cuneifolia nitida Cav.</td>
</tr>
<tr>
<td>Tribulus terrestris L.</td>
<td>Tribulus terrestris L.</td>
<td>Tribulus terrestris L.</td>
</tr>
<tr>
<td>Tribulus (Kallstroemia) maximus S. Texas, N. Mex.</td>
<td>Tr. (Kallstroemia) grandiflorus B. & H. Texas to California.</td>
<td>Tribulus (Kallstroemia) maximus L.</td>
</tr>
<tr>
<td>Viscainoa gemmillata Lower California.</td>
<td>Chitonia mexicana Moc. & Sesse.</td>
<td></td>
</tr>
</tbody>
</table>

The semi-tropic xerophilous forms of Gulf distribution occupy the Rio Grande plain in Texas and Mexico below Eagle Pass. Such species also occur in areas of Colombia, Venezuela, Guiana, Brazil, Uruguay, Paraguay and Argentine and in similar areas of the Antilles. Some are undoubtedly sea-coast species. According to Bray the following plants are illustrations.

Sida leprosa. Uruguay, Patagonia, Argentine, Cuba, north to Washington City.
Sida hastata A. St. Hil. Argentine, Uruguay, Mexico, Texas, Arizona.
Sida anomalå A. St. Hil. Mattogrosso, Uruguay, Argentine, Bolivia, Cuba, Florida, Texas, Mexico.
Fugosia (Cienfugosia) sulphurea Garcke. Southwest Texas, Mexico, South Brazil, Paraguay. Spergularia platensis Fenzl. Texas to California, South Brazil.
Polygala paludosa A. St. Hil. Brazil, Paraguay, Louisiana and Texas.

It is appropriate to conclude these comparisons with the floras of extra-American regions with an expositions of the extensions southward through the Andes and the antarctic islands to Australia and New Zealand. The examples are not numerous, but they are unmistakable.
Mexican Genera and Species of otherwise mainly Andine, Antarctic and Australian Distribution.

Genera and Species.

Drimys.

Colobanthus.

Colobanthus quitensis Bartl.
Claytonia.
Calandrinia.
Malvastrum spicatum A. Gray.

Coriaria thymifolia Humb. & Bonpl.
Acaena.
Oenothera.
Fuchsia.

Oreomyrrhis.
 » andicola Endl.
Crantzia.
 » lineata Nutt.
Daucus brachiatus Sieber.
Nertera depressa Banks & Soland.

Flaveria.
Erechthites.
Microseris.

Pernettya.
Lucuma.
Breweria.
Nicotiana.
Calceolaria.

Muelhelenbeckia.
Mollinedia.
Roupala.
Orthrosanthus.
Uncinia.

Distichlis.

Distribution.
Andes to Cape Horn, N. Zealand, Australia, northward to Borneo.
Andes, Heard, Kerguelen, and St. Paul Islands, Australasia.
Andes to Cape Horn, N. Zealand.
Andes, Australia.
Southward to Chili and in Australia.
Southward in America and in Australia.
Temperate S. America, N. Zealand.
Andes, Antarctic islands, Australasia.
America and one species in Tasmania.
America and three or four species in New Zealand.
Andes, Australasia.
Andes, Australia, N. Zealand.
America, Australia, N. Zealand.
 » » » »
Andes, Tristan da Cunha, Australasia, Sandwich Islands.
Southward to Chili and in Australia.
America, Australia, N. Zealand.
N. America, Chili, Australia, N. Zealand.
Chili, Tasmania, N. Zealand.
S. America, Australia, N. Caledonia.
America, Australia.
 » » » Polynesia.
Andes to Patagonia and the Falklands and in N. Zealand.
Andes, Australasia, Polynesia.
S. America, Australia.
S. America, N. Caledonia.
Andes, Brazil, Australia.
W. Indies, Andes, Antarctic islands, Australasia and the Sandwich Islands.
Andes, Australia.
The foregoing list shows that there is a connection between the antarctic and andine floras, a connection that is more evident when the comparison is made to include American plants not extending northward to Mexico. The most pregnant fact, according to Hemsley, is that the genera are almost without exception much more strongly developed in America than they are in Australasia and the antarctic islands. But if we take the vegetation generally of the southern coldest zone and regions, the preponderance of what may be called American types, in contradistinction to those which are more fully represented in the Australian region is not so great.

Chapter V. North American Phytogeographic Classifications.

Rehearsing the classifications which have been made of the phytogeographic regions of North America, one of the first most consistent attempts is presented in Meyen’s Grundriss der Pflanzengeographie (1836),1 translated by Margaret Johnston into English and published by the Ray Society in 1846. Meyen divides the horizontal range of vegetation into zones and the phytogeographic regions are consciously included in these world encircling zones, viz., equatorial zone; tropic zone; sub-tropic zone; warmer temperate zone; colder temperate zone; sub-arctic zone; arctic zone, and polar zone. The vegetation of North America is referred in the most general way to these several zones, which are more or less determined by the temperature of the air and not by the phytogeographic character of the country. His division based on the vertical range of vegetation need hardly be referred to here.

Under the notion of separate centers of development, the most important classification of the land areas of the globe into vegetation regions is that of Grisebach. By this writer twenty-four regions are recognized, the following only concerning this discussion, viz.,

I. Arctic Region.
XII. Forest Region of the Western Continent.
XIII. Prairie Region.
XIV. Californian Coast Region.
XV. Mexican Region.
XVI. West Indian Region.
XVII. Cisequatorial South American Region.

Engler2 divides the surface of the globe into four principal realms (Floren-reiche), each of these into regions and each region into provinces, according to his theories of general development and migration. The regions of the continent of North America come under two realms. The regions and provinces where published by this well known author in a new form in 1902 (see p. 344).

1 Confer the Bibliography p. 46—51.
Drude 4) gives the following useful summary of the vegetation-regions of North America transcribed in the original German.

2. Die Kanadische Waldregion.
3. Waldregion des nordamerikanischen Seengebietes.
5. Die Wald- und Hochgebirgsregion der nördlichen Rocky Mountains.
7. Die Missouri-Prairieregion.
8. Steppen- und Salzwüstenregion der Rocky Mountains.
10. Sommergrüne Laubwaldregion des Mississippibeckens.
11. Die immergrüne Vegetationsregion der südatlantischen Staaten.
15. Mexicanische Übergangsregion zu Californien und Texas.
16. Mexicanische subtropische Bergwaldregion (Tierra templada).
17. Mexicanische Hochgebirgsregion (Tierra fria).
18. Mexicanische subtropische Steppenregion.
 a) Die dürre Croton- und Cacteenregion.
 b) Die antillanische Tropenregion.
 c) Die antillanische Bergwaldregion.
 d) Die antillanische Hochgebirgsregion.

Merriam 1898 states that the northward distribution of terrestrial animals and plants is governed by the sum of the positive temperature for the entire season of growth and reproduction, and that the southward distribution is governed by the mean temperature of a brief period during the hottest part of the year. Applying these principles, Merriam divides North America into three primary transcontinental regions (better to be named «zones»), viz., the Boreal, the Austral and the Tropical.

The distinctive temperature of the three boreal zones (Arctic, Hudsonian and Canadian) are not positively known, but the southern limit of the boreal, as a whole, is marked by the isotherm of 18° C. (64.4° F.) for the six hottest consecutive weeks of the summer. It seems probable that the limiting temperature of the southern boundaries of the Hudsonian and Arctic zones are respectively 14° C. (57.2° F.) and 10° C. (50° F.) for the same period. Transition zone species require a total quantity of heat of at least 5,500° C. (10,000° F.), but cannot endure a summer temperature the mean of which for the six hottest consecutive weeks exceeds 22° C. (71.6° F.). The northern boundary of the transition zone is marked by the isotherm showing a sum of normal positive temperatures of 5,500° C. (10,000° F.), while its southern boundary is coincident with the isotherm of 22° C. (71.6° F.) for the six hottest consecutive weeks. The transition zone comprises according to Merriam three principal subdivisions; an eastern, or Alleghanian humid area; a western arid area, and a Pacific coast humid area.

The Upper Austral species require a total quantity of heat of at least 6,400° C. (11,500° F.), but apparently cannot endure a summer temperature the mean of which for the six hottest consecutive weeks exceeds 26° C. (78.8° F.). The northern boundary of the Upper Austral zone, therefore, is marked by the isotherm showing a sum of normal positive temperatures of 6,400° C. (11,500° F.), while its southern boundary agrees very closely with the isotherm of 26° C. (78.8° F.) for the six hottest consecutive weeks.

Merriam recognizes two principal subdivisions of this zone, viz., an eastern or Carolinian area and a western or upper Sonoran area. The lower austral species require a total quantity of heat of at least 10,000° C. (18,000° F.). The northern boundary of this zone, therefore, is marked by the isotherm showing a sum of normal positive temperature of 10,000° C. (18,000° F.). This zone comprises an eastern or Austroriparian area and a western or lower Sonoran area.

Tropical species require a total quantity of heat of at least 14,400° C. (26,000° F.), and, since the tropic life region is a broad equatorial belt, it is probable that both its northern and southern boundaries are marked by the isotherm showing a sum of normal positive temperatures of 14,400° C. (26,000° F.).

Clements proposes a classification of the phytogeographic divisions of North America and emphasizes the importance of using the Latin equivalents (f. ex. zona polari-nivalis, provincia alaskana, prov. cordillerana etc.) in order to avoid mistakes and to preserve a uniformity of treatment in phytogeographic treatises. The following tabulation, omitting the latin names, represents his views on the subject.

Polar-nival Zone.
Arctic-alpine Zone. Arctic Prov., Alpine Province.
Boreal-subalpine Zone.
Alaska Prov., Mountain Prov., Ontario Province.
Temperate Zone.
Atlantic Prov., Appalachian Prov., Nebraskan Province.
Prairie Region, with Elkhorn, Platte, Nemahadistrict.
Sandhill Region, with Niobrara, Loup, Republicandistrict.
Utah Province, with Nevada and Mohave Region.
Litoral Province, with Columbia and California Region.
Pacific Province.
Subtropical Zone.
Florida Prov., Mexico Province.
Tropical Zone.
Antilles Prov., Andean Province.

The most complete and satisfactory classification of the phyto-geographic regions of North America is one published by Engler in 1902 in a brochure which while primarily intended as a guide to the American plants in the new royal botanic garden at Dahlem-Steglitz near Berlin, is much more, because it gives an account of the characteristic plants and peculiar vegetation of the regions given below in the classification printed in the original.

2) Clements, Frederic E.: A system of Nomenclature for Phytogeography 1902. (Bibl., p. 46.)
3) See Bibliography, p. 47.
Engler's Classification.

I. Arktisches Amerika.

II. Subarktisches Nordamerika.

III. Gebiet des Atlantischen Nordamerika.
 1. Seenprovinz: A) Zone der Pinus strobus, B) Östliche Übergangszone der sommergrünen Laubwälder.

IV. Gebiet des pazifischen Nordamerika.
 B) Südliche Zone, Bezirk des Kalifornischen Küstenwaldes und Bezirk des westlichen Nevada- und der Sierra Nevada.
 2. Provinz der Rocky Mountains: A) Nördliche Zone, B) Südliche Zone, mit Übergang zur Chaparal- und Sonora-Provinz.

The classification of the phyto-geographic zones, zone-sections and regions of North America by the writer is presented in the colored map. The plants which are peculiar to the different divisions, and which enable the botanist to distinguish the different phyto-geographic districts will be given in the Part IV. of this book. The classification presented herewith represents the writer believes the present state of our knowledge concerning the geographic distribution of American plants. In it is incorporated, all that is good in the classifications which have preceded without sacrificing originality. The endeavor has been to observe the law of priority by using the oldest name, except when the region to which the name has been applied, has not been found identical in the new and the old classifications. The author has felt himself free to apply a new name, when such a difference of territorial location has been discovered to exist. — In the construction of the map which accompanies this work, the excellent map of Merriam was first sketched in color upon the outline mother map of North America. The distribution of the principal forest trees was then depicted by a variety of character lines upon the colored face of the chart.

After a study of the general character of the North American flora, such well known botanic regions, as the prairie region, the tundra region, the region of the great interior basin, the Rocky Mountain region, etc. were outlined upon the map, particular attention being paid to the physiographic divisions, etc.
of the American continent as these influenced the distribution of plants. This gave a skeleton map on which to base subsequent research, which led to the completion of the map, as it finally appears. With the completion of the map in the rough, the unnecessary scaffolding, so to speak in the form of colored areas, lines and hachures were erased, leaving the finished chart, as a result of all the study that was put upon the distribution of North American plants in particular. The phytogeographic map of Mexico was submitted to Dr. J. N. Rose of the U. S. National Museum and Mr. Cyrus G. Pringle of the University of Vermont, whose invaluable criticisms were used in mapping the distribution of Mexican plants. The boundaries of the phytogeographic zones, zone-sections and regions will be given in connection with a description of each area, and the reasons for the delimitation of these districts have been given in a foregoing chapter III, p. 303—311.
Part IV.

North American Phytogeographic Regions, Formations, Associations.

Having presented in the foregoing part of this work a statement as to the affinities and probable origin, past and present distribution of North American plants, it is now the place to give a short account of the different phytogeographic zones, regions, formations and associations. The consideration of the formations and associations of plant species will be made from two viewpoints: the ecologic and the phytogeographic. Beginning with the Arctic Zone, the attempt will be made in what follows to give a succinct account of the vegetation of North America, not exclusively from the floristic standpoint, but also from the ecologic, as well. The endeavor will be to give a botanic description which will convey some adequate impressions of the appearance and constitution of the flora, as it forms one of the component parts of the landscape, setting off in artistic splendor our lakes, mountains, rivers, plains, deserts, hills and valleys. Necessarily, the description of the botanic regions must be short and very concise, because of the strictures imposed upon the writer by the lack of space*) to present adequately such an important subject.

Chapter I. Arctic and Sub-Arctic Zones.

1. Arctic Regions of Labrador, northern Mackenzie and the Arctic Shore.

The flora of Arctic America may be divided into three districts: 1. that of Greenland, which is almost exclusively Lapponian, having an extremely slight admixture of American, or Asiatic types, 2. that of east America from the Mackenzie River to Baffin Bay, which shows a gradual transition to the 3. west American district, west of the Mackenzie basin. These latter districts will be considered alone in this work, because the transition in vegetation from the Greenland district to that of east America is comparatively very abrupt. Tundra conditions prevail over the greater part of this vast territory, where the ground remains perpetually frozen to an unknown depth, thawing out for only a foot or so on the surface during the summer. A large number of plants grow in the thin coat of soil resting upon perpetual frost. Wild bees able to pollinate the flowers abound and mosquitoes swarm by the millions.

*) Bemerkung der Herausgeber: Zwingende Rücksichten ließen es notwendig erscheinen, daß die von Prof. Dr. Harshberger für Part IV eingesendeten Nachträge, besonders die ausführlichen Pflanzenlisten, in diesem "Survey" nur sehr verkürzt abgedruckt wurden.
The tundra in summer is always wet and boggy, as the frost prevents underground drainage. Its vastness, uniformity and solitude is impressive.

The Eastern arctic American flora differs from that of the western part of the continent in possessing more east American species. The western boundary is an artificial one, while the eastern, as previously mentioned, is a very natural one separated from Greenland by deep water. That portion of the region richest in plants is located between the Coppermine and Mackenzie rivers. Melville Island has a comparatively luxuriant flora, while the flora of the Boothian Peninsula, surrounded as it is with glacial straits and situated in the midst of arctic islands, is perhaps the poorest. The flora of Banks Land to the northwest in considerably richer, as are those of the shores of Lancaster Sound, Barrow Strait and the shores of Baffin Bay to the north and east. *Deschlasia arctica* and *Pleuropogon Sabini* are the only plants absolutely peculiar to arctic east America, while *Parrya arenicola, Festuca Richardsonii* are confined to arctic America (west and east). The following 35 plants are found on the arctic islands, and many of them on the west coast of Baffin Bay, but not in west Greenland 1).

1. Astragalus alpinus L.
2. Oxytropis (Aragallus) campestris
3. » uralensis DC. [DC.
4. » nigrescens Fisch.
5. Sieversia Rossi R. Br.
6. Arenaria (Merxia) physodes Fisch.
7. Stellaria crassifolia Ehrh.
9. Caltha palustris L.
10. Saxifraga hieracifolia Waldst. & Kit.
11. » virginiana Michx.
12. Androsace septentrionalis L.
13. » Chamaejasme Host.
14. Pedicularis capitata Adams: only W.-Greenl. 76—83° n. L.
15. » versicolor Wahl.
16. Phlox sibirica L.
17. Kalmia glauca Ait.
18. Achillea ptarmica L.
19. Artemisia vulgaris L.
21. Chrysanthemum arcticum L.
23. Saussurea alpina DC.
25. » palustris Hook.
26. » pulchellus DC.
27. Solidago Virga-aurea L.
29. Valeriana capitata Pall.
30. Salix phlebophylla Ander.
31. Deschampsia caespitosa Beauv.
32. Elymus mollis Trin.
33. Glyceria fluitans R. Br.
34. Hierochloë (Savastana) pauciflora R. Brown.
35. Pleuropogon Sabini R. Br.: only W.-Greenl. 76—78° n. L.

The Western section of arctic America differs from that to the eastward by its far greater number both of European and Asiatic species. The

1) Hooker, Jos. D.: Outlines of the Distribution of arctic Plants. Transactions of the Linnean Society of London XXIII: 269 (1862), gave a list of 38 plants, of which *Andromeda polifolia, Arctostaphylos alpina* and *Castilleja pallida* are now detected in western Greenland, also No. 14 and 35 of our emended list (in the arrangement of Warming, Tabellarisk Oversigt over Grönlands Flora 1887), which occur only in the forest north of western Greenland. (Drd.)
species peculiar to this territory are *Braya pilosa*, *Boykinia (Therafon) Richardsonii*, *Artemisia androsacea (= A. senjavinensis)*, *Saussurea alpina (= S. subsinuata)*, *Salix glacialis*, while many north temperate plants reach here the arctic region which are excluded from eastern arctic America by the rigors of the climate.

a) Tundra Formation.

The tundra region of Alaska is low and gently undulating (see plate VII). Its flora is quite varied. Besides the numerous mosses and heathers and many small berry-bearing plants are dwarf willows, birches and alders. The alders attain the greatest size but grow in isolated clumps, often 6 to 8 feet high. The ground is frozen a few inches below the surface and the heavy, sponge-like covering of vegetation is constantly saturated. Upon such soil grow *Cassiope tetragona*, *Andromeda polifolia*, *Vaccinium vitis-idaea*, *Arctons (Mai-rania) alpina*, *Ledum palustre*, *Artemisia arctica*, *Rubus chamaemorus*, *Rubus arcticus*, *Betula nana*, *Alnus sinuata*, *Loiseleuria (Chamaecristis) procumbens* and *Nardosmia (Petasites) frigida*1: Eastward in the Barren Grounds of the Mackenzie basin occur *Cassiope tetragona*, *Ledum palustre*, *Rhododendron lapponicum*, *Arctostaphylos nva-ursi*, *Dryas integrifolia* and several dwarf willows. The crowberry *Empetrum nigrum*, occurs in the greatest abundance along the northern border of the more or less stunted timber at tree limit.

Occasional high bluffs on the coast in exposed situations are bleak and bare, but besides these there is scarcely an area not covered by low, matted vegetation. Numerous small ponds are irregularly distributed over the Alaskan tundra and around them the vegetation is ranker than elsewhere. It appears that a favorable combination of soil, shelter from winds, and full exposure to the sun have more to do with the development of flowering plants in polar regions than parallel of latitude. For in polar regions the sunlight is less intense, as well as more constant, lasting as it does for half of the year, but it is also more diffuse, the solar rays being forced to pierce a much thicker atmospheric stratum. The stems of such plants as grow under these conditions are more highly developed than in alpine regions, floral colors are paler, the foliage is less rigid and thick, and the blossoms are smaller. These points are of physiognomic importance in recording the ecologic character of the vegetation of the American north polar region. Dwarf growth, general xerophily and the predominance of mosses and lichens are noteworthy features of the tundra. The type of vegetation determines the peculiarity of the tundra. Thus we have, as characteristic plant associations, a moss a *Polytrichum tundra*, a *Lichen tundra*, and the facies is conditioned by the climatic conditions which control, whether we have a *Cladonia tundra* (*Cladonia rangiferina*, *Sphaerophorum coralloides*), a *Platysma tundra* (*Platysma cucullatwn*, *Cetraria islandica* etc.) or an *Alectorria heathery*. Where the climatic

Arctic Tundra

near the Arctic Ocean in the valley of the Colville River, northern Alaska 70° N. Lat. 151° W. Long., at an altitude of 100 feet (30 m).

Photograph reproduced by permission United States Geological Survey.
conditions are unusually severe the vegetation forms a scant covering to the stony earth the so-called Rock tundra. Level depressions in the tundra which collect the melted snow water are swampy places like moors where a scanty turf consists of sphagnum with small phanerogamic species Empetrum nigrum, Ledum groenlandicum (≡ L. latifolium), Betula glandulosa, B. nana, Menyanthes trifoliata, while on gravelly ridges in the Hudson Bay region grow Salix anglorum, S. phylicifolia, none of them exceeding a few inches in height.

b) Marine Algal Formation.

A thorough study of the distribution of the marine Algae of the Arctic Sea has led Kjellman to the position that the marine vegetation of Baffin Bay to which the flora of the Canadian Arctic Sea seems to approach nearly is extremely isolated. It possesses a considerable number of elements wanting in the rest of the arctic flora; its characteristic species are partly different and one of them belongs to a generic type that is not represented at all in the floras of the other arctic marine phytogeographic provinces. The character of the marine vegetation in the American province is chiefly marked by Fucus vesiculosus, Agarum Turneri, Laminaria longicurris, L. atrofulva, L. cuneifolia, Alaria.

Within the American province according to Kjellman the following species may be regarded as the most abundant ones:

Lithothamnion glaciale Kjellm.
 » polymorphum L.
Polysiphonia urceolata Lightf.
Rhodophyllis dichotoma Lepech.
Rhodomenia pertusa Post et Rupr.
 » palmata L.
Ptolota pectinata Gunn.
 » plumosa L.
Diploderma miniatum Ag.
Fucus vesiculosus L.
 » filiformis Gmel.
Agarum Turneri Post et Rupr.
Laminaria longicurris De la Pyl.
 » atrofulva J. G. Ag.
 » cuneifolia J. G. Ag.

Chorda filum L.
Desmarestia aculeata L.
Dichloria viridis Mull.
Dictyosiphon foeniculaceus Huds.
Enteromorpha compressa L.
Monostroma fuscum Post et Rupr.
 » Blyttii Aresch.
Diplonema percursum Ag.
Spongomorpha arcta Dillw.
Cladophora rupestris L.
Rhizochlonium pachydermum Kjellm.
Chaetomorpha Wormskoiidii Fl. Dan.
 » melagonium Web et Urospora penicilliformis Roth. [Mohr.
Rivularia hemisphaerica L.

c) Formations of the Pribilof islands.

The Pribilof group of Islands (St. Paul, St. George and two islets) is about 350 kilometers (220 miles) north of the Aleutian chain and is of volcanic origin. The highest land is on St. George where a precipitous cliff fronting the sea

and a hill in the interior exceed 275 meters (900 feet). The highest land in St. Paul is 183 meters (600 feet). In summer the islands are almost constantly enveloped in fog.

Dune formation. The sandy shores and dunes of these islands show a sparse vegetation. Cochlearia officinalis, Alsine (Arenaria, Ammodenia) peploides and Elymus mollis are the characteristic plants. Lathyrus maritimus and Mertensia maritima also occur. There is not a tree or bush on either island, but a dwarf willow creeping prostrate on the ground for a length of eight or ten feet called talneck by the natives is the largest woody species, hardly growing three inches in the moss-bed in which it is found. Two other species of willow occur: Salix polaris and arctica. Many of the side hills and flats are buried waist deep in a dense growth of Elymus mollis, Heracleum lanatum. Growing on the cliffs are Draba hirta, D. (Nesodraba) grandis, Arabis petraea (= ambigua), Sagina Limnaei (= S. saginoides), Saxifraga bracteata, S. davurica and serpyllifolia with Chrysosplenium Beringianum and Gentiana glauca, Lychinis apetala in the higher parts.

Lake Formation. The ponds and lakes are surrounded by mud flats on which a number of species not found elsewhere grow, viz., Chrysanthemum arcticum, Stellaria (Alsine) humifusa, Potentilla anserina, Montia fontana, Ranunculus reptans, R. hyperboreus.

Bog Formation. The number of plants confined to bogs and old marshes is small. On the bogs are found Rubus chamaemorus, Saxifraga hirculus, Pedicularis sudetica, while on one bank of a little pond in St Paul Island were found Coptis trifolia, Geranium cianthum, Arnica unalaschensis, Veronica Stelleri, Petasites frigida. The moss and heather bogs according to MerrIAM \(^1\) are blue from the abundance of Campanula lasiocarpa associated with C. pilosa (an inconspicuous species), Geum (Sieversia) Rossii with yellow flowers, Viola Langsdorffii, Gentiana frigida with white and blue flowers, Claytonia arctica, Cornus unalaskensis and Trientalis arctica.\(^2\) Level areas of considerable extent with soil saturated with water are covered with mosses, Hypnum, Ra-comitrium, little Sphagnum.

Elevated Insular Formation. The commonest plants on the wind blown and elevated parts of the islands are Erirrichium Chamissonis, Silene acaulis, Arenaria macrocarpa, Extrema Edwardisi, Papaver radicatum (= P. nudicaule), Potentilla villosa, Artemisia globularia, Pedicularis Langsdorffii and lanata. The raspberries are represented by two dwarf species Rubus stellatus and R. chamaemorus, while Empetrum as a heather plant abounds on both islands.

Upland Meadow Formation. The vegetation of grassy banks and upland meadows generally near the sea consists of Ranunculus nivalis (= R. altaicus),

1) Plants of the Pribilof Islands. 1892.

2) JORDAN, DAVID STARR: The fur seals and fur-seal Islands of the north Pacific Ocean. 1899. Part III plants by James Macoun, p. 559—587.

R. Eschscholtzii, Valeriana capitata, Taraxacum lividum, Pedicularis verticillata. Damp sheltered places among the rocks in the interior of St. Paul Island show a growth of Claytonia sartentosa, Viola Langsdorffii, Gentiana frigida. Ferns are scarce, but species of Equisetum (3), Botrychium (1), Phegopteris (1), Aspidium (2), Asplenium (1), Cystopteris (1), and Lycopodium (3) occur.

Fungi on the Pribilof islands are abundant and varied, especially in and around the vicinity of the rookeries and killing grounds of the seals.

Marine Algal Formation. The algae of these islands are noteworthy both in extent and luxuriance. After the heavier gales, the beach will be found covered with a vast windrow of kelp and seaweed heaped several feet high with the Phaeophyceae most abundant, as Laminaria longipes, Agarum Turneri, Thalassiyphillum clathrus, Nereocystis Luetkeana, Alaria praelonga and Fucus platycarpus. The Chlorophyceae and the Rhodophyceae comprise many genera, f. e. Lithophyllum, Lithothamnion, Porphyra, Chondrus, Gymnogongrus, Callophyllis, Rhodyphyllis, Ptilota (3 spec.), Odonthalia, Rhodomela, Nitophyllum and Delessaria, Constantinea rosa marina.

2. Sub-Arctic Forest Region of North Canada and Alaska.

The subarctic zone is situated south of the arctic tundras and has its northern limit in the line representing the northern extension of tree growth. Its southern boundary is somewhat indefinite, but may be considered in general as corresponding with the southern limit of the great northern coniferous forest which stretches across the continent, reaching the Pacific Ocean in southwestern Alaska. For convenience and because the division is a natural one, four districts are recognizable, viz., the Labrador, Hudson Bay, Mackenzie and Alaskan districts. These territories are denominated phytogeographically speaking districts, because the flora is hardly sufficiently distinct in each to merit the use of the proper term region which should be used to distinguish areas of the earth's surface sharply demarcated botanically speaking.

A. Labrador District.

Trees and shrubs. The southern half of the Labrador District is included in the subarctic forest belt and four coniferous trees may be classed, as forming the Sub-Arctic Coniferous Formation: Pinus Banksiana (= P. divaricata), Picca alba (= P. canadensis), Picca nigra (= P. mariana), Larix americana (= L. laricina). With these species are associated Betula papyrifera, Populus tremuloides, P. balsamifera and in less abundance and of more circumscribed range Abies balsamea and on the southeastern margin Thuja occidentalis. 1) 2) The distribution of the forest and the range of its trees depends

on the latitude or height above sea-level, distance from sea-coast and the character of the soil. The forest is continuous in the southern part of Labrador, the only exceptions being the summits of rocky hills and the outer islands of the Atlantic coast. North of latitude 53°, the higher hills are treeless and the size and number of the barren areas (Barren Formation) increase rapidly, until in latitude 55°, the trees are confined to the margins of small lakes and in the valleys of the rivers. Leaf River, which empties into Ungava Bay, is the northern limit of forest trees on the west side of the Bay, and a line from that river to the mouth of Nastapoka River would represent a close approximation to the northern limit of trees in western Labrador. The barren grounds on the east coast at Davis Inlet (56°) are confined to the headlands and islands which remain treeless to the south of Hamilton Inlet, while about the heads of the larger bays and on the lowlands of the small river valleys, the country is well timbered. Pinus Banksiana prefers the dry sandy drift ridges and rocky hills, where it is often found along with the black spruce Picea nigra. It occurs abundantly inland and reaches its northern limit on the south branch of the great Whale River. Longitude 71° W. seems to mark its eastern limit. The distribution of Picea alba depends on the soil, occupying the areas of re-arranged drift of the river-valleys and marine deposits along the coast, or to the heavier drift of the interior, but as an element of the forest except in the Hamilton River valley, it is never important.

Picea nigra on the other hand is the most abundant tree of Labrador and constitutes over ninety per cent of the forest (Picea nigra-Facies). It grows freely on the sandy soil which covers the great Archaean areas, and thrives as well on the dry hills, as in the wet swampy ground between the ridges. The growth is thick everywhere on the southern watershed, while at its northern limit, which is the limit of tree growth, it develops large branches and with the larch is the last tree encountered before entering the barren grounds or tundra. Abies balsamea is found nearly to the edge of the tundra and throughout the forest it grows more or less plentifully about the margins of the larger lakes and banks of the rivers (Abies balsamea-Facies), preferring moist alluvial soil, while the larch Larix americana everywhere in Labrador is found growing in the cold swamps (Larix americana-Facies). It continues as a tree to the northern margin of the forest, where Picea nigra becomes a shrub.

The range of Populus tremuloides depends to a great extent on the nature of the soil and in the western half of the peninsula the tree is most abundant where it grows on the unmodified glacial till of the drift ridges. Cape Jones on the Hudson Bay coast is the northern limit of the aspen, while inland it is found at latitude 54°. The balsam poplar, P. balsamifera, extends farther south than the aspen and it confines itself to the heavy clay soil of the river-valleys, or to the modified drift of the Cambrian areas. Betula papyrifera is found everywhere throughout the southern portion of the peninsula, while Thuja occidentalis hardly enters the peninsula about the foot of James Bay and Mistassini Lake.
Throughout the forest, the lowlands fringing the streams are covered with thickets of Salix (Salix-Facies): S. adenophylla, balsamifera, chlorophylla, Ribes prostratum and Alnus. The areas covered by these shrubs increase toward the tundra and they not only margin the rivers and shores of the lakes but with dwarf birches occupy much of the open glades, and on the sides of the hills above tree line the willow and birches form low thickets exceedingly difficult to penetrate.

The undergrowth of the forest consists of Ledum latifolium and Kalmia glauca which grow in tangled masses two to four feet high, while Prunus pennsylvanica occurs but more frequently in the burned areas whither its drupes are carried by birds. Rubus chamaemorus occurs in swamps everywhere and beyond tree limit. Rubus arcticus grows in the opens along the banks of northern streams and is especially abundant on the islands along the east coast of Hudson Bay. Rubus trilobus (= R. americanus) occurs along the banks of streams and on the edge of woods northward from the St. Lawrence. Rubus strigosus, Fragaria virginiana, Amelanchier canadensis occur in Labrador, the latter in glades occupying swampy ground. Several species of Vaccinium are found abundantly throughout the peninsula viz., V. pennsylvanicum, V. uliginosum growing in open spaces in the north, occurring as a spreading shrub in the barren grounds, V. caespitosum, a more northern species than the last, found on the summits of the higher hills about the headwaters of the Hamilton River. V. Vitis-Idaea grows abundantly in open barren spaces, while south of latitude 51° it occurs on the summits of barren rocky hills, on or barren islands in the larger lakes. Empetrum nigrum is abundant throughout the semi-barren and tundra areas of Labrador, where it grows on the coast and inland. Altogether the number of flowering plants and ferns found in Labrador comprises some 568 species and varieties 1). Chiogonos hispidula, the snowberry, grows in mats on the ground in damp shady woods.

Moor Formation. The moors of Labrador are characterized by Salix myrtilloides, Betula nana, Lonicera coerulea, Lyonia (Cassandra, Chamaedaphne) calyculata, Kalmia glauca and angustifolia, Ledum palustre and farther south in Labrador L. latifolium.

Rhododendron Rhodora (= Rhodora canadensis), Andromeda polifolia, Vaeclinum oxyccoccus and macrocarpum, Arctous (Mairania) alpina and Comandra livida occur as important elements of the moor flora. Rubus arcticus, Cornus suecica and Pyrola rotundifolia inhabit sandy situations transitional to the forest. The sphagnum cushions which form such a prominent feature of the Labrador moors are surrounded by such plants as Empetrum nigrum, Drosera rotundifolia, Potentilla palustris, Parnassia palustris, Saxifraga hirculus, Sagina (Spergula) nodosa, Montia fontana, Pinguicula vulgaris, P. alpina, Barisia alpina, Tofieldia palnstris, Scheuchzeria palustris, Eriophorum alpinum, E. vaginatum, E. capitatum (= E. Scheuchzeri), E. latifolium, E. gracile, Carex echinata, C. magellanica, C. sparsiflora, C. canescens and Equisetum scirpoides 2).

Harshberger, Survey N.-America.
The colors of the vegetation are due to the omnipresent Ledum together with the somewhat less universal Loiseleuria and Bryanthus. In the autumn the red leaves of Arctous are the most attractive of the season's colorings. The bake-apple, Rubus chamaemorus, its single white flowers associated with the rose colored flowers of Rubus arcticus are frequently seen. Cornus canadensis grown in thick groups, and dense tufts of the white flowered Diapensia lapponica and moss pink Silene acaulis are common.

Astragalus alpinus, Oxytropis (Aragallus) podocarpa, O. (Aragallus) campestris var. caerulea, Pinguicula vulgaris, P. villosa, P. alpina and many inconspicuous Cruciferae and Caryophyllaceae complete the list of forms more universally present in the early part of the season. Solidago Virga-aurea, S. macrophylla, Epilobium (several species), Lychnis alpina, Arnica alpina, Campanula rotundifolia, Linnaea borealis are prominent in summer, while Papaver nudicaule is not unfrequent on hill tops.

Sea Cliff Formation. The sea coast of Newfoundland presents an irregular line of cliffs, beaches and headlands on which are Alnus viridis (= A. alnobetula), Viburnum pancyiflorum, Cornus stolonifera, Ribes prostratum, Epilobium nigrum, various species of Rubus and Vaccinium.

Strand Formation. The seashore in Labrador supports Arenaria (Ammodenia) peploides, Mertensia maritima, Potentilla anserina, P. (Sibbaldopsis) tridentata, Archangelica (Angelica) atropurpurea, A. Gmelini, Plantago maritima, while Lathyrus maritimus is abundant. The strand flora of Newfoundland consists of Plantago maritima, Ligusticum scoticum, Arenaria (Ammodenia) peploides, Mertensia maritima, Cakile americana = C. edentula, Salicornia herbacea, Lathyrus maritimus, Atriplex hastata, Ranunculus (Oxygraphis) cymbalaria, Moehringia (Arenaria) lateriflora, Primula mistassiniæ, while the waves roll in tangled masses of Vallisneria spiralis, Fucus vesiculosus, Laminaria.

Coniferous Forest Formation of Newfoundland. Here the trees are chiefly Abies balsamea, Picea nigra, Picea alba, with a moderate mixture of Pinus strobus, Betula papyrifera and Populus tremuloides. The trees are usually stunted on the headlands and points of land jutting into the sea, while the higher ground inland may be covered with bushes of Juniperus communis, Taxus canadensis, Lyonia (Chamaedaphne) calyculata (Juniperus-Taxus Association).

“Juniperus communis, under either its common or alpine form, is found from the bleak rocks of Labrador to the coast of the Pacific. At one time on an exposed shore, at another on a mountain top, beside the cataract, and again on the shore of a lonely lake, it greets the wanderer wherever he may be, and yet it is nowhere abundant”.

Remarkable herbaceous plants of the forest are: Streptopus roseus, Trillium recurvatum, Listera convallarioides, Goodyera (Peranium) pubescens, Smilacina (Vagnera) stellata, Coptis trifolia, Aralia nudicaulis. — Secondary woody species: Prunus pennsylvanica, Nemopanthes canadensis (= fascicularis, Illicioides mucronata), Viburnum lentago, V. acerifolium.

In drier woods Mitchella repens, Epigaea repens occur. The edge of the forest along rocky hills is fringed with Juniperus virginiana var. humilis. Arestostaphylos uva-ursi, Vaccinium uligi-

2) Macoun, Catal. Canadian pl. I, 462. Very remarkable for this single Coniferous plant common with Europe, and of the same distribution as Alnus viridis! (Drude.)
nosum, Loiseleuria procumbens, Potentilla (Sibbaldiopsis) tridentata, cover the open rocky situations, while on the top of rocks (Rock Boulder Plant Association) the liehein Cladonia rangiferina and Cetraria islandica, are abundant; in the fissures of cliffs Dryopteris (Aspidium) fragrans. Occasionally woods of Betula lutea (Betula lutea Facies) are found in Newfoundland, and here the botanist finds Pyrola rotundifolia, Monotropa uniflora, Lycopodium dendroides (= L. obscurum), L. lucidulum, L. clavatum, L. complanatum, and L. alpinum.

Bog Plant Formation. The bogs are open areas, or barrens, and represent converted glacial lakes surrounded by stunted spruce and broken by deep circular ponds of brown water in which grow Menyanthes trifoliata. The sphagnum-bogs surrounding such ponds contain Eriophorum vaginatum, virginicum and latifolium, Arctusa bulbosa, Sarracea purpurea, while on the surface spreads Rubus chamaemorus. Such boggy areas are fringed with Pirus arbutifolia, Myrica gale, Andromeda polifolia, Loniceră caerulea, Empetrum nigrum, and Larix americana.

Marsh Formation. The marshes are characterized by Caltha palustris, Osmunda cinnamomea, Asplenium thelypteroides, Mentha canadensis in tufts beside the pools, while in muddy places which seem iron-stained occurs Drosera rotundifolia.

Vaccinium oxyccceus, Rubus triflorus, Calamia angustifolia and glauca, Ledum latifolium, occur in such marshy places with clumps of Alnus incana, Rhododendron rhodora (= Rhodora canadensis) and on moss covered stumps Chiogenes hispidula. Hillocks outside the swamps support Cornus canadensis. Near such swamps in the drier ground are found Sorbus americana, Alnanchier canadensis, Acer rubrum, Acer spicatum, with tangles of Rubus strigosus, Pteris aquilina. On the sandy shore of brooks grow Salix petiolaris, Sagina procumbens and Senecio vulgaris, while Triodia (Sieglingia) decumbens, Nardus stricta also occur in such situations.¹⁻³

B. Hudson Bay-Keewatin District.

The country between Lake Winnepog and Hudson Bay which forms part of the Hudson Bay District consists largely of swamps, mainly grown up to willows and tamaracks.

Lake Formation. The shallower lakes are characterized by extensive patches of Scirpus lacustris, Myriophyllum, Potamogeton, Calla palustris, Acorus calamus; Nuphar (Nymphaca) advena also occurs. However, there are numerous elevated places, rocky "islands" on which has accumulated a rather thin covering of soil supporting a moderately heavy timber growth of *Picea nigra*, *P. alba*, *Abies balsamea*, *Pinus Banksiana*, *Populus tremuloides* and *balsamifera*, *Betula papyrifera* and *Larix americana*. These species form the bulk of the forest in the district.

River Bank Formation. The river banks are covered with a rank growth of willows and grasses amid which are various orchids, violets and polygonums.

¹) **Bell, John:** in Canadian Naturalist new ser. IV; cfr. Bibliography, p. 51.
²) **Robinson, B. L.** and v. **Schrenk, H.**: Notes upon the Flora of Newfoundland. Canadian Record of Science. VII: 5—31.
Several species of *Equisetum* grow abundantly in the shallow water and often on the banks of streams *Rhamnus alnifolia*, *Lonicera glaucescens*, *Elaeagnus argentea*, *Viburnum pauciflorum*, *Shepherdia* (*Lepargyraca*) canadensis occur. *Pinus Banksiana* and *Betula papyrifera* reach their northern limit near the confluence of Hill and Fox rivers; as also the aspen *Populus tremuloïdes*.

Swamp Formation. Back from the rivers are mossy swamps in which the vegetal growth consists of *Empetrum, Ledum latifolium, Betula glandulosa* and associated species.

C. Mackenzie District.

The southern boundary of the subarctic forest of the Mackenzie District is marked by the northern extension of the prairies. It runs, as follows: From near the junction of the north and south forks of the Saskatchewan River, it passes southeasterly by the sources of the Red Deer and Assiniboine, and over the southwestern slopes of Duck and Riding mountains to the south end of lakes Manitoba and Winnepeg.

Coniferous Forest Formation. The shores of the Athabasca River are covered, according to Edward A. Preble, with a fair growth of black and white spruces (*Picea nigra = mariana* and *P. alba = canadensis*), Banksian pine, balsam (*Abies balsamea*), tamarack (*Larix americana*), balsam poplar (*Populus balsamifera*), aspen (*P. tremuloïdes*) and canoe birch (*Betula papyrifera*). Of these species *Pinus Banksiana* and *Larix americana* are the least abundant, the former growing only on certain elevated points, and the latter being a tree of the sphagnum bogs, rarely appears on the immediate banks of the river.

Various shrubs are found and form an undergrowth in the forest. Such are Juniperus sana, *J. sabina*, various species of willows (*Salix Bebbiana* etc.), *Alnus incana*, *A. viridis (= A. alnobbetula*), *Ribes rubrum*, *K. oxyacanthoides*, *Rosa acicularis*, *Amelanchier alnifolia*, *Shepherdia canadensis*, *Elaeagnus argentea*, *Cornus stolonifera*, *C. canadensis*, *Prunus pennsylvanica*, *Viburnum pauciflorum*, *V. opulus*, *Lonicera glaucescens*, *L. involucrata*, *Symphoricarpus racemosa* and occidentalis.

The country at the outlet of Great Bear Lake is undulating and, except for certain semibarren places near the shores of the lake, is well wooded with *Picea, Larix*, and the usual subarctic vegetation. Much of the ground is covered with lichens of the genus *Gyrophora* and various mosses. On September 16th, Preble noticed that the leaves of the larches and other deciduous trees were falling. Elsewhere along the Mackenzie River, the forests of *Picea nigra* (*mariana*) and *P. alba* (*canadensis*) are filled with an undergrowth consisting of *Rosa acicularis*, *Rubus strigosus*, *Viburnum pauciflorum*, *Vaccinium uliginosum*, *Ribes rubrum* and *prostratum*. As the northern limit of trees is reached,

the specimens of spruce and larch become much dwarfed, twisted and wind swept, but this condition is reached farther south in exposed locations along the shores of the numerous lakes that such plants as *Salix phlebophylla* = *anglorum* cling to the rocks and *Vaccinium uliginosum*, as well, as *Juniperus Sabina* var. *procumbens* assume a typical dwarf habit. The islands in Great Slave Lake are wind swept and their vegetation becomes stunted and dwarf, so as to remind one of that existing at the northern tree limit.

Forests exist, on the mountains which parallel the western bank of the Mackenzie River, where it joins the Nahanni River in latitude 62° 15' N. Here at the apex of the confluence rises a mountain 2,500 feet (760 m). Its northern face is steep and terraced. The slopes are as well wooded as the nature of the soil will allow, the common trees ascending together with *Salix alaxensis* and *phlebophylla* to 2,000 feet, and occurring at their upper limit as depauperate shrubs.

The extreme summit of the Nahanni Mountains is tenanted by *Salix myrtillifolia*, *S. alaxensis*, *Dryas integrifolia*, *D. Drummondii*, *Pedicularis euphrasioides*, *Pinguicula vulgaris*, *Anemone richardsoni*.

Aspen Forest. Lying between the coniferous forest proper and the prairie is a belt of aspen, *Populus tremuloides*, which extends from the international boundary in latitude 49° all around the prairie region in the north. It penetrates the prairie region, and northward it enters the coniferous forest, wherever there is good dry soil, and is the bulk of the forest in the Peace River country and on the plains lying along the Liard and the Mackenzie rivers. It keeps out of the flood plains of the river valleys in its northwestern home and never appears on islands or on alluvium at any time.

The balsam poplar on the other hand makes its home on the river bottoms and islands and is seldom found anywhere else. (*Populus balsamifera-Facies.*) It grows to immense size on the Peace, Athabasca, Liard, Slave and Mackenzie rivers, where it is not uncommon to see trees over six feet in diameter. It is this species and the white spruce that are found as driftwood on the shores of the Arctic Sea, as *Picea alba* and *Populus balsamifera* constitute the trees of the islands and flood plains of the Mackenzie and its tributaries, which are constantly changing and being re-formed by the spring freshets. Spruce grows on the larger islands, especially at the upper end before erosion takes place, crowding out the old poplars, for spruce trees are never found on a new island where poplars abound in all stages from trees four feet in diameter to seedlings growing in the mud recently deposited at the lower end of the islands.

The moist soil and river plants in the mud along the Athabasca River are *Potamogeton pectinatus*, *P. natans*, *P. praelongus*, *P. perfoliatus*, while *Salix longifolia*, *S. nigra*, *S. discolor* form an edging to the stream associated with *Carex utriculata*, *C. aquatilis*, *Scirpus silvicicus*, *Typha latifolia*, *Acornus calamus*, *Caltha natans*, *Petasites* (*Nardosmia*) *sagittata*, *Sparganium simplex* and *eurycaepum*.

Lake Formation. The islands in the northern arm of Great Slave Lake show many lakelets and swamps in which, as well, as about the low shores
of the northern arm of the lake grow Menyanthes trifoliata, Parnassia palustris, Calla palustris, with sedges and grasses. In a small pond on one of the Simpson islands is found a colony of Nymphaea (Castalia) tenuiflora (growing only in a few other stations in North America). The southern shore of Great Bear Lake is characterized by the presence of Salix alaxensis, S. glauca, S. reticulata, Vaccinium uliginosum and Myrica gale.

Bog Formation. The bog plants of this district are the common Rubus chamaemorus, Vaccinium canadense, V. viitis-idaea, Ledum latifolium, Betula pumila, and several species of Salix.

Back of Fort Norman the muskegs are filled by shrubby growth of Lyonia (Chamaedaphne) calyculata, Andromeda polifolia, Ledum latifolium and L. palustre, Vaccinium uliginosum, while in other muskegs of the region occur in addition Salix myrillloides, Rubus chamaemorus, Empetrum nigrum, Kalmia glauca.

Prairie and River Bank Formation. Along the Peace River in the southwest of this district the slopes of the hills are very warm, being inclined toward the sun at a considerable angle and on these the greater number of prairie species by whose presence this district separates itself from those in the east are found, viz., Opuntia missouriensis and others. The common Rocky mountain pine P. Murrayana enters the district from the south where it meets from the east Pinus Banksiana and Larix americana, which forms the so called tamarack swamps.

Shepherdia canadensis occurs on rocky declivities and boulder strewn banks, while Elaeagnus argentea occupies sandy situations. Salix candida, Lactuca pulchella, Henchera hispida inhabit damp stream banks and Geum triflorum with Woodsia ilvensis on rocks.

All the country south of Great Bear Lake almost as far east as the Coppermine River is fairly well wooded and abounds in lakes 1). North of the lakes the tundra prevails.

D. Alaska District.

The only change that takes place in the sub-arctic forest when the northern Rocky Mountains are reached in Alaska, north of 53°, is the substitution of Pinus Murrayana (= P. contorta var. Murrayana) for P. Banksiana and Abies subalpina (= A. lasiocarpa) for A. balsamea which was left far to the east; otherwise the same forest extends from Labrador to the tundra of Alaska and to the Pacific coast in the neighborhood of Cook Inlet. The separation of the coast Pacific flora from that of the interior with which we are here concerned, is in general complete.

Sub-arctic Coniferous Forest Formation. The character of the interior of Alaska is far from well known. We know that Picea alba is here the most important species (Picea alba-Facies) and it attains a considerable size north

of the 56° N.L., forming in the valley of the Yukon forests of no little importance. *Betula papyrifera*, *Populus balsamifera*, *Pinus Murrayana* and *Abies subalpina* occur here (*Betula-Populus-Facies*). The larch *Larix Americana* is known from only one locality in Alaska, Fort Gibbon, mouth of the Tanana River.

In these woods are found *Botrychium virginianum*, *Nephrodium spinulosum* and *dryopteris* (on stony soil), *Polypodium vulgare*, *Pellaea (Cryptogramme)*, *Stelleri, Cryptogramma acrostichoides* (between stones), *Pteridium aquilinum*, *Cystopteris fragilis*, *Streptopus roseus*, *Linnaea borealis*, *Cornus canadensis*, *Arabis holboellii*, *Lathyrus ochroleucus*, *Arctostaphylos uva-ursi* and *Vaccinium vitis-idaea*. From the accounts of explorers the interior appears to be an open plateau devoid of trees with scattered open groves on the lower hill slopes and ridges. Trees usually crowd the banks of rivers and lakes covering many of the river islands with dense thickets.

On the headquarters of the Yukon about Pelly River the mountains, a short distance from the river, are covered with a heavier growth of spruce, while the *Populus balsamifera*, *Alnus incana* and *viridis* with *Salix cordata*, *Viburnum*, *Cornus*, *Ribes*, *Rosa nutkana*, *Spiraea salicifolia* and *Potentilla fruticosa* line the river banks and the birches are scattered. The exposed hillsides are covered with boreal sage brush (*Artemisia frigida*) with here and there a prostrate juniper, or a small clump of spruces, terminating here the *Artemisia frigida-Formation*. The Yukon widens after it receives the waters of the Big and Little Salmon rivers. The rolling hills are sometimes a mile or several miles from the river bank with low willow swamps between.

Alluvial Island Formation. Islands in the river, however, are covered with a luxuriant vegetation. Alders generally form the outer strip; next come the willows; next the poplars, rising somewhat higher; and finally the dark-green spruces which occupy the central area. As undergrowth occur plants of the genera *Cornus*, *Viburnum*, *Rosa*, *Ledum*, *Vaccinium*, *Ribes* and *Shepherdia*. *Pinus Murrayana* occurs though not forming a continuous forest and it disappears entirely beyond Fort Selkirk.

After leaving the junction of the Pelly River the poplars of the forest increase over the spruces not only in number but in size, while the birches hold their own and *Pinus Murrayana* is entirely absent (*Populus-Facies*). Finally *Picea alba* becomes dwarfed and entirely subordinate to the poplars which form a dense forest crown for miles. The spruces occupy the gulches and occur as small clumps elsewhere. The undergrowth remains the same, and deep moss covers the ground and rocks. *Juniperus nana*, *J. sibirica* is found occasionally on hillsides and in more open hilly places the landscape is brightened by *Epilobium (Chamaenerion) angustifolium*. The sandy islands of the lower Yukon River are covered with impenetrable thickets of willow, while the hills are covered with poplars, alders and birches in dense thickets with scattered spruces. A few of the remarkable plants of the Yukon basin i. e. of the Matanniska River and affluents are:

Anemone narcissiflora L. | Aconitum delphinifolium DC.
» parviflora L. | Arabis lyrata L.
Chapter II. North American Temperate Zone: Atlantic Section.

The temperate zone is meant to include that part of the continent which does not have a decidedly rigorous climate, and which does not have a sufficient amount of heat to be considered as of torrid climate. The word is here used in its physical zone sense, because it affords a convenient means of classifying the phytogeographic sections and regions of our country in a broad and general manner. Approximately the temperate zone of North America may be considered to lie between the isothermal lines of 40° and 70° Fahrenheit (4.4°—21.1° C) the latter representing the boundary of the physical torrid zone. Three sections of this zone are recognizable: the Atlantic, the Pacific and the Mexican.

Atlantic Section. The Atlantic Section (or Province) of the North American Temperate Zone comprises in the main the territory of North America which is drained into the Atlantic Ocean. Three subdivisions are to be noted, viz., the coastal, the mountainous and the plain. The treatment of the several phytogeographic regions of the coastal portion of the Atlantic Section will now be considered categorically. It must be understood that the regions, districts, areas, formations form the natural phytogeographic entities, while the classification into zones, sections etc. has been purely arbitrary to assist in demarcating the geographic location of the regions now briefly to be considered.

1. St. Lawrence — Great Lake Region.

As the name indicates this region occupies the valley of the St. Lawrence River and the basin of the Great lakes for some distance on either side of these natural waterways. In the main, the flora is a homogeneous one with the White pine *Pinus strobus*, *P. resinosa*, *Acer saccharum* (= *A. saccharinum*), *Acer pennsylvanicum*, *Sorbus americana*, *Betula lenta* and *B. lutea* as prominent
elements in it. These species range elsewhere but nowhere form such pure
growth as in this region. The comparatively few broad-leaved species is also
a noteworthy characteristic. — Two districts of this region may be distin-
guished: the maritime and the lake districts.

A. Maritime District.

This district comprises practically all of the country south of the subarctic
forest, as far, as Narragansett Bay and northern Connecticut. Its eastern
boundary is the Gulf of St. Lawrence and the Atlantic Ocean, while its western
may be set approximately at Lake Champlain and the Ottawa River. It poss-
esses in its flora such plants as occur on the coast and in Salt marshes, etc.,
which the inland district does not have.

a) New Brunswick Area.

This area territorially covers Nova Scotia, New Brunswick and that portion
of Quebec south of the subarctic forest (see page 351). It comprises the
Laurentian highlands south of 50° N. L. The northern portions of Maine,
New Hampshire and Vermont (including their mountain ranges) are part of
this area, its southern boundary being determined by the southern limit of
Pinus Banksiana (= P. divaricata), Picea alba (= P. canadensis), as well, as
the northern limit of the tulip poplar, Liriodendron tulipifera.

1. The Forest-formations of northeastern Temperate North America.

The original forests of Prince Edward Island conform essentially to
those of Nova Scotia and New Brunswick, as regards species, but their
distribution is different. The trees indigenous to the island are the following:

Acer saccharum Marsh. (= A. sac-
> rubrum L.
> pennsylvanicum L.
Prunus serotina Ehrh.
> pennsylvanica L. f.
Fraxinus nigra Marsh. (= F. sambu-
cifolia Lam.).
> americana L.
Ulmus americana L.
Betula papyrifera Marsh.
> populifolia Marsh. (= B. alba
var. populifolia Spach).
> lutea Michx. f.

Fagus americana Sweet (= F. ferru-
ginea Ait. = F. grandifolia Ehrh.).
Quercus rubra L.
Populus tremuloides Michx.
> balsamifera L.
Pinus strobus L.
> resinosa Ait.
Picea alba Link (= P. canadensis B.S.P.
> nigra Link (= P. mariana B.S.P.).
> rubra Lam. (= P. rubens Sarg.).
Abies balsamea Mill.
Tsuga canadensis Carr.
Larix americana Michx. (= L. laricina
Thuja occidentalis L. [Du Roi].

Sugar maples and beeches, which grow on the ridges and more elevated
parts of the mainland of Nova Scotia and New Brunswick are found throughout
Prince Edward Island on the general level only a few feet above the sea. Finer specimens of *Abies balsamea, Picea alba, P. nigra, P. rubra* are found here rather than on the mainland, while the presence of *Thuja occidentalis* in isolated patches at the north end of the island is remarkable). The forests of Nova Scotia and New Brunswick are identic. A mild sea climate prevails on the side toward the Gulf of St. Lawrence and the hardwood trees are found on a lower level than along the Atlantic coast and Bay of Fundy. With exception of *Quercus macrocarpa, Juglans cinerea, Tilia americana* the following species are found in both territories:

Acer saccharum Marsh.	Ostrya virginiana Koch (= O. virginica Willd.).
- rubrum L.	Populus tremuloides Michx.
- pennsylvanicum L.	- balsamifera L.
Prunus serotina Ehrh.	Salix nigra Marsh.
- pennsylvanica Lf.	Pinus Banksiana Lamb. (= P. divaricata auth.).
Fraxinus nigra Marsh. (= F. sambucifolia Lam.).	- strobus L.
- americana L.	- resinosa Ait.
- pubescens Lam. (= F. pennsylvanica Marsh).	Picea alba Link.
Ulmus americana L.	- nigra Link.
Betula populifolia Marsh.	- rubra Lam.
- papyrifera Marsh.	Abies balsamea Mill.
- lenta L.	Tsuga canadensis Carr.
- nigra L.	Larix americana Michx.
Fagus americana Sweet.	Thuja occidentalis L.

The coast species on the Atlantic and Bay of Fundy side, owing to the influx of cold winds, are chiefly the species of *Abies* and *Picea*, but a few hundred feet above the cold river valleys, we enter a forest composed of maple, beech, ash, birch with scattered spruce and pine (Betula-Fagus Facies), except in the west where tamarack, fir and spruce are the prevailing trees. (Larix-Abies-Picea-Facies). The elm, *Ulmus americana*, is found in the river valleys associated with birch and *Acer rubrum*; *Juglans cinerea, Tilia americana* and *Quercus macrocarpa* are found only in southern New Brunswick in some abundance, *Juglans* forming an open facies with the elm in abundance on the lower St. John.

Deciduous Forest Formation. This forest formation occupies the Maritime District and includes the following facies: Mixed Maple-Birch-Spruce-Fir Facies represents the culminating type of vegetation. This association occupies the areas of optimum drainage and hence of deep loose soils and moderate slopes provided by the glacial soils. The dominant members are *Acer saccharum* and *Betula papyrifera* with several secondary forms, being intermingled

1) **Macoun, John:** The Forests of Canada Proceedings and Transactions Royal Society of Canada XII (1894): 7–8. Sect. IV.
in mutual toleration with *Pinus rubra*, *Abies balsamea* and an occasional white pine *Pinus strobus*. Beneath the canopy of these trees flourishes a subordinate layer of *Acer pensylvanicum*, *Viburnum lantanoides* and on the ground various tall herbs: *Aralia nudicaulis*, *Streptopus roscus*, beneath which are *Oxalis acetosella* and *Clintonia borealis*. — In the beech facies, *Fagus americana* (= *F. ferrugincea*) is the prevailing type. The paper birch *Betula papyrifera* forms an association where it dominates, as on the northern slope of Sagemook Mountain.

Coniferous Forest Formation. The hemlock, *Tsuga canadensis*, in western New Brunswick is perhaps next to the black spruce, the most abundant of the large trees of the district growing on the elevated grounds everywhere as far north as Grand Falls (*Tsuga-Facies*). The habitat of this tree is somewhat peculiarly restricted at least so far as New Brunswick is concerned. Rarely it is found on the southern side of the Baie des Chaleurs, north of Bathurst, or on the Restigouche, or to the north of Grand Falls, St. John, while in the interior of the province, south of a line extending from Bathurst to the mouth of the Tobique, it is one of the commonest and largest trees forming an almost pure forest with an undergrowth along the Saguenay River, as seen by the writer, of *Betula lutea*, *Acer pensylvanicum*, *Taxus canadensis*, *Linnacea borealis*, *Monotropa hypopitys*, *Lycopodium annotinum*, *Circæa alpina*, *Vaccinium myrtilloides*, *V. ovalifolium*, *Calypso borealis* (= *C. Corallorhiza multiflora*), *Goodyera repens* etc.

The white pine association existed in the form of groves, formerly much more abundantly than now, with associated species (*Pinus strobus*-Facies), *Phegopteris* as a characteristic undergrowth with *Athyrium filix-femina*, *Nephrodium dryopteris*, *Lycopodium dendroides*, *L. annotinum*, *Clintonia borealis* in masses. — The forests on Miscou Island consist of the white spruce (*Pinus alba*) *Abies balsamea* with aspen and paper birch, mountain ash and red dogwood. In especially low places there *Iris versicolor*, *Myrica gale* and *Hippuris vulgaris* appear, the white spruce is replaced by the white cedar *Thuja occidentalis*, f. e. in the forests of Miscou Island. The red pine forms associations (*Pinus resinosa*-Facies) at the head of the Nepisiguit lakes; *Pinus Banksiana* exists in well marked associations (*Pinus Banksiana*-Facies) on the level bouldery plateaus along Portage Creek and on the neighboring part of the Nepisiguit.

In open glades, in these woods occur, *Myrica Comptonia* aspelifolia, *Aster macrophyllus*, *Polygala paucifolium*, *Gaultheria procumbens*, *Epigaea repens*, *Pyrola secunda*, *Moneses uniflora*.

The red spruce, *Picea rubra*, is the principal timber tree of New Brunswick. It occurs in groves with characteristic associates, while the black spruce association (*Picea nigra*-Facies) is notable for the fact that it occurs upon

1. Ganong, W. J., in Botan. Gazette XLII: 81–106: The white cedar is also capable of existence upon higher grounds where conditions approach the Xerophytic, and so shows a marked dualism of habit.
flat bogs and in swampy places throughout New Brunswick and also is prevalent in central parts of the province covering loose boulders in markedly xerophytic situations, where it is associated with much hypnum and many heaths. Near mountain tops it forms a dwarf growth (Krummholz, or pucker-bush: Dwarf Tree-Formation). — Abies balsamea forms the dominant and often almost the only tree in places in the interior of New Brunswick notably on Governor’s Plateau where it occurs as an association (Abies balsamea-Facies). Larix americana enters into the tamarack swamp association (Larix-Facies) of general occurrence in the St. Lawrence-great Lake Region.

The forests of the Saguenay River which occupies a gorge with steep\(^1\) and lofty cliffs are somewhat similar to those above described according to my observations. A brief sketch will suffice to give an idea of the flora of this river removed some distance inland from the Atlantic Ocean. The prevalence of coniferous trees is the marked feature of these forests. Larix americana, Abies balsamea, Thuja occidentalis, Picea nigra (= P. mariana) and P. alba (= P. canadensis) occupy boggy ground. The deciduous trees are Betula papyrifera, B. lutea, B. lenta, Ulmus americana, Populus tremuloides, Populus grandidentata, Fraxinus sambucifolia, Acer rubrum, A. saccharum with which are associated Sorbus americana and Sorbus sambucifolia which in rocky places are often reduced to shrubs. The alders Alnus viridis and A. incana are plentiful shrubs the latter forming dense thickets [Alder-Association] by water courses and swamps sharing the ground with Myrica gale, Corylus rostrata, Rhus typhina, Acer spicatum, Pinus Banksiana (= P. divaricata) and Pinus strobus are the only pines found on the Saguenay. Vaccinium pennsylvanicum, V. canadense abound on rocky ridges [Vaccinium-Association] and in pine land, while Vaccinium Vitis-idaea, Empetrarn nigrurn, Shepherdia (Lepargyrea) canadensis, Corydalis glauca, Campanula rotundifolia no less abundant are found on rocks along the St. Lawrence and the Saguenay rivers, which rocks are time stained by Buelleia geographica, Parmelia centrifuga, P. stygia, P. Fahlunensis with Umbilicaria hyperborea etc. Ledaum latifolium (= L. groenlandicum), Kalmia latifolia are not confined to bogs, but occur on sandy soil as well, with Epigaea repens, Chimaphila umbellata, Gaultheria procumbens, Pyrola elliptica, P. secunda, while Cassandra (Chamaedaphne) calyculata frequents the beds of peat.

The coniferous forest formation according to my observations made at Halifax, Nova Scotia consists of Pinus strobus, Picea nigra, Acer rubrum, Abies balsamea, while on the ground I saw Vaccinium vitis idaea, Cornus canadensis, Coptis trifolia, Pteris (Pteridium) aquilina, Clintonia borealis, Gaultheria procumbens, Maianthemum (Unifolium) camadense, Potentilla tridentata, Aralia nudicaulis, Vaccinium pennsylvanicum, Mitchellia repens, Pyrola elliptica, Trientalis americana. Along Minas Basin as at Grand Pré the composition of the forest is Picea nigra, Pinus strobus. Larix americana together with Betula lutea, Acer rubrum, Betula populifolia, while according to my observations Nemopanthes fascicularis, Rosa lucida, Osmunda cinnamomea, Aralia hispida. Pteris (Pteridium, aquilina grow beneath the above mentioned trees.

Mountains and Tableland. An examination of the mountain flora\(^2\) (Sagamook mountain, ca. 700 m = 2,240 feet, one of the highest peaks in New Brunswick) shows three distinct belts of vegetation. The first of these consists of a dense growth of pines, firs and cedars, and extends about a third of the distance up the mountain side (Coniferous Forest-Formation). The second is composed principally of Betula lutea and B. populifolia, with a few cedars and alders reaching to a very considerable elevation Deciduous Forest: Betula-

Association. — The third belt is confined to the summit and a small portion of the slopes being covered with a low dwarf growth of shrubs Ledum latifolium, Cassandra (Chamaedaphne) calyculata, Vaccinium uliginosum. (Alpine Shrub-Formation.)

The great table-land and canyon walls of Mt. Albert in Gaspe: New Brunswick although exposing many square miles of alpine region, have a comparatively sparse flora: but the few species which abound there are of the greatest interest to the botanist, for, with but few exceptions, they are quite unknown upon any other mountains, or cliffs in eastern North America.

The plants which are strictly localized 1), in the rock crevices and on the talus slopes of Mt. Albert make up, so far as yet determined a flora of only 21 species (8.15 per cent of the 258 alpine and subalpine plants), but this flora includes the distinctive Adiantum pedatum var. aleuticum, Cryptogramme densa, Polystichum scopulinum, Deschampsia caespitosa var. alpina, Danthonia intermedia, Festuca altaica, Salix desertorum, S. chlorolepis, Lychnis (Viscaria) alpina, Arenaria ciliata var. humifusa, A. sajonensis, A. arctica, Staticia sibirica, Solidago decumbens, Artemisia borealis, and var. Wormskieldii, Cirsiurn (Carduus) muticum var. monticolum. — The northern crests and slopes of Mt. Albert have in addition to common alpine plants the following noteworthy species: Carex lagopina, Luzula spicata var. tenella, Sagina Linnaei, Spergula saginoides L., Ranunculus pygmaeus and R. Allenii.

2. The Hygro- and Halophytic Formations.

River Bank Formation. The following shrubs are to be found along the shores of the rivers:

Salix humilis, S. rostrata, S. discolor, Sambucus canadensis, Viburnum opulus, V. nudum, Sorbus americana, Corylus rostrata, Diervilla trifida, Prunus virginiana, Myrica gale, Nemopanthes fascicularis, Cephalanthus occidentalis, Ribes prostratum and associated with these is an herbaceous element also occurring on lake shores.

The banks of the Nepisiguit River are characterized by thickets of Viburnum opulus, V. pauciflorum, V. cassinoides, Nemepanthes, clumps of Osmunda regalis and ostrich fern, Onoclea struthiopteris 2). The Sisson Branch of the Tobique River in New Brunswick narrows to a gorge through which the river runs in a series of rapids and cataracts. The gorge consists of perpendicular rocks on which grow Asplenium viride, Arnica mollis, Woodia ilvensis, W. hyperborea (= W. alpina), W. glabellla, Aspidium fragrans, and Erigeron hyssopifolius (= Aster graminifolius).

Stream — (and Lake) — Bank Plant Formation. This occupies the situations between the forest formation and those of the water, where the air conditions are mesophytic, but the roots conditions are hydrophytic. Potentilla anserina, Ranunculus (Oxygraphis) Cymbalaria grow on sandy ground at the mouth of streams. The alder, Alnus incana, is the dominant member of this very characteristic association often forming extensive alder swamps and also sometimes in drier places under xerophytic conditions. A distinct band of vegetation on the shores of the smaller northern lakes along the forest edge consists of Myrica gale and Rhododendron Rhodora (= Rhodora canadensis) and forms the Myrica-Rhodora association.

Lake Formation. The central part of Nova Scotia and other parts of the

maritime provinces of Canada are characterized by beautiful fresh water lakes, large and small. In one, I noted, large associations of *Pontederia cordata* with *Nymphaea* *(Castalia)* *odorata* occupying the spaces between the pickered weed. Other lakes were fringed by a tall species of *Scirpus* and *P. cordata*, while still others were occupied almost exclusively by *N. odorata* or *Nuphar advena*. *Nymphaea Kalniana* and *Brasenia peltata* cover with the foregoing water plants the borders of shallow lakes in New Brunswick.

Four plants new to the flora of New Brunswick were found in the Nepisiguit lakes, viz., *Ranunculus circinatus*, *Myriophyllum alterniflorum*, *Carex utriculata*, var. minor and *Potamogeton heterophyllus*. Numerous *Potamogetons* and the floating heart, *Limnanthemum lacunosum*, grasses, carices and sedges fill the shallower parts of the lakes. Among them several rare forms occur most of which are new to New Brunswick: *Glyceria borealis*, *Scirpus atrocinetus* var. *brachypodus*, *Carex canescentes* var. *vulgaris*, *C. trisperma*, *C. sterilis* var. *excelsior*, *C. interior*, *C. stricta* var. *curtissima*, *C. rostrata* var. *ambigena*, *C. vesicaria* var. *jejuna*.

Dry barrens. The dry barrens, or *Moor-Formation* are characteristically treeless, but are surrounded by pine forests and on such areas grow lichens, mosses and ericaceous bushes, forming a heather. Here grow *Ledum latifolium*, *Vaccinium macrocarpon*, *Andromeda polifolia*, *Kalmia glauca*, *Betula pumila*, *Lonicera oblongifolia* with *Eriophorum vaginatum*, *Carex oligosperma* and Orchids, *Medeola, Linnaea, Mitella nuda*.

The great valley of the St. John River and its tributaries has a flora far more southerly in character than that of northern New Brunswick.

Onoclea struthiopteris, *Aspidium aculeatum* var. *Braonnii*, *Adiantum pedatum*, *Osmunda regalis*, are some of the ferns of this valley, while *Polygonatum biforum*, *Trillium cernuum*, *Caulophyllum thalictroides*, *Thalictrum dioicum*, *Viola Selkirkii*, *Anemone virginiana*, *Vaccinium caespitosum*, *Cypripedium acaule*, *Asarum canadense*, *Sanicula marylandica*, *Sanguinaria canadensis*, although not generally abundant, yet are not infrequently found along the upper St. John River. — Several plants are peculiar to this river: *Oxytropis* *(Aragallus)* *campestris*, *Astragalus alpinus*, *Hedysarum boreale*, *Tananetum huronense*.

The rare plants of the New Brunswick phytogeographic area are *Dryopteris* *(Aspidium)* *fragrans*, *Woodsiä glabella*, *Woodsiä hyperborea*, *Oenothera* *(Onagra)* *Oakesiana*, *Hieracium praetextatum*, *Goodyera pubescens*, *Tananetum huronense*, *Viola primulæfolia*.

The calcareous slates of the mountain gorges are clothed with a luxuriant growth of mosses and ferns constituting a cliff plant formation with the following ferns forming associations: *Polypondium vulgare*, *Asplenium viride*, *Cystopteris bulbifera*, *C. fragilis* and *Asplenium thelypteroides*.

Bog Formation. Wherever, says *Ganong*, shallow impervious basins occur in which non-calcareous water accumulates, there sphagnum and other water mosses tend to grow and, preserved by the antiseptic properties of substances formed by themselves, do not decay but accumulate forming ultimately great bogs upon which woody plants may later grow. There exists graded series of bogs from the typic flat bog on the one hand to the typic raised bog on the other. The bog formation consists of plants capable of existence in stag-

nant, but pure water. The bogs occupy the entire salt marsh country above the heads of the tide on the rivers, and also at places between rivers where drainage is obstructed. It includes three associations. By far the most extensive and characteristic bog association of the marshland is the floating-bog or Carex-Menyanthes-Association. The dominant plants form mats which float upon the surface of the standing water beneath which is the true marsh mud. As a rule the bog is firm enough to walk upon, though it trembles beneath the tread (quaking bog).

The dominant plants are Carex filiformis, Eriophorum vaginatum, Carex stricta var. decora, Carex magellanica, Eriophorum gracile and with these are associated Menyanthes trifoliata, Calla palustris. Upon the floating mat occur large areas of Equisetum limosum, Eleocharis palustris, Juncus canadensis, Sarracenia purpurea, Sparganium simplex, Myrica gale, Typha latifolia.

The basis of the common flat bog which occurs on the margins of lakes is a mixture of mosses of the genera Hyphnum, Dicranum, with some Sphagnum; the latter playing, however, a subordinate part. The bulk consisting of mosses may be exceeded under certain conditions by other vegetation notably sedges, ericaceous shrubs, black spruce and larch. The ground and mosses in this Flat Bog Association are saturated with water, deep brown in color, of rather low temperature, carrying lime salts in solution and much vegetal matter in suspension. Peat is formed by the compaction of the vegetal remains.

Raised bogs on the other hand which form a distinct association are composed of nearly pure Sphagnum with only traces of other mosses, mixed with a few culms of sedges and the slender roots of dwarf woody perennials. Throughout they are saturated with water, which is always cold and clear and free from salts of lime. In them there is no decay but the organic remains form later a spongy peat, never the compact peat of the flat bogs.

The flora of the raised bogs consist of sphagna which are of first importance. The following species of the genus Sphagnum enter into the raised bogs of New Brunswick.

Sphagnum cuspidatum. Edge of bogs.
- medium Limpr. Near edge of bogs.
- fuscom Klinggr. Makes up the bulk of the drier parts of the bog.
- imbricatum Hornsch. On dry parts with preceding.
- tenellum var. rubellum Wils. f. dasyclada W. Occupies the wetter places on the higher part of the bogs.
- tenellum Klinggr. Near edge of bogs.
- recurvum P.B. var. mueronatum Russ. On edge of bogs.
- recurvum var. parviflorum Sendt. On edge of bogs.
- Lindbergii Schpr. Extreme edge of bogs.

 girgensohnii Russ. Extreme edge of bogs.

Several true mosses enter into the composition of the raised bog association: Polytrichum strictum, P. commune, Hyphnum Schreberi, Dicranum sprium. Lichens are well represented on

the surface of the bogs: Cladonia rangiferina, Cladonia uncialis, Cladonia Boryi, Cetraria islandica, while on the stunted trees of the bogs are Alectorion jubata, Parmelia saxatilis, Parmelia physodes, Usnea barbata, Cetraria lacunosa.

Around these bogs is found a dense spruce and larch forest encroaching on the bog where in the raised part they become reduced to a foot or less in height, viz., Larix americana, Picea nigra. The shrubs also grow on the margin, while on the bog they seldom exceed six or seven inches in height; Ledum, Cassandra (Chamaedaphne), Kalmia glauca and angustifolia, Empetrum, Rubus chamaemorus, Vaccinium canadense, V. pennsylvanicum, V. caespitosum, Pyrus (Aronia) arbutifolia. On the higher ground at the extreme edge of bogs are found Rhododendron Rhodora. Herbaceous plants are not numerous. The cotton-grasses Eriophorum vaginatum and alpinum, occur associated with Scirpus caespitosus, Oxyccocus, Sarracenia, Dresera etc.

Wet Marsh Formation. The wet marsh formation consists of plants capable of enduring much but not constant water at the roots, and otherwise able to meet the conditions of the meadow; hence composed of grasses and similar forms. The characteristic association of reclaimed marshes is the Spartina cynosuroides-Association.

It is composed of a single dominant member but several secondary forms, viz., Spartina cynosuroides with Cicuta maculata, Carex maritima, Calamagrostis canadensis, Scirpus atrovirens and of minor importance Triglochin maritimum, Thalietrum polygonum, Epilobium lineare, Lysimachia stricta, Iris versicolor, Campanula aparinoideas and Scutellaria galericulata. The transition area between the former association and the bog is occupied by the Carex-Aspidium- or bog marsh Association. It is found in places with constant hydrostatic water in the soil.

Salt Marsh Formation. The salt marshes of the Bay of Fundy have been studied by _Ganong_ and the following account is an abridged statement of his observations of the distribution of plants there supplemented by those of the writer made in the summer of 1906. The wild salt marsh formation consists of several associations of species. The characteristic association of the immediate edge of the salt water extending typically as a strip just above and below ordinary high-tide mark and distinguished by its bright green color, and the stiff habit and close growth of its plants is the Spartina stricta-Association. The association comprises but a single vegetation form, as follows: Spartina stricta var. glabra (== var. maritima) the most characteristic and extreme salt-enduring plant of the marshes with perennial branching rootstocks running just beneath the surface and sheathed with leaf bases. The characteristic association of the newly formed and forming marsh occurring typically from the lowest high-tide marks to the highest marsh, hence overlapping the areas occupied by other associations, is the Salicornia-Suaeda-Association. In general its members are smaller, more stiffly upright, sparser and redder the greater the salt content of the soil, while in fresher soil the plants are more luxuriant spreading and greener. Two dominant plants1) are met with

in this association Salicornia herbacea and Suaeda (Dondia) linearis, and as secondary form on higher, drier places Spergularia (Buda) borealis (= Tissa canadensis), Atriplex patula var. hastata.

The characteristic association of the higher salt marsh overflowed only by exceptionally high tides, and representing the highest development of salt-marsh vegetation is the Statice-Spartina juncea-Association. The plants are distributed on all the highest parts of the wild salt marsh and occupy the berme-bank built by the sea along the rivers. It is distinguished by its dull green color in various shades and the very dense, almost turf-like growth of its plants. It forms real salt meadow.

The Statice-Spartina-Association is composed of two dominant with several secondary and occasional members: Statice limonium var. carolinianum (= Limonium carolinianum), Plantago maritima, Spartina juncea, Puccinellia maritima. Festuca ovina, Juncus Gerardi, Triglochin maritimumm, Hordeum jubatum, Glaux maritima. The dominant plants of the association are Spartina (fox-grass, or mezette) and the Statice, with the Puccinellia and Plantago as important secondary members, and Festuca, Juncus, Triglochin, Hordeum as less important, while Glaux is subordinate. Occasional species are Spartina cynosuroides, Potentilla (Anserina) anserina.

Salt Spring Plant Formation. At certain salt springs near Sussex in the interior is found a colony of seashore plants: such as Salicornia, Spergularia marina and borealis, Ranunculus Cymbalaria, Atriplex patula var. hastata, Distichlis spicata. The explanation of the distribution is historic. During the latest post-glacial subsidence this region dipped beneath the sea to extent of 200 feet. The marine coast plants thus followed the sea into the interior. The subsequent elevation of the land, with the return of fresh water everywhere exterminated the halophytic plants except where salt abounded namely, at these springs 1).

Strand Formation. The beaches of the St. Lawrence River at Cacouna for example show a strand formation of several associations constituted by the grouping of Cakile americana, Lathyrus maritimus, Mertensia maritima, Plantago maritima, Arenaria (Ammondenia) peploides and other plants. In the tide-swept mud along the Saguenay River grow Spergularia (Tissa) marina and Plantago maritima; on wet rocks or sands Lathyrus, Glaux, Ligusticum scoticum, Solidago sempervirens, Atriplex patula var. hastatum 2).

The most characteristic plant of the beach of Miscou Island in the Gulf of St. Lawrence is Salsola kali with Cakile americana (= C. edentula) next in abundance, while Mertensia maritima and Lathyrus maritimus occupy third place. Here and there are found Atriplex patula var. hastata (= A. hastata), Ammophila arenaria. Inside the open beach, according to Ganong, begins the sand plain of parallel dunes covered with Ammophila arenaria and this grass offers shelter to Carex silicca, Taraxacum officinale, Rumex acetosella, Botrychium ternatum var. intermedium, Anaphalais maritatae and in sheltered places Rosa lutea, Viola adunca, Smilacina (Vagnera) stellata and Vicia cracca. The hollows are occupied by Fragaria virginiana and Festuca

rubra, while the sheltered slopes afford a place where Juniperus sabina var. procumbens (= J. sabina) grows together with Myrica carolinensis, Hudsonia tomentosa, Vaccinium pennsylvanicum. The sandy beach gradually merges into the coniferous forest behind. The woody vanguard consists of mats of Juniperus combined with Vaccinium pennsylvanicum, Myrica carolinensis, Hudsonia tomentosa. Here also are found Empetrum nigrum, Potentilla tridentata, and less frequently Cladonia rangiferina, Gentiana amarella var. acuta (= G. acuta). On the other hand, the beach merges into sandy swales, bordered by spruce. Here the turf consists of Festuca ovina var. rubra (= F. rubra), Poa pratensis, Agrostis alba, Juncus Vaseyi, Carex Oederi, together with Euphrasia americana, Antennaria neodioica, Sagina procumbens, Plantago major, Potentilla norvegica and Trifolium repens.

Marine Algal Formation. The marine flora of the Maritime District of the St. Lawrence-Great Lake Region is essentially arctic in character as may be inferred from their boreal position and their exposure to cold currents from the north polar region. In New Brunswick the action of the tides on the southern shores renders it impossible for any marine algae but the stronger forms to maintain themselves, except in sheltered coves, while on the other hand the low sandy shores extending into the Gulf of St. Lawrence do not furnish a favorable habitat for algae. Fuci and Laminariae are distributed in abundance along the whole coast. The fuci growing between tide marks are most abundant on the south coast; two species are common. *Fucus vesiculosus* and *Ascophyllum nodosum*; but *F. evanescens*, *F. furcatas* are uncommon (*Fucus Shelf*). The shelf of Laminariae extends from low-water mark to several fathoms in depth. These plants occur in greatest profusion on the coast of the Gulf of St. Lawrence. Three species occur, the most generally diffused being *Laminaria longibrachis* with *L. saccharina* and *L. digitata*.

Scattered in endless profusion are Delesseria sinueosa, D. alta var. angustissima, Chorda filum, Agarum Turneri, Alaria esculenta. Rhodymenia palmata, Porphyra laciniata, P. vulgaris are found to a more limited extent especially on the coast of the Gulf of St. Lawrence. Polysiphonia fibrillosa found on the north side of the Island of Miscou, has hitherto been detected only at one place north of Cape Cod. Odonthalia dentata found at various points on the Gulf of St. Lawrence and on the southern shores of Nova Scotia has not been collected on the New England coast.

Coniferous Forest Formation. Mount Katahdin, Maine, a long elevated ridge several miles in length and 5,215 feet (1590 m) above sea level is situated in the midst of a spruce forest consisting of *Picea nigra* (= *P. mariana*), *Pinus strobus* (in detached groves; *Pinus strobus-Facies*), *Betula papyrifera*, *Betula lutea*, *Abies balsamea*, *Sorbus americana*, *Thuja occidentalis* (sparingly), *Acer rubrum* with an undergrowth of *Acer spicatum*, *Amelanchier oligocarpa*, *Nemopanthes fascicularis*, *Ribes prostratum*, *Viburnum plicatum* and *Taxus canadensis* in considerable abundance. The forest floor is covered in most places especially where boulders occur with a mat of mosses consisting chiefly of three forms:

Hypnum Schreberi, H. crista-castrensis and Hylcomomium splendens, with the liverworts Pilidium capillare, Bazzania (Mastigobryum) trilobata.

Out of this mossy covering grow according to my observations 1) Cornus canadensis, Coptis trifolia, Chiogenes hispidula, Clintonia borealis, Habenaria fimbriata, Trientalis americana, Lycopodium lucidulum, Oxalis acetosella, Listera cordata, Dalibarda repens, Linnaea borealis, Phegopteris polypodioideae (= P. phegopteris). Pyrola rotundifolia var. uliginosa. The drier better drained soil of the more open forest is characterized by Epigaea repens, Monotropa uniflora, M. hypopitys, Anaphalis margaritacea, Campanula aparinoidea, Pyrola secunda, Vaccinium canadense, while in the marshy places in the woods grow Veratrum viride, Drosera rotundifolia, Osmunda regalis.

This coniferous forest formation (Picea-Abies-Facies) covers the Great Basin, South Basin, the Northwest Basin, most of the outer slopes and ridges and extends far out into the lowlands about the mountain. Ascending the basins the trees gradually become smaller until at the base of the last long precipitous ascent we come to the tree line which has its delimitation in large trees. Above this exists the Krummholz, or pucker-bush (Dwarf Tree Formation) which reaches far up toward the summit.

The dwarf timber consists of ancient black spruce trees Picea nigra (= P. mariana) associated with Pyrus (Sorbus) americana, Alnus viridis (= A. alnobetula), Spiraea salicifolia, Empetrum nigrum, Ledum latifolium (= L. groenlandicum), while on the steeper slopes grows Betula papyrifera var. cordifolia. Juniperus communis and Eriophorum alpinum are on the ledges of the back wall of the North Basin with the southeastern exposure (Rock Cliff Formation) associated with an adventurous colony of lowland plants. 2): Lycopodium clavatum, Osmunda claytoniana (= O. interrupta), Pteris (Pteridium) aquilina, Carex leptalea, C. flav. Danthonia spicata, Smilacina (Vagnera) racemosa, Andromeda polifolia, Aster umbellatus, Aster radula, Aster acuminatus, Prunus pennsylvanica, P. virginiana, Diervilla trifida, Potentilla (Dasiphora) fruticosa, Viola Selkirkii which invade the territory of such plants as Diapensia lapponica, Bryantus taxifolius, Arnica Chamissonis and Epilobium Hornemann at about 4,000 to 4,500 feet (1220—1472 m) altitude.

Alpine formation. It is widely distributed covering more than one half the upper part of the mountain. On the crest, summits and table-land it reaches perhaps its highest and most characteristic development extending down upon the saddle spurs and higher slopes 3). With the accumulation of the soil through the activity and decay of the plants in the above-mentioned associations the grasses and sedges first appear and form a mat by their interlacing roots.

Deschampsia-Carex-Association: Hierochloe (Savastana) alpina, Agrostis rubra, Deschampsia flexuosa, Carex vulgaris var. hyperborea (= C. Bigelovii), C. canescens var. alpica (= C. brunnescens) and Juncus trifida are common pioneer elements of the alpine tundra, associated with such mosses as Polytrichum juniperinum, P. commune, P. ohiense and Mielichhoferia nitida var. elongata. — Empetrum-Vaccinium Association: This association may be said to form the culmination of the alpine formation. It consists of Empetrum nigrum, Vaccinium vitis idaea, V. pennsylvanicum var. angustifolium, V. uliginosum, Diapensia lapponica, Ledum latifolium

List of Alpine Plants of Mt. Katahdin.

Lycopodium selago L.
 » annotinum L. var. punctugens Spring.
Abies balsamea Mill.
Juniperus communis L.
Hierochloe (Savastana) alpina R. & S.
Phleum alpinum L.
Cinna pendula Trin. (= C. latifolia Trev.).
Deschampsia atropurpurea Scheele.
Trisetum subspicatum Beauv.
Danthonia spicata Beauv.
Scirpus caespitosus L.
Eriophorum alpinum L.
Carex atrata L. var. ovata Boott.
 (= C. atriformis Britton).
 » arctica Boott var. Faxonii Bailey.
 » flava L.
 » communis Bailey (= C. pedicellata Dewey).
 » leptalea Wahl.
Salix argyrocarpa Anders.
 » phyllicifolia L.
 » uva-ursi Pursh.
 » herbacea L.
Betula papyrifera Marsh. var. cordifolia Regel.
 » glandulosa Michx.
Arenaria groenlandica Spreng.
Stellaria borealis Bigelow.
Cardamine bellidifolia L.
Drosera rotundifolia L.
Saxifraga stellaris L. var. comosa
 Willd. (= S. comosa Poir.).
Ribes lacustre Poir.
 » prostratum L’Her.
Prunus pennsylvanica L. f.

Fragaria virginiana Duchesne.
Potentilla (Sibbaldiopsis) tridentata Ait.
Sorbus (Pyrus) americana Marsh.
Amelanchier oligocarpa Roem.
Empetrum nigrum L.
Viola palustris L.
 » canina L. var. (= V. arenaria DC.).
Epilobium anagallidifolium Lam.
Cornus canadensis L.
Ledum latifolium Ait. (L. groenlandicum Oeder).
Rhododendron lapponicum Wahl.
Bryanthus taxifolius Gray (= Phyllo-
doce coerulea L.).
Cassiope hypnoides Don.
Arctostaphylos (Mairania) alpina Spreng.
Vaccinium caespitosum Michx.
 » pennsylvanicum Lam. var.
 » angustifolium Gray.
 » vitis-idaea L.
Diapensia lapponica L.
Castilleja pallida Kunth var. septen-
trionalis Gray (= C. acuminata
 Pursh).
Euphrasia Oakesii Wettst.
Lonicera caerulea L.
Solidago Virga aurea L. var. alpina
 (= S. alpestris Wald. & Kit.)
Aster radula Ait.
 » (Doellingeria) umbellatus Mill.
 » acuminatus Michx.
Arnica chamissonis Less.
Prenanthes (Nabalus) nana Torr.
 » (=) Bootii Gray¹).

Alpine Meadow Formation. Situated at the base of the dripping west wall of the North Basin and so presenting a warm south-eastern exposure associations of meadow species occur which culminate in a shrubby covering to the meadows. The pioneer association which appears in the crevices of the dripping walls consists of Scirpus caespitosus, Campanula rotundifolia, Solidago alpensis, Potentilla tridentata, Arenaria groenlandica, Carex scirpoidea, Luzula spicata and Juncus articulatus (= Luzula-Juncus-Association). — With the increase of humus and water holding capacity of the soil the next stage appears. The association now consists of Aster (acinatius, rudula, umbellatus), Castilleja, Prenanthes nana (= P. trifoliata), Anaphalis margaritacea with such grasses as Calamagrostis canadensis, C. Langsdorfii, Bromus ciliatus, Glyceria nervata, Agropyrum violaceum (= biflorum), Agrostis rubra, and in association with these grasses Solidago macrophylla, Viola blanda, Arnica Chamissonis, Heracleum lanatum and Habenaria dilatata. — The last stage of all culminates with the appearance, according to Harvey, of Dierickx trifida, Spiraea salicifolia var. latifolia associated with such secondary species as Ribes prostratum, Lonicera caerulea, Rubus strigosus and R. canadensis.

Pond Formation. The ponds of glacial origin at the foot of the mountain and the sphagnum bogs derived from them merit passing attention. The shores of the ponds are usually rock strewn and slope off to some depth. Alnus viridis and Betula papyrifera var. cordifolia form a fringing circumboreal of vegetation with Cassandra, Spiraea salicifolia, Kalinia angustifolia, Ledum, Myrica gale in the sphagnum circumboreal inside the alder belt. The shallow water of the pond shore is characterized by the presence of Isoetes heterospora, and echinospora var. Braunii, Potamogeton confervoides, Lobelia Dortmannii, Nymphaea odorata var. minor, Nuphar Kalmianum.

The Sphagnum-Association occurs in morainic depressions with a life history dating back to the glacial period. The Sphagnum advances from the edge of ponds and finally covers them, when a quaking bog is formed. Scheuchzeria palustris appears followed by Drosera rotundifolia, D. longifolia, Sarracenia purpurea, Vaccinium oxycoccus, Smilacina trifolia, and when the conditions become drier by Ericophorum gracile, Carex trisperma, Carex pauciflora, succeeded in turn by the Cassandra-Association (see ante). The entire absence of bog orchids, is noteworthy. Empetrum, Vaccinium uliginosum, V. vitis-idaea also figure in the succession of species. Finally Picea nigræ (= P. mariana), Larix americana (= L. lariciana), Thuja occidentalis encroach on the bog and convert it gradually into forest.

The highest point in the Presidential range in the White Mountains is Mount Washington, 6,300 feet (1932 m) in elevation. The base of the mountain is surrounded by a forest which represents a southern extension of that typical of central and northern Maine and New Brunswick. The forest which surrounds Mount Katahdin in Maine is essentially the same as that which surrounds Mount Washington, only that the hemlock Tsuga canadensis is more abundant about the flanks of the latter mountain.
Coniferous Forest Formation. Originally the entire northern division of the state of New Hampshire was covered with a dense forest of conifers. It was primarily a spruce country¹) and the spruce *Picea rubra* (= *P. rubens* Sarg.) here attained fine dimensions. White pine, *Pinus strobos*, too, covered large areas and was mixed with spruce over much of this country. *Abies balsamea* occurred in mixture on the upper slopes and in the lower moister localities. There was originally very little pure hardwood in the forest, and if present it was confined to the lower slopes with the spruce in mixture. Associated with the trees mentioned above were *Acer saccharum*, *Fagus americana* (= *F. ferruginea*) and *Thuja occidentalis*. South of the northern forest mentioned, the flora belongs to the New England Area, but it may be stated here that some of the southern species like the white oak, *Quercus alba* and the red oak *Q. rubra*, here reached their northern limits and mingled with those more characteristic of the north.

In the White Mountain region *Abies balsamea* and *Picea nigra* (= *P. mariana*) grow together in about equal numbers (*Abies*-Picea-Facies). North of the mountains these trees with *Thuja occidentalis*, are the prominent evergreens mingled with *Picea alba* about Connecticut Lake. In the southern part of New Hampshire, they are mostly confined to the highlands between the Merrimac and Connecticut rivers, the black spruce *Picea nigra* being there the most abundant tree. *Tsuga canadensis* ranges from the base of the White Mountains southward along the highlands. (*Tsuga-Facies*). It has its northern limit in the vicinity of Umbagog Lake reaching an elevation of 1,200 feet above the sea. *Larix americana* is found in swamps. — To sum up, the original forest formations of the White Mountain country were two viz., the coniferous forest formation including the spruce flat facies, the spruce slope facies and the deciduous forest formation.

Spruce Flat Facies. Spruce flats occurred in the moister, lower situations, on the level or rolling land around lakes and streams and in the valleys. *Picea nigra* (= *P. mariana*) and *Abies balsamea* were the chief species, and on the wetter soils *Picea nigra* (= *P. mariana*), *Thuja occidentalis* and *Larix americana* were also common. There was often considerable yellow birch, *Betula lutea* and red maple, *Acer rubrum*. *Pinus strobos* and *Tsuga canadensis* were also found in great abundance in this formation.

Spruce Slope Facies. This type of forest occurred on the steeper slopes where the soil is shallow. The principal species were *Picea nigra* (= *P. mariana*) and *Abies balsamea* in varying proportions, and yellow birch, *Betula lutea*, changing often to paper birch, *B. papyrifera* on the upper slopes. The stand was usually dense and where the forest was undisturbed the ground was covered with moss. This formation covered the greatest area of any of the forest types in northern New Hampshire²), finally characterized as a scrubby growth near the mountain summits.

Deciduous Forest Formation. On the lower slopes and deeper better soils hardwoods form a large part of the growth. Here *Betula lutea*, *Acer saccharum* and *Fagus americana* are the characteristic trees, with considerable spruce

²) CHITTENDEN, loc. cit. page 25.
Picca nigra in mixture. This type of forest rarely extends above an altitude of 2,400 feet (732 m). The ground cover consists of Viburnum lantanoi des (= V. alnifolium), Acer pensylvanicum and Sorbus americana.

Alpine Formations. The timber line on Mount Washington averages 4,000 feet (1220 m). The dwarf timber (Krummholz, pucker bush, Dwarf Tree Formation) is clearly demarcated but not so extensive as on Mount Katahdin 1. Picca nigra gradually degenerates until it becomes flat-topped and closely matted together while in the ravines above tree limit are dense thickets of Alnus viridis. The summit of Mount Washington is bare in the extreme and characterized by angular boulders of granite covered with lichens: Buellia geographica, Umbilicariae, Cetrariae, Cladoniae. Enormous ravines seam the sides of the mountain designated as Great Gulf, Tuckermans Ravine, Huntington Ravine. These ravines support a variety of rare and local mountain and alpine species.

Alpine Canyon Formation. In Tuckermans Ravine above the snow arch the writer collected Salix phylicfolia, Gnaphalium supinum, Phleum alpinum, Castilleja pallida, Veronica alpina, Arnica chamissonis, Habenaria dilatata, Viola palustris, Streptopus amplexifolius, and A. J. Groot reports in addtion Alnus viridis (= A. alnifetula, A. crispa), Oxyria digyna, Salix argyrocarpa, Sibbaldia procumbens, Loiseleuria procumbens, Epilobium alpinum and Geum radiatum (= G. Pekki), while Heracleum lanatum, Veratrum viride, Houstonia coerulea, Cornus canadensis, Linnaea borealis have ascended from the valleys to mix with the alpine species. The presence of the rare Viburnum pauciflorum, Baeomyces placaphyllus in this ravine is noteworthy, while the fungus Doassasania epilobii is found nowhere else in the world. Oxxyria digyna, Cassiope hypnoides, Bryanthus taxifolius (= Phyllodoce caerulea), Castilleja pallida, Geum radiatum, Diapensia lapponica, Veronica alpina, Stellaria borealis, Epilobium anagallidifolium, Luzula arcuata, L. spicata, Potentilla tridentata, Juncus trifidus, Salix herbacea, Salix phylicfolia, Lycopodium selago, Coptis trifolia were noticed by me at the head of the great Gulf where Oxxyria digyna, Saxifraga rivularis with Cardamine bellidifolia form an association in the dripping rivulets (Oxxyria-Association). The other plants form an association of varying character according to the predominance of any one or two species occurring on the shelves of the steep declivities of this ravine, (Cassiope-Bryanthus-Diapensia Association). The mosses of the great Gulf rim are Dieranum fulvature growing in the crevices of moist clifs; Conostomum boreale also occurs, while on wet banks of rivulets are Rhacomitrium fasciculare, Hylocomium squarrosum, Gymnoeybe turgida, Hynnum fluitans, D. dilatatum, H. stramineum.

The summit plants divide themselves into two groups those found amid the boulders and on the steeper slopes and those found on the plateau known as the Alpine Garden.

The Alpine Garden according to my observations is a level table-land slightly inclined downward some distance below the summit. The plants are characterized by their short stature (nanism) scattered over the surface with pebbly, stony, sandy, or clayey soil between the plants and an abundance of lichens and mosses. The flowering plants mostly assume the cushion form and have a multicellular perennial root, or rhizome (Alpine Fell-field Formation). On the protected upper edge of the garden which is practically alpine in its meteorologic and physiographic features occur stunted groups of Picca nigra (= P. mariana) which are closely matted together

(Picea-Association). Where the conditions are especially favorable they may be 1—2 feet high. Ledum latifolium (= L. groenlandicum) is abundant in almost pure growth (Ledum-Association). Potentilla (Sibbaldiopsis) tridentata forms pure association (Potentilla-Association) as also Diapensia lapponica (Diapensia-Association). Geum radiatum, Arenaria groenlandica, Empetrum nigrum, Solidago virgaurea var. alpina, Vaccinium vitis-idaea, Houstonia coerules, Lycopodium selago are abundant, while Veratrum viride, Castilleja pallida var. septentrionalis (= C. pallida), Epilobium anagallidifolium, Stellaria borealis form an association in wet places (Castilleja-Association). Silene acaulis, Arctostaphylos (Mainaria) alpina, Rhinanthus cristagalli, Polygonum viviparum have all been found on the eastern border of the Garden.

Bog Formation. The sphagnum bogs on the summits are filled with Empetrum nigrum, Vaccinium (Oxyccocus) oxyccocus, Carex magellanica, C. paniciflora, Prenanthes (Nabalus) Bootii, Diapensia lapponica, Vaccinium caespitosum are found in exposed situations, Polygonum viviparum in the dry cold clefts; Viburnum puiciforum, Salix phylicifolia in moist alpine ravines; Salix uva-ursi, S. balsamifera, Betula papyrifera var. minor among the alpine rocks and Comandra livida in evergreen shaded bogs.

The constituent flora of the summit proper of Mt. Washington is characterized by the great, abundance of Arenaria groenlandica with such other plants as Rhododendron lapponicum, Diapensia lapponica, Prenanthes (Nabalus) Bootii, P. (N.) nana, Carex rigida, Poa laxa, Loiseleuria (Chamaecistus) procumbens, Silene acaulis, Geum radiatum var. Peckii, Potentilla (Sibbaldiopsis) tridentata, Solidago virgaurea var. alpina (= S. alpestris), Vaccinium vitis-idaea, Phleum alpinum, Lycopodium selago, while Sibbaldia procumbens the rarest of White Mountain plants and lost to sight for many years has recently been (1904) rediscovered on Mount Washington.

Flowering times of some alpine species:

June 30th. Vaccinium uliginosum and caespitosum, Cassiope, Bryantus, Kalmia glauca, Rhododendron lapponicum, Loiseleuria, Diapensia, Oxyccocus digyna, the three Salices, Betula glandulosa, Empetrum and Viburnum puiciforum. Silene acaulis, Cardamine bellidifolia, Juncus trifidus, Carex rigida var. Bigelowii, Carex scirpoidea, Luzula spicata.

July 10th. Arenaria groenlandica, Epilobium alpinum, Arnica mollis, Prenanthes (Nabalus) nana, Veronica alpina, Polygonum viviparum, Phleum alpinum, Agrostis canina, Poa laxa, Habe

August 1st. Solidago virgaurea var. alpina, Prenanthes (Nabalus) Bootii, Alectorolophus Cristagalli.

The following is the list of plants found in New Hampshire only on alpine summits. Those found also in Europe are marked by an asterisk.

*Polygonum viviparum L.
*Xoxria digyna Hill.
*Empetrum nigrum L.
*Betula glandulosa Michx.
Salix uva-ursi Pursh.
 » argyrocarpa Anders.
* herbacea L.
*Cardamine bellidifolia L.
*Viola palustris L.

*Silene acaulis L.
Arenaria groenlandica Spreng.
*Dryas integrifolia Vahl.
Geum radiatum Michx. var. Peckii Pursh.
*Sibbaldia procumbens L.
*Potentilla frigida. Man. ed. 6 (= P. Robbinsiana Oakes.).
*Saxifraga rivularis L.

1) This list is made up from my list of plants; also in Among the Clouds XXIV: 3 July 28 1900; HITCHCOCK, C. H.: The Geology of New Hampshire I: 571. 1874.
5. Formations on Mt. Mansfield.

Mt. Mansfield, 4,364 feet (1330 m) is on the western branch of the Green Mountains in Vermont. It is a long range of four peaks separated from Sterling Mountain on the northeast by Smugglers Notch, a narrow pass three miles long, enclosed by tremendous cliffs. There are but two plants found in Willoughby Notch Vermont which are not duplicated on Mt. Mansfield. These are Sisymbrium humile and Aster polyphyllus (= A. Faxonii)1).

An analysis of the flora of Smugglers Notch made by J.W. HARSHBERGER in August 1906 shows the following disposition of the species. The forest in the gorge and on its slopes up to a considerable elevation consists of Betula lenta, B. lutea, Fagus americana, Acer saccharum, A. rubrum, Tsuga canadensis (scattered), while as secondary trees are found Acer pennsylvanicum, Viburnum lantamoides and young trees of the dominant ones. The herbaceous plants scattered between the schistic slabs are f. e. Actaea alba and rubra, Tiarella cordifolia, Asarum canadense, Viola rotundifolia, Monotropa uniflora, Mitchella, Medeola, Coptis trifolia, Cornus canadensis, Oxalis, Impatiens, Trillium erythrocarpum, Clintonia borealis, Adiantum pedatum. (Deciduous Forest Formation; Acer-Fagus-Betula-Facies). — Ascending the gorge slopes until the lower

cliffs are reached (1000 feet above the stream) the coniferous forest appears. This also clothes the highest summits of Mt. Mansfield and the Green Mountains. The Coniferous Forest Formation owes its character to *Abies balsamea, Picea nigra*, while *Betula lenta, B. lutea, B. papyrifera, Sorbus americana* are intermixed, but never dominant. On the rocky cliffs and outcrops these trees assume a more, or less, dwarfed aspect. *Prunus pennsylvanica* also occurs as an element of this forest. Bogs are interspersed and in these bogs sphagnum forms the substratum out of which *Ledum groenlandicum* and *Chiogon wispidula* grow. (Bog Formation). On the highest levels of Mt. Mansfield there is found in a depression between the exposed rocks of the summit an area, two or three acres in extent, occupied by an alpine bog. The substratum of this bog is a brown peat two feet thick, the surface being covered with sphagnum out of which grow principally, sometimes mixed, sometimes in pure association, the following plants: *Vaccinium vitis-idaea*, *V. uliginosum*, *V. pennsylvanicum* var. angustifolium, *V. oxycoccus, Cassandra calyculata, Ledum latifolium, Empetrum nigrum*, while in wetter bogs on the mountain top is found *Veratrum viride*. Occasionally dwarf creeping balsam, *Abies balsamea* encroaches on the alpine bogs. *Ledum* is perhaps the most abundant woody perennial of the top of Mt. Mansfield and *Vaccinium uliginosum* stands second.

Alpine Cliff Formation. The cliffs in Smugglers Notch are precipitous and show a varied flora. Among the cliff plants noted by me, and described by Mrs. Straub were Saxifraga aizoon, *S. oppositifolia, S. aizoides*. On the wet cliffs Pinguicula vulgaris grows together with Woodia glabella. The drier cliffs are characterized by Woodia ilvensis, Draba incana, Woodia hyperborea, Asplenium viride, Pellaea gracilis, Aspidium fragrans. Arenaria verna var. hirta, and Aspidium aculeatum var. Braunii.

The rocks of the highest summits are carpeted with Arenaria groenlandica, Vaccinimum uliginosum, *V. vitis-idaea, V. pennsylvanicum* var. angustifolium, Carex Bigelovii, C. debilis var. Rudgei, also Arenaria verna var. hirta, Gentiana amarella var. acuta (= *G. acuta*), Luzula spicata, Festuca ovina var. brevifolia, Carex tratra var. ovata. 1)

b) New England Area.

The flora of this area is characterized by the absence of *Picea alba*, *Pinus Banksiana* and by the presence of *Pinus strobus* and other trees found in the New Brunswick area, but its chief characterization depends on the presence of such trees as *Quercus alba, Q. prinoides, Q. coccinea, Juniperus virginiana* and *Castanea dentata* (= *C. americana* in the southern part), which here reached their northern limit, so that it may be looked on as a transition territory between the Canadian white-pine forests and the broad-leaved forests further south. It comprises littoral and mountain territories.

I. Plant distribution on Sea Islands.

The outer islands lying off the Maine coast have a flora of a triple character\(^1\). The wooded portions have the trees of the mainland, (Coniferous Forest Formation), *Abies balsamea*, *Picea alba*, *P. rubra*, *Betula papyrifera*, *Populus tremuloides*, *P. balsamifera*, while on Peaks Island J. W. Harshberger noted small groves of *Quercus rubra*. Under their shelter grow the characteristic smaller plants of the northern flora: *Acer spicatum*, *Rhodora*, *Coptis*, *Cornus canadensis*, *Linnaea*, *Arisaema triphyllum*, *Habenaria bracteata*, *H. lacera*, *Liparis Lo.sclii* etc. Thickets of *Alnus maritima* also occur according to Harshberger’s observations. The cleared portions, however, harbor a great number of species introduced or adventive.

Smaller islands hardly more than an acre may show such plants as Cakile americana, *Lathyrus maritimus*, *Ligusticum scoticum*, *Solidago sempervirens*, *Mertensia maritima*, *Suaeda linearis*, *Ammophila arenaria*, plants of the sea coast together with *Ribes hirtellum*, *Geranium Robertianum*, *Potentilla anserina*, *Rubus strigosus*, *Oenothera biennis*, *Artemisia Gameli*, *Ambrosia Artemisiafolia*, *Achillea millefolium*, *Convolvulus sepium*, *Scutellaria galericulata*, *Plantago decipiens*, *Triglochin maritimum* and *Iris versicolor*. On the shore line of larger islands such as Great Duck Island, twelve miles south of Mt. Desert Island, and on Cushing’s Island occur *Sal-sola*, *Salicornia*, *Suaeda*, *Cakile*, *Statice limonium var. carolinianum*, *Euphorbia polygonifolia*, *Spartina patens*, *Ammophila*, plants also common to the sandy sea beaches of New Jersey and farther south, but in addition to these are plants peculiar to the northern sea shore: *Ranunculus cymbalaria*, *Ligusticum scoticum*, *Mertensia maritima*, *Plantago maritima*.

One of the marked characteristics of the flora of Mt. Desert country is its strongly northern and arctic character. With its coast enveloped in cold fogs and washed by waters chilled by the arctic current, such arctic plants like *Montia fontana* and *Stellaria humifusa* find a congenial home. With the single exception of *Lycopodium Selago* the mountain plants descend to sea level. The flora shows points of great similarity to those of New Brunswick and the White Mountain region. After the glacial period Mt. Desert Island, as now, was disconnected from the mainland. It is, therefore, natural that there should exist in abundance on the mainland many plants that are not found at all on the island, or only there rarely. Again the flora of the Cranberry islands is different from that of Mt. Desert. Under almost precisely similar conditions, we find *Corema Conradii* on the larger island, but not on the Cranberry isles; we find *Montia fontana*, *Stellaria humifusa* and *Rubus chamaemorus* on the Cranberry isles, but not on Mt. Desert; we find *Symposcarpus foetidus* and *Hippuris vulgaris* on the Cranberry isles and also on Mt. Desert Island\(^2\).

Hudsonia tomentosa with *Lechea minor*, *L. maritima*, *Helianthemum majus* occur on high dry ground, while the sand barren plants are Viola...

sagittata var. ovata, Polygala polygama, Trifolium arvense, Tephrosia (Cracca) virginiana, Prunus maritima, Chrysopsis falcata, Diploappus (Doellingeria) linearifolius, Arctostaphylos uva-ursi; Kalmia angustifolia, Asclepias obtusifolia, Salix tristis, Cyripedium acule, Pinus rigida. The bulk of the underbrush consists of Rhus copallina, Pyrus (Aronia) arbutifolia, Amelanchier canadensis, Viburnum dentatum, Myrica carolinensis, Myrica gale, Rhododendron (Azalea) viscosum, Andromeda ligustrina, Gaylussacia frondosa, G. resinosa, Vaccinium corymbosum, V. vacillans, V. pennsylvanicum, while on the ground are Epigaea repens, Gaultheria procumbens, Trientalis americana and Potentilla argentea\(^1\). Some of these plants form a pine barren element stronger than in Nantucket and must be considered as northeastward migrating plants. (Sand Barren Formation).

At present, the island of Nantucket is practically treeless, but there is abundant historic evidence that this island when first settled was generally forest clad and that the trees of oak and pine were sufficiently large to afford ship-timber. Nevertheless the flora of Nantucket is extremely rich and varied. A peculiar feature is the presence of Opuntia vulgaris and O. Rafinesquii in the region north of Coatue Sound about Great Head. Quercus ilicifolia associated with Epigaea repens is still abundant in the scrub form on the commons and with several other plants represents the northeastern extension of the pine barrens.

Corema Conradii, Arctostaphylos uva-ursi, Hudsonia ericoides, H. tomentosa occur on the plains of Nantucket, but Calluna vulgaris and Erica cinerea, E. tetralix are striking elements in the flora.

In some swamps a few trees are found: Quercus alba and rubra, Hicoria alba, Fagus, Nyssa, Ilex opaca.

The flora of Block Island may be divided into that of the hills, the peat bogs and pond holes, the salt marshes, the sand dunes and the salt water, the latter being exclusively algal, except for Zostera. W. W. Bailey and J. F. Collins list 294 species of the flowering plants and ferns found by them on the island. The island is practically treeless and hence devoid of such vegetation as is depend upon growth under a forest cover. But there is abundant evidence that a tree flora formerly existed, consisting of pine, oak, beech, hickory. Block Island lacks the plain flora of southern affinity found on Long Island, Martha’s Vineyard and Nantucket. This is explained by reference to the past geologic history of the island. At the close of the ice age, there was a continuous strip of land, in fact the seaward extension of the great terminal moraine, separable into two portions an elevated northern border and a southern plain representing what remained of the old Tertiary coastal plain. Since the glacial period, Block Island has lost all of its plain region and the accompanying flora, and is now merely an isolated portion of the terminal

moraine with small areas of sand-beach and dunes, affording a place for such species as can exist under such conditions. The geologic indications are that Block Island was the first strip of land to be isolated and converted into an island. The flora of the plain region, coming largely from the south and possibly always having existed close to the ice front would be the first to advance and occupy the ground, while that of the moraine, being of a more northern type could not become established, says Hollick 1) until the conditions due to glaciation northward had become modified, so that it could exist there and become established on such morainal deposits, as those which constitute the northern portion of Block Island.

2. Sea coast Formations.

The flora of the sea coasts of the New England Area may be divided into that found on the rocky shores and that confined to the sandy beaches and dune areas. The rocky cliffs and iron-bound coast line are perhaps the most extensive with small sandy beaches between formed by tidal action. These latter may be neglected in our discussion, because their vegetation is more characteristically developed on the peninsula of Cape Cod which may be taken as representative of the halophytic flora.

Rock Cliff Formation. The rocks of the coast according to the observations of J. W. Harshberger on Mount Desert Island, Maine, and Conanicut Island, Rhode Island are bare of vegetation, where the storm-waves dash, but beyond the reach of the tide in Maine Empetrum nigrum forms dense matted cushions associated with Juniperus sabina var. procumbens, Solidago sempervirens and on sandy shores Cakile americana, Salsola Kali, Mertensia maritima.

Strand Formation. The typic sand beach and sand dune formation in eastern Massachusetts consists of such plants, as

Cakile americana Nutt. (≡ C. edentula Bigel.)	Artemisia Stelleriana Bess.
Prunus maritima Wang.	caudata Michx.
Euphorbia polygonifolia L.	Salsola Kali L.
Chenopodium rubrum L.	Xanthium canadense var. echinatum Gray.
Atriplex arenaria Nutt.	Ammophila arenaria L. (≡ A. arundinacea Host.).
Glaux maritima L.	Polygononella articulata Meisn.
Arenaria (Ammodenia) peploides L.	Solidago sempervirens L.
Triodia (Triplasis) purpurea Hack.	Spargularia (Buda) marina L.
Statice limonium carolinianum Gray	Salicornia ambiguac Michx.

≡ (≡ Limonium carolinianum Walt.).

On Cape Cod the beach plants form a strip just above the action of the tides. Cakile americana, Lathyrus maritimus, Xanthium canadense var. echinatum, Euphorbia polygonifolia may

be mentioned as typic species. The beach plants in southwestern Connecticut are Sporngularia marina, Diodia teres, Polygonella, Triodia, Aristida tuberculosa, Salicornia herbacea, S. ambiguua. The dunes and dune faces support Ammophila, Salsola Kali, Solidago sempervirens, Hudsonia tomentosa, Artemisia caudata with Myrica carolinensis, Rosa lucida and Prunus maritima removed some distance back from the sea beach.

The shore plants of Nantucket island are Arenaria peploides, Lathyrus maritimus, Hudsonia, Ligusticum, Solidago sempervirens, Baccharis halimifolia, Xanthium, Mertensia, Salicormia ambiguua, Suaeda linearis var. ramosa, Salsola Kali, Amaranthus pumilus, Polygonum articulatum, P. maritimum, Ammophila, with the shrubs Prunus maritima and Myrica carolinensis.

Salt Marsh Formation. The species which enter into the phyto-geographic associations of the Salt Marsh Formation which occupies the mud flats covered by the sea in extremely high tides are tabulated below1).

Juncus Gerardi Loisel.
Spartina juncea Willd.
> stricta glabra Gray.
Scirpus maritimus L.
> pungens Vahl.
Distichhisspicata L. (=D. maritima Raf.).
Triglochin maritima L.
Iris prismatica Pursh.
Typha angustifolia L.
Carex maritima O. F. Muell.
Salicornia mucronata Bigel. (= S. Bigelowii Torr.).
Suaeda (Dondia) linearis Moq.
Atriplex patula var. hastata Gray (= A. hastata L.).
Spergularia (Tissa) marina L.

The salt marshes at York, Maine and as far south as Cape Cod are covered by a vegetation which consists primarily, according to Penhallow2) of Spartina stricta var. alterniflora which grows along the open channels, Spartina patens back of the taller species and usually in higher ground mingled with sea lavender Statica limonium var. carolinianum Gray (= Limonium carolinianum Walt.).

Gerardia maritima Raf.
Puccionella maritima Parl.
Iva frutescens Man. ed. 6 (= I. oraria Bartlett).
Pluchea camphorata DC.
Solidago sempervirens L.
Aster subulatus Michx.
> tenuifolius L.
Potentilla anserina L.
Samolus valerandi var. americanus Gray (= S. floribundus H.B.K.).
Hibiscus moscheutos L.
Sabbatia stellaris Pursh.

The sand hook which exists at the extreme point of Cape Cod is bordered by an extensive salt marsh. The typic marginal species is Salicornia ambiguua and the characteristic grasses of the marsh are Spartina polystachya, S. patens associated with Juncus Greenii, J. canadensis, Scirpus pungens (= S. americanus), while the marsh partially converted by sand into a fresh-water marsh is covered by extensive patches of Vaccinium macrocarpon, surrounded by Cyperus Grayi and Carex silicica. When such areas become fresh water swamps, there appear species of Eleocharis, Fimbriystis autumnalis, Xyris caroliniana, Eriocaulon septangulare etc3).

2) Transactions Royal Society of Canada third series I sect. 4: 25.

The marine plants of the northeastern coast of North America naturally arrange themselves in several shelves\(^1\), the Ulva shelf, the Fucus shelf, the Laminaria-Chondrus shelf and the Deep Sea shelf.

Ulva Shelf. On this shelf *Ulva latissima* is found in great abundance. Wherever pools of water are left by the tide, this plant occurs and I have found it plentifully on Conanicut Island growing in the pools formed in the exposed slate rock of the coast at that point.

Four species of Enteromorpha are found on this shelf *Enteromorpha intestinalis*, *E. compressa*, *E. clathrata*, *E. Hopkirkii*. Along with these and firmly adhering to the rocks clumps of Cladophora rupestris, *C. uncialis*, *C. flexuosa* are found, and also gelatinous masses of *Hormotrichium Youngianum*. Here is also a dwarf species of *Fucus*. It grows in the corners and crevices of water pools and may be a form of *F. vesiculosus*.

Fucus Shelf. The first and uppermost plant is *Fucus* (*Ascophyllum*) *nodosus* ranging as far south, as New York Bay. It covers a belt of shore from one to three yards in breadth and is frequently covered by *Ceramium rubrum*. It grows below it and retains more water among its fronds than the previous more leathery plant. It is parasitized by *Elachista* *fucicola* and *Ectocarpus siliculosus* and completely covers the rocks upon which it grows. *Fucus furcatus* occupies the chief place in what might be termed the third sub-shelf. It is found at the ordinary low water mark and is scarcely ever altogether out of the water. Under its folds *Chondrus norwegicus*\(^2\) occurs adherent to the rocks with *Gigartina mamillosa*.

The pools at this depth are the homes of *Chondrus crispus*, *Halasaccion ramentaceum*, *Cystoclonium purpurascens* together with *Hypnea musciformis*, *Chordia flagelliformis*, *Rhodymenia palmata*, *Porphyra laciniata*, *Chaetomorpha melagonium*, with Delesseria *sinuosa* in the deeper and more shady pools.

Laminaria-Chondrus Shelf. The marine algae of this shelf are *Agarum Turneri*, *Alaria esculenta*, *Laminaria digitata*, *saccharina*, *fascia*, *phyllitis*, *dermatodea*, while at greater depths is found *Chondrus crispus*, which grows in great abundance south to Long Island.

Deep Sea Shelf. The finer American marine algae occur in deep water. *Laminaria longicaulis* eight to twelve feet long occurs here as far south as Cape Cod. The prevailing deep sea algae are *Rhodymena subfusca*, *Delessaria sinuosa*, *alata*, *denticalata*, *Euthora cristata*, *Phyllophora membranifolia*, (not common), *Ptulota serrata* and elegans, *Punctaria tenuissima*, *Polysiphonia fibrillosa*.

The following is a list of the marine algae found on the shores of Penikese Island\(^2\).

Bryopsis plumosa Lam.
Enteromorpha intestinalis Linb.
 > Hopkirkii M’Calla.
 > compressa Grev.
 > clathrata Grev.
Ulva latissima L.
Cladophora arcta Dillw.
 > lanosa Roth.
 > glaucescens Griff.
 > flexuosa Griff.
Rhodomela subfusca Ag.
Polysiphonia formosa Harv.
 > subtilissima Mont.
 > Harveyi Bailey.
 > elongata Grev.
 > violacea Grev.
 > variegata Ag.
 > nigrescens Grev.
 > afinis Harv.
 > fastigiata Grev.
Dasya elegans Ag.
Corallina officinalis L.
Grinellia americana Harv.
Delessaria sinuosa Lam.
Gelidium corneum Lam.
Rhodymenia palmata Grev.
Phyllophora Brodiaei Ag.
Griffithsia corallina Ag.

Chlorophyceae.
Cladophora albidula Huds.
 > gracilis Griff.
 > fracta Fl. Dan.
Chaetomorpha melagonium Web. & Mohr.
 > aerea Dillw.
 > Olneyi Harv.
Hormotrichium Younganum Dillw.
Calothrix confervicola Ag.
 > scopulorum Ag.

Rhodophyceae.
Callithamnion Baileyi Harv.
 > Barreri Ag.
 > byssoides Arn.
 > corymbosum Ag.
 > seirospermum Griff.
 > plumula Lyngb.
 > americanum Harv.
 > Turneri Ag.
 > Daviesii Ag.
 > luxurians Ag. 1)
Champia parvula Harv.
Ahnfeltia plicata Fries.
Cystoclonia purpurascens Kg.
Chondrus crispus L.
Ceramium rubrum Ag.
 > diaphanum Roth.
 > fastigiatum Harv.
 > arachnoideum Ag.

Phaeophyceae.
Punctaria tenuissima Grev.
Asperoecus echinatus Grev.
Chordaria flagelliformis Ag.
 > divaricata Ag.
Leathesia tuberiformis Gray.
Elachistea fucicola Fries.
Sphacelaria cirrhosa Ag.
Ectocarpus litoralis Lyngb.
 > siliculosus Lyngb.

Pelagic Bentos Formation. The plankton vegetation off the New England coast has not been studied, but some investigation has been made of the bacterial flora 1). Quantitatively the marine mud in the vicinity of Woods Hole contains much less germ life than that of the Mediterranean in the vicinity of Naples. The Naples cultures made from mud taken at the depth of 150 feet

or less, yielded usually from 200—300,000 germs per c. c., while those made at Woods Hole in only exceptional instances exceeded 50,000 germs, while the average content was about 15—20,000 per unit of volume. *Bacillus limicolus*, a common chromogenic species, inhabits exclusively the ground layers of the sea bottom in America. Three other forms *Bacillus pelagicus*, *mariimus* and *litoralis* comprise the major portion of the bacterial flora of Woods Hole and are found both in the water and the underlying ground layers. These where distributed through the water at all depths and *Bacillus pelagicus* and *mariimus* were abundant in samples of mud taken at a distance of 100 miles from land and in 450 feet of water.

Bog Formation. This formation is characterized by the abundance of Sphagnum species which form a dense growth over the surface and maintain more equable conditions of moisture and temperature. They may be called islands of northern plants with many ericaceous species. The plants of this formation in eastern Massachusetts are:

Calla palustris L.	Sarracenia purpurea L.
Clintonia borealis Raf.	Utricularia cornuta Michx.
Habenaria lacera R.Br.	Menyanthes trifoliata L.
Pogonia ophioglossoides Ker.	Epilobium lineare Muhl (= E. densum)
Calopogon pulchellus R.Br. (= Limo-	Geum rivale L. [Raf.].
dorum tuberosum L.).	
Arethusa bulbosa L.	Vaccinium macrocarpon Ait.
Cladium mariscoides Torr.	oxycoccus L.
Rhynchospora alba Vahl.	Cassandra (Chamaedaphne) calyculata
Eriophorum gracile Koch.	Moench.
» vaginatum Am. auth. (=	Andromeda polifolia L.
E. callithrix Cham.).	Kalmia glauca Ait.
Smilacina trifolia Desf.	Ledum latifolium Ait.
Drosera rotundifolia L.	Rhododendron Rhodora Don.
» intermedia Hayne.	Chiogenes hispidula T. & G. (= ser-
	pyllifolia Salisb.).

The cold sphagnum bogs of Vermont have an interesting flora, but in the tabulated list below the preponderance of species of *Carex* (13) and *Eriophorum* (4) is probably due to the greater care taken in the collection and identification of these typic bogs plants.

Calopogon pulchellus R.Br.	Microstilis (Achroanthes) monophyllos Lindl.
Arethusa bulbosa L.	Poa pratensis L. var. angustifolia Smith.
Habenaria dilatata Gray.	Carex tenuiflora Wahl.
Listera cordata R.Br.	» teretiuscula Gooden.
Carex trisperma Dewey.
Eleocharis pauciflora Link.
Eriophorum alpinum L.
> gracile Koch.
> vaginatum L.
Scirpus atrocinctus Fernald.
Carex chordorrhiza L. f.

The same Ericaceae are noted from Massachusetts bogs, without Rh. Rho-
dora, the same Sarracenia, Geum, and the following trees, shrubs and perennials:

Picea nigra Link.
Salix candida Fluegge.
> myrtilloides Man. ed. 6 (= S. pedicillaris Pursh).
Viburnum cassioides L.
Myrica gale L.
Potentilla palustris Scop.
Lonicera caerulea L.
> oblongifolia Goldie.
Rhamnus alnifolia L'Her.

Aster junceus Ait.
Senecio Robbinsii Oakes.
Solidago uliginosa Nutt.
Pyrola secunda L. var. pumila Gray.
> uliginosa Torr.
Amelanchier canadensis T. & G. var. oblongifolia Roem.
Solidago neglecta T. & G.
Valeriana sylvatica Banks (= V. septentrionalis Rydb.).

In many places the forests to be considered later encroache on the bogs converting them into boggy woodlands. In a study of certain salt marshes on the New England coast Penhallo-

Swamp Formation. This formation is coincident with open swamps and marshes. The water is shallow, the soil is covered with water, but in summer the water dries up leaving the soil of such swamps partially dry. The plants of this formation are entirely different from those that form the bog associations. They appeared in the region at a later period than the bog plants, as we have shown in a former chapter. The following plants are usually amphibious, or emersed:

Pontededia cordata L.
Alisma Plantago-aquatica L.
Sagittaria variabilis Engelm. (= S. lati-
> folia Willd.).
Acorus Calamus L.
Peltandra virginica L. (= P. undulata
> Raf.).
Sparganium eurycarpum Engelm.
> simplex Huds.
Typha latifolia L.

Carex exilis Dewey.
> folliculata L.
> fusca Man. ed. 6.
> livida Willd.
> magellanica Man. ed. 6.
> oligosperma Michx.
> pauciflora Lightf.
> saltuensis Bailey.
> tenella Schkuhr.

Iris versicolor L.
Carex stricta Lam.
Zizania aquatica L.
Glyceria fluitans R.Br.
Ludwigia (Isnardia) palustris L.
Proserpinaca palustris L.
Cicuta maculata L.
> bulbifera L.
Sium cicutaefolium Gmel.

<table>
<thead>
<tr>
<th>Lathyrus palustris L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decodon (Nesaea) verticillatus Ell.</td>
</tr>
<tr>
<td>Veronica scutellata L.</td>
</tr>
<tr>
<td>Bidens chrysanthemoides Michx.</td>
</tr>
<tr>
<td>(= B. laevis L.).</td>
</tr>
<tr>
<td>Caltha palustris L.</td>
</tr>
<tr>
<td>Cardamine pennsylvanica Muhl.</td>
</tr>
<tr>
<td>Rumex britannica L.</td>
</tr>
<tr>
<td>Equisetum limosum L.</td>
</tr>
</tbody>
</table>

Mud Pond Formation. This formation exists in ponds and slow-flowing streams with mucky, clay bottom. The plants of the table have their upper leaves floating, rarely submerged.

Chara fragilis Desv.
Nitella flexilis Ag.
Marsilia quadrifolia L.
Podostemon ceratophyllum Michx.
Naias flexilis R. & S.
Potamogeton crispus L.
> natans L.
Elodea (Philotria) canadensis Michx.

This formation also includes the free floating vegetation of fresh water ponds, streams and ditches including

Utricularia vulgaris L.
> purpurea Walt.
> inflata Walt.
Riccia fluitans L.

<table>
<thead>
<tr>
<th>Vallisneria spiralis L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ranunculus multifidus Pursh</td>
</tr>
<tr>
<td>(= R. delphinifolius Torr.).</td>
</tr>
<tr>
<td>Myriophyllum spicatum L.</td>
</tr>
<tr>
<td>Callitriche heterophylla Pursh.</td>
</tr>
<tr>
<td>Nuphar (Nymphaea) advena Ait.</td>
</tr>
<tr>
<td>Nymphaea (Castalia) odorata Ait.</td>
</tr>
</tbody>
</table>

Sand Pond Formation. Blankinship thinks this formation distinct enough from the preceding to merit separate treatment. The bottoms of the ponds where the vegetation of this formation occur, are sandy with little humus. The plants named below are usually submerged with their upper leaves floating:

<table>
<thead>
<tr>
<th>Myriophyllum tenellum Bigel.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ambiguum Nutt. (= M. humile Raf.).</td>
</tr>
<tr>
<td>Naias indica var. gracillima A.Br. (= N. gracillima A.Br.).</td>
</tr>
<tr>
<td>Hottonia inflata Ell.</td>
</tr>
<tr>
<td>Eriocaulon septangulare With.</td>
</tr>
<tr>
<td>Proserpinaca pectinata Lam.</td>
</tr>
<tr>
<td>Limnanthemum lacunosum Griseb.</td>
</tr>
<tr>
<td>Potamogeton spirillus Tuckerm.</td>
</tr>
<tr>
<td>Sagittaria teres Wats.</td>
</tr>
<tr>
<td>Orontium aquaticum L.</td>
</tr>
<tr>
<td>Lobelia Dortmannia L. (= Michx.).</td>
</tr>
<tr>
<td>Brasenia peltata Pursh (= B. purpurea Nuphar Kalmianum Sims.</td>
</tr>
<tr>
<td>Nymphaea odorata Ait.</td>
</tr>
<tr>
<td>Lycopodium inundatum L. var. Bigelovii Tuckerm.</td>
</tr>
</tbody>
</table>

The margin of such sand ponds is fringed by a number of characteristic herbs that will grow in wet, open sandy places. Several of the plants mentioned
above also grow in more or less dry soil assuming under varying conditions an amphibious habit.

When mats of floating vegetation become anchored other plants appear, viz., species of *Utricularia, Carex, Xyris, Drosera*, while *Decodon (Nysaea) verticillatus* plays a leading part in binding the mats together. Following *Decodon are Clethra alnifolia, Rhododendron viscosum, Vaccinium corymbosum, Ilex, Myrica carolinensis and Gale, Andromeda ligustrina, Cassandra,* and finally these shrubs are overshadowed by trees of *Chamaecyparis sphaeroidea (= C. thyoides)* and the series enters the culminating stage as a cedar swamp.*

5. Forest- and Hill Barren-Formation.

For convenience in treatment the forests of the New England Area will be treated under two heads, viz., the forests of southern Maine, central and southern New Hampshire, eastern Massachusetts and those of southern New England. This represents the transition area from the broad-leaved forest of the south to the coniferous forest of the north. The white pine, *Pinus strobus,* mixes here with *Quercus alba* and *Castanea dentata (= C. americana)* although it is prominent enough still as an element to bind this territory as a phyto-geographic area to that of the New Brunswick Area, where the *Pinus strobus* is even more abundant.

Deciduous Forest Formation. The trees found in moist soil and deep humus often spoken of collectively as rich woods are *Pinus strobus, Platanus occidentalis, Acer rubrum, Tilia americana, Ulmus americana, Acer saccharum, Quercus coccinea and Fraxinus americana.*

The shrubby undergrowth is formed by *Amelanchier canadensis var. oblongifolia, Alnus incana, Alnus serrulata, Ampelopsis (Parthenocissus) quinquefolia, Rhus radicans* and the following herbs on the ground in the shade of the trees: *Arisema triphyllum, Maianthemum (Unifolium) canadense, Circaeaa lutetiana, Aralia nudicaulis, Boehmeria cylindrica, Viola pubescens, Viola blanda, Sanguinaria canadensis, Trillium cernuum, Uvularia (Oakesia) sessilifolia, Erythronium americanum,* *Impatiens fulva (= I. biflora), Pilea (Adicca) pumila.*

The forests of the hilly uplands occur on argillaceous soils with slate or granite base often glacial drift, and such situations are often denominated "dry hillsides", "rocky slopes", etc. The trees in such places are *Quercus alba,* which ascends to the Connecticut River valley as far as the foot hills of the White Mountains and in another direction sweeps northeastward into Maine a little north of Lake Winnepesaukee, while the chestnut *Castanea dentata* follows the same line of distribution a little south of the white oak, reaching the southern margin of the aforementioned lake. Also the botanist finds *Quercus tinctoria (= Q. velutina), Q. rubra, Carya alba (= Hicoria ovata), C. porcina (= H. glabra), Prunus serotina, Populus tremuloides, Sassafras*

officinale, Ostrya virginiana, Fagus americana and Tsuga canadensis associated with the shrubs Rhus, Corylus, Rubus, Vaccinium vacillans and a assortment of herbaceous plants of wide range. Near the coast, as on Cape Cod, where the soil is sandy and usually level the forest is open and the pitch pine Pinus rigida is the principal tree.

This open forest merges into the Sand Barren Formation where grow associated together Hudsonia tomentosa, H. ericoides, Lechea minor var. maritima, Hypericum nudicaule, Cyperus filiculmis and Grayi, Corema Conradii, Smilax rotundifolia, Arctostaphylos uva-ursi, etc.

The hardwoods predominate largely except in eastern Massachusetts and northeastern Connecticut and Rhode Island where Pinus strobus occurs in solid groves on gravel ridges, and on the sandy borders of streams and ponds. Juniperus virginiana comes up in old fields especially in southern Connecticut, Tsuga canadensis grows in all sections. The oaks are the most common trees except in the Berkshires where Pinus nigra, Abies balsamea, Acer saccharum, Betula lutea and papyrifera, Fagus occur. In eastern Massachusetts Quercus alba, Q. coccinea, Quercus rubra occupy the best situations and on loose sands and gravels accompany Pinus strobus. Castanea dentata is one of the commonest trees and in Connecticut it forms 60 per cent of the forest on rolling land and on the very best soils is mixed with Liriodendron tulipifera, Fraxinus americana and Tilia americana 1). Little of the virgin forest is left in Connecticut, but in North Colebrook is a small remnant comprising a mixture of Pinus Strobus, Tsuga canadensis, Betula lutea, Castanea dentata (some places 60 per cent of stand), Quercus alba, Q. rubra, Acer saccharum, A. rubrum, Prunus serotina and Fraxinus americana, while of secondary importance occur Betula populifolia, B. lenta, Quercus prinus (on rocky ridges), Q. coccinea, Platanus occidentalis (in river bottoms), Liriodendron tulipifera (in moist soil), Tilia americana, Juglans cinerea, Sassafras, Ulmus americana, Carpinus caroliniana, Ostrya virginiana, Cornus florida and Corylus americana 2). In swamps in southern New England, Acer rubrum is the characteristic and often the only tree. It is accompanied on the wettest ground by Ulmus americana, Quercus palustris and bicolor, Fraxinus sambucifolia.

Such a swamp forest occurs on the north shore of Long Island at the head of St. John's Pond near Cold Spring Harbor, according to Transeau. The forest is composed of Quercus alba, Nyssa sylvatica, Liriodendron tulipifera, Fraxinus americana as the dominant trees with an under growth of Hamamelis virginiana, Viburnum molle, Azalea (Rhododendron, viscosa, Clethra alnifolia, Alnus incana, Smilax rotundifolia, Rhus radicans, Lindera benzoin (= Benzoin benzoin), Andromeda (Xolisma) ligustrina, and such herbs as Osmunda cinnamomea, Symlocarpus (Spath yema) foetidus, Viola cucullata, Trillium cernuum, Arisaema triphyllum, Carex crinita, C. Asa Grayi (= C. Grayi), Veratrum viride and Dryopteris noveboracensis.

Hill Top Barren Formation. Where high points of slate or granite are exposed by denudation, a characteristic formation occurs. Sometimes this formation (usually local) is found on rocky cliffs. The trees which grow in the ledges are in dry soil under xerophytic condition, consequently the number of arboreous species is small. Quercus prinoides, Q. ilicifolia, Juniperus virginiana, J. communis var. alpina, Prunus pennsylvanica, P. virginiana and Pinus rigida comprise the list of trees occurring in such places associated with Vaccinium pennsylvanicum, Rhus typhina etc.

Sand Plains Formation. Certain sand plains near North Haven, Connecticut are covered with a xerophytic vegetation composed of Andropogon scoparius (in tufts), Cyperus ficulnilus, Sporobolus, Syntheritsna, Trichostema, Polygouella, Hypericum nudicaule, Asclepias Cornuti (syriaca), Baptisia, Helianthemum, Artemisia caudata. — Juniperus virginiana, J. communis, Prunus serotina, Quercus tinctoria var. are the dominant trees and grow in scattered groups while certain areas are covered with Cladonia rangiferina and Comptonia asplenifolia (= C. peregrina).

The sand plains in Vermont are characterized by trees and shrubs of Prunus cuneata, Pinus rigida, Quercus ilicifolia (= Q. nana Sarg.), Salix humilis, clumps of the dominant grass Andropogon nutans var. avenaceus (= Chrysopogon avenaceus Michx.) with Carex Houghtonii, Mühlenbergii, siccata and Fimbriystis capillaris and many perennials, such as Asclepias obtusifolia, Solidago puberula, Aster linariifolius, Lespedeza capitata, Lupinus perennis, Helianthemum majus, Viola arenaria and Spiranthus gracilis.

B. Lake District.

This phytogeographic district occupies the region west of Lake Champlain and the Ottawa River representing the drainage basin of the Great Lakes, with its northern boundary indicated approximately by the northern limit of white elm, Ulmus americana. It stands midway between the deciduous forests of the central eastern United States and the subarctic forest on the north and possesses enough of characteristic plants to separate it from the Maritime District on the east and the Prairie Region, which limits it on the west. Two areas are sufficiently distinct to merit recognition. These are known respectively, as the Interlacustrine and Adirondack areas.

a) Interlacustrine Area.

This area comprises the country immediately surrounding the Great lakes and other glacial lakes west of the Ottawa River.

1. The Forest Formations.

The forests of Quebec are extensive and approach those of northern and central Ontario in the number and distribution of the species. Except in the more southern districts the elms, maples and beeches occupy restricted areas, as they do further east, and the trees of Quebec with few exceptions are the trees of the New Brunswick area. The following additional species enter Quebec, but only along the Ottawa and St. Lawrence valleys.

\[
\begin{align*}
\text{Acer dasycarpum Ehrh. (=} & \text{A. saccharinum L.)} \\
\text{Crataegus coccinea L.} & \text{Carya amara Nutt. (=} \text{Hicoria minima Marsh.)} \\
\text{Ulmus fulva Michx.} & \text{Carya alba Nutt. (=} \text{H. ovata Mill.)} \\
\text{» racemosa Thomas (= U. Thomasi Sarg.)} & \text{Carpinus caroliniana Walt.} \\
\text{Celtis occidentalis L.} & \text{Quercus alba L.} \\
\text{Carya amara (Hicoria minima)} & \text{Populus monilifera Ait. (=} \text{P. deltoides}} \\
\text{Carya amara (Hicoria minima)} & \text{Juniperus virginiana L. [Marsh.)} \\
\end{align*}
\]

None of these trees are very abundant and the elms and the bitternut \textit{Carya amara (Hicoria minima)} are the only ones that can be called common in Quebec.

Floristic Character. Owing to the position and extent of province of Ontario, its forests are not all of the same character and while in the north and northwest the species are identic with those found in Quebec, those in the south and southwestern peninsula are quite distinct and may be said to be a reproduction of the northern Ohio and Pennsylvania forest formations and hence this territory belongs to another phytogeographic region. Common to Ontario and Quebec \(1)\) are eighty-five species not found south of the Interlacustrine Area. The indigenous species include the following:

\[
\begin{align*}
\text{Anemone narcissiflora L.} & \text{Arenaria arctica Stev.} \\
\text{Thalictrum alpinum L.} & \text{Aster Lamarckianus Nees (=} \text{A. paniculatus Lam.)} \\
\text{Ranunculus affinis R. Br. (=} \text{R. pedatifidus J. E. Smith).} & \text{Gnaphalium sylvaticum L.} \\
\text{» cardiophyllum Hook.} & \text{Antennaria carpathica R. Br.} \\
\text{Arabis patula Graham (= A. Bourgovii Rydb.)} & \text{Senecio canus Hook.} \\
\text{» retrofitacta Graham.} & \text{Hieracium vulgatum Fries.} \\
\text{Erysimum lanceolatum Pursh (=} \text{E. asperum DC.)} & \text{Crepis runcinata T. & G.} \\
\text{Vesicaria arctica Rich. (= Lesquerella arctica DC.)} & \text{Cassiope (Andromeda) tetratona L.} \\
\text{Draba hirta L.} & \text{Armeria vulgaris Willd.} \\
\text{Thlaspi montanum L.} & \text{Pentstemon gracilis Nutt.} \\
\text{Cochlearia tridactylites Banks.} & \text{Pedicularis palustris L.} \\
\end{align*}
\]
Astragalus labradoricus Hook. (= A. alpinus L.).
Dryas octopetala L.
 > Drummondii Rich.
Rubus arcticus L.
Ribes oxyacanthoides L.
Saxifraga nivalis L.
Sium latifolium Bigel. (= S. cicutae-
 Cornus suecica L. [folium Gmel].
Rumex acetosa L.
Elaeagnus argentea Pursh.
Salix vestita Pursh.

The surface of the Laurentide country is of a mamillated character, its
hills and peaks having been worn down by glacial action. The intervening
depressions hold numerous small lakes and ponds. The more prominent eleva-
tions are covered with evergreens (Coniferous Forest Formation) chiefly
Pinus strobus, P. resinosa, Picea alba. The sphagnum bogs (Bog
Formation) consist of Sphagnum cymbifolium, S. acutifolium, S. cuspidatum
surrounded by Larix americana, and on the rim of the depression with the
regularity a circumarea of Thuja occidentalis associated most commonly
with Ledum latifolium, Alnus incana, Rhamnus alnifolius, Cornus stolonifera.
Encircling the latter circumarea and bounding the depression occur
Fraxinus sambucifolia, Ulmus americana, Betula lutea, Acer rubrum, A. spicatum,
Ribes rubrum, R. lacustris, R. hirtellum, and R. nigrum. The plants in the list
below may be cited as truly Laurentian.

Ribes prostratum L’Her.
Aralia hispida Vent.
Spiraea tomentosa L.
Polygonum cilinode Michx.
Kalmia angustifolia L.
Pinus Banksiana Lamb. (= P. divaricata
 rigida Mill. [Ait.].
Isoetes riparia Engelm.
Sphagnum squarrosum Pers.
Dicranum fulvum Hook.
 > spurium Hedw.
Potamogeton Vaseyi Robbins
 > spirillus Tuck.

Echinodorus subulatus Engelm. (= E. tenellus Buchen.).
Alisma tenellum Mart.
Iris tridentata Pursh.
Eriophorum capitatum Host (= E.
 Scheuchzeri Hoppe).
Eriophorum russeolum Fries.
Carex ovata Rudge (= C. atratiformis
 Britton).
 > bicolor All.
Elymus arenarius L.
Asplenium viride Huds.

Carex Houghtonii Torr.
 > lenticularis Michx.
Asplenium ebeneum Ait. (= A. platy-
 neuron Oakes).
Woodsia ilvensis R. Br.
Trichostomum (Leptotrichum) glauces-
 cens Hedw.
Grimmia Olneyi Sulliv.
Hedwigia ciliata Eh rh.
Bryum crudum Schreb. (= Webera
 cruda Schimp.).
Fontinalis antipyretica L. var. gigantea
 Sulliv.¹).

Extension and Kinds of Forest-Formations. The whole face of the lake
country north of Lake Superior is covered with a dense forest which is cha-

 Society of Edinburgh XII: 300.
racterized by the predominance of certain northern types and the absence or rarity of trees more frequent farther south. An uninterrupted forest extended from Michigan through Wisconsin into Minnesota.

The forest formations in Northern Michigan, according to C. A. Davis, are: 1) the Deciduous Forest Formation which covered the better class of well-drained uplands, including the rock hills. The dominant species were Acer saccharum, Ulmus, Tilia, Fagus, in the south, Betula lutea, B. lenta in the north, with more or less mixture of conifers, especially Tsuga, Abies, Picea alba and Pinus strobus. 2) The Coniferous Forest Formation (Swamp Tree-Facies) which covered all of the undrained, or poorly drained flat lands, including the peat bogs and comprised Larix americana, Picea nigra and Thuja occidentalis with the occasional admixture of Pinus strobus, Abies, Picea alba, Fraxinus sambucifolia, Ulmus and Acer rubrum. 3) The Hemlock-White Spruce-Balsam-Facies was found on well drained flat lands and upon gentle slopes on the sides of the valleys. It had as fairly constant constituents Betula populifolia, B. lutea, Thuja occidentalis. 4) The White Pine-Facies was the type of forest in which Pinus strobus was dominant and confined to relatively small and disconnected areas of gravelly deposits and to partially covered rock outcrops. In open stands occur Pinus resinosa and P. Banksiana associated with Quercus coxcinca and Acer rubrum.

Along the southern and southwestern border this forest merged into oak and jack pine "openings", and in places gave way to regular prairies: Mixed Forest Formation. It is a mixed forest of Pinus strobus and hardwoods on all loam and clay lands, while the pineries on sand and loamy sand consisted of a mixture of Pinus strobus and P. resinosa. To the east and north of a line extending approximately from Lake Superior east to Green Bay the hemlock stands associated with the pines and hardwoods on all gravelly clay and loam soils. Quercus rubra is scattered through the forest and the absence of Quercus alba is noteworthy. South of this line however Quercus alba becomes abundant. Two kinds of forests may, therefore, be distinguished: the coniferous forest and the deciduous forest represented by the Acer-Fagus-Tsuga-facies. The undergrowth in the dense shade in the latter forest is scanty consisting of Taxus canadensis, Mitchella repens.

The basin of the Red River of the North represents the western or northwestern limit of many species of trees which constitute a large part of the eastern forests. It may be considered to be the western boundary of the Interlacustrine Area.

Among the trees which here reach their limit are Tilia americana, Acer saccharum, Acer rubrum, Juglans cinerea, Quercus alba, Q. macrocarpa, Q. tinctoria, Ostrya virginiana, Carpinus caroliniana, Betula lutea, Populus grandidentata, Pinus strobus, P. resinosa, Thuja occidentalis, Juniperus virginiana, Fraxinus americana, F. pubescens, F. sambucifolia, Ulmus fulva, U. racemosa. A few species of far northern range find in this district their southern or southwestern limit: Pinus Banksiana, Picea alba, Abies balsamea, Tsuga canadensis, Populus balsamifera.

Some of the eastern shrubs which make the undergrowth of the forests here attain their western limits: Vaccinium pennsylvanicum, V. corymbosum, Dicera palustris, Comptonia asplenifolia,

2. Rock- and Talus Formations.

Rock Gorge Formation. This formation is usually found on precipitous cliffs. The Dalles of the St. Croix and Wisconsin rivers may be taken as typic where rivers have worn deep gorges through the rocky strata. Ferns may be called the most characteristic feature in the St. Croix gorge. Growing in the clefts of the rocks is Dryopteris [Aspidium] fragrans, Woodsia obtusa, while on exposed faces occurs Woodsia ilvensis and on shaded cliffs Cystopteris fragilis, Campsororus rhizophyllus: Talium teretifolium occurs on the diabasic rocks with Houstonia purpurea and Oxybaphus nyticagicus.

The cliff faces and damp, dark crannies of the Dalles of the Wisconsin show tufts of Gymnostomum, Pellaca atrepurpurea, Dryopteris fragrans and on surfaces protected by overhanging shelves, sheets of the rare sword moss, Bryozopium norvegicum (= Eustichia norvegica). The sandy summits of the cliffs show patches of Mosses (Polytrichum, Dicranum, Leucobryum and Thelia Lescurii). The walls of certain of the canyons are occupied by Primula farinosa, Viola Selkirkii, while rooted in the crevices of more exposed sandstone places grows Potentilla fruticosa, Rhododendron lapponicum and in similar more shaded situations near the water line Sullivantia.

The dominant crevice herbs in general are: Campanula rotundifolia, Houstonia purpurea, Henechera americana, Agrostis hyemalis, Arenaria stricta; the dominant crevice shrubs: Juniperus sabina. J. communis, Spiraea salicifolia, Rosa Woodsii, Diervilla trifida; the crevice trees are: Pinus strobata, P. Banksiana, Q. macrocarpa, Fraxinus americana, Populus tremuloides.

There are rock hills not connected with the present erosion of rivers. These hills have their peculiar vegetation. Stony Island is an outcrop of dolomitic Niagara (Silurian) limestone. The limestone is jointed and fractured and in the crevices occur mosses (Ceratodon and Bryum), while in the shallow soil on the rock face are Potentilla arguta, Verbasca thapsus, Henechera hispida, Poa compressa. The opportunity for growth of shrubs eventually arrives and there appear Prunus virginiana, Physocarpus opulifolius, Rhus radicans and typhina, Rosa humilis, Ptelea trifoliata, Pirus coronaria. Later tree vegetation appears.

Talus Formation. Naturally the character of the talus depends upon the ledge from which it fell. Various types of vegetation occur on talus and form associations of herbaceous, shrubby or arboreal constituents. Space will permit the description of only one or two characteristic associations.

4) See in this connection MacMillan, C.: Observations on the Distribution of Plants along
Cladonia gracilis Association. This occurs on shaded talus and is found typically along the north shore of Lake Superior. The face of the bluff above the talus is covered with species of Stereocaulon, Cetraria, Ramalina, Buellia, Usnea, Lecanora, Alectoria, Evernia and Pannaria, while the talus below is covered with a perfect maze of Cladonia gracilis, C. gracilis var. dilatata, C. cristatella, C. verticillata var. evoluta, C. furcata var. paradoxa, C. fimbriata var. apolepta, C. fimbriata var. subulata, C. fimbriata var. radiata, C. baecillaris, C. deformis, C. pyxidata, C. cenotea, C. coecifera, C. squamosa, C. eaepticia, C. uncialis, C. rangifera, C. sylvatica and C. alpestris with species of Stereocaulon, Peltigera stricta and Parmelia.

Cladonia rangifera Association. This is best developed on the east side of Hat Point near Grand Portage. Talus blocks occur here overgrown with coniferous trees and the whole talus block floor is covered with a rich growth of Cladonia rangifera, C. alpestris, C. sylvatica, C. uncialis, C. amaurocraea and Stereocaulon paschale in another place.

Lecanora Association. This occurs on exposed granitic boulders. The most constant elements of this association in Minnesota are Physcia caesia, Placodium cinereum, Placodium vittulinum, Lecanora rubina, Lecanora cinerea, Lecanora xanthophana, Rinodina sophodes, Buellia petraea.

Lecanora calcarea-contorta Association. The lichens of this association have small thall in closely adnate, or even more or less hypolithic occurring on exposed limestone, viz., Placodium vittulinnium var. aurellum, Lecanora subfuscus, Lecanora calcarea var. contorta, Lecanora privigna var. pruinosa, Rinodina Bischofii, Endocarpon pusillum, Verrucaria nigrescens, Verrucaria muralis.

3. Limnoplankton- and Lake-Formations.

Plankton Formation. The plankton of Lake Erie according to Julia Snow *) consists of the following algae; being much the same species as in Europe:

<table>
<thead>
<tr>
<th>Confervoideae.</th>
<th>Scenedesmus. 10 spec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stigeoclonium tenue Kg.</td>
<td>Coelastrum, 4 spec.</td>
</tr>
<tr>
<td>Aphanochaete repens A. Br.</td>
<td>Pediastrum, 3 spec. (and 4 var.).</td>
</tr>
<tr>
<td>Cladophora glomerata Kg.</td>
<td>Staurogenia, 3 spec.</td>
</tr>
<tr>
<td>Hormidium, 2 spec.</td>
<td>Kirchneriella, 2 spec. (and 2 var.).</td>
</tr>
<tr>
<td>Siphophyceae.</td>
<td>Golenkinia fenestrata Schräd.</td>
</tr>
<tr>
<td>Protosiphon botryoides Kg.</td>
<td>Ophiocystium capitatum Wolle.</td>
</tr>
<tr>
<td>Protococcoideae.</td>
<td>Characium ambiguum A. Br.</td>
</tr>
<tr>
<td>Volvox globator Ehrb.</td>
<td>Polyedrium, 3 spec.</td>
</tr>
<tr>
<td>Eudorina elegans Ehrb.</td>
<td>Dictyothesphaerium, 2 spec.</td>
</tr>
<tr>
<td>Pandorina morum Bory.</td>
<td>Tetraspora natans Kg.</td>
</tr>
<tr>
<td>Chlamydomonas, 3 spec.</td>
<td>Schizochlamys gelatinosus A. Br.</td>
</tr>
<tr>
<td>Hydrodictyon utriculatum Roth.</td>
<td>Botryococcus Braunii Kg.</td>
</tr>
<tr>
<td></td>
<td>Gloeocystis ampla Rabh.</td>
</tr>
<tr>
<td></td>
<td>Nephrocytium Agardhianum Nag.</td>
</tr>
<tr>
<td></td>
<td>Oocystis, 3 spec.</td>
</tr>
</tbody>
</table>

1) Bruce Fink gives a minute and detailed classification of lichen associations too detailed for even brief mention here. See Minnesota Botanical Studies second ser. pages 1, 215, 277, 67 et al.

Chodatella citriformis Snow.
Rhaphidium, 5 spec.
Silenastrum, 3 spec.
Dactylococcus infusionum Näg.
Stichococcus bacillaris Näg.
Pleurococcus, 2 spec.
Chlorella, 2 spec.
Botrydiopsis enensis Snow.
Chlorosphaera, 2 spec.
Scotinosphaera paradoxa Klebs.

Conjugatae.

Hyalotheca dissiliens Breh.
Onychonema laeve Nordst.
Sphaerozosma filiforme Rabh.
Closterium, 4 spec.
Closterium pronum Breh. (and var.).
Pleurotaenium trabecula Näg.
Cosmarium, 11 spec.
Euastrum, 2 spec.
Staurastrum, 5 spec.

Bacillariaceae.

Navicula limosa Kg.
Amphiprora ornata Bail.
Cymbella, 2 spec.
Encyonema prostratum Ralfs.
Cocconema, 2 spec.
Gomphonema, 3 spec.

Nitzchia sigmoidea Sm.
Campylococcus cribrosus Sm.
Cymatopleura solea Bréb.
Surirella, 3 spec.
Synedra, 2 spec.
Fragilaria, 2 spec.
Asterionella formosa Hassal.
Tabellaria, 2 spec.
Melosira, 3 spec.
Orthosira orichalcea Sm.
Cyclotella, 3 spec.
Stephanodiscus Niagareae Ehr.

Schizophyceae.

Rivularia radians Thur. (and var.).
Mastigomonera aerugineum Kirch.
Aphanizomenon flos-aquae Ralfs.
Anabaena flos-aquae Breh.
Plectonema mirabile Thur.
Oscillatoria, 6 spec.
Lyngbya Wallei Farlow.
Microcoleus anguiformis Haw.
Merismopedia, 4 spec.
Coleosphaerium roseum Snow.
Clathrocystis, 2 spec.
Gomphosphaeria aponina Kg.
Polycystis ichthyoblabe Kg.
Gloeocapsa fenestralis Kg.
Chroococcus, 3 spec.

The plankton of such lakes as Winnebago, Green, Eagle varies from season to season. Clathrocystis, and allied forms, Oscillaria are peculiar to shallow lakes. Gloeotricha, although a shallow lake form, also occurs in large numbers in deep lakes. Anabaena is the ordinary "bloom" in deep lakes, together with Ceratium. In Lake Winnebago, Asterionella gracilima, Cyclotella floculosa, Synedra pulchella, S. acus var. delicatissima, Fragilaria, Stephanodiscus, Navicula, Surirella, Pleurosigma, Nassula form elements of the lake diatom flora \(^1\).

The plankton of western Lake Erie includes species of Merismopedia, Pediasastrum, Sphaerogyra, Clathrocystis and many diatoms with occasional Desmidieae.

All other unattached species growing in quiet places form a second association (Lemna Association) viz., Utricularia vulgaris, Ceratophyllum demersum, Lemna trisula, L. minor, Spirodela polyrhiza, Wolffia columbiana and with them masses of Mesocarpus, Spirogyra, Hydrodictyon, Oscillaria and Lyngbya. Microscopic epiphytic algae are also abundant here. This association is found well developed in western Lake Erie. — The plants forming a third association occupy by far the largest place in aquatic vegetation. The Characeae, Chara fragilis, C. coronata,

C. gymnophile var. Michauxia combine with Naias flexilis and Elodea canadensis to cover the bottom in water up to 10 or 12 feet in depth. Heteranthera graminea (= H. dubia), Vallisneria spiralis, Bidens Beckii, Myriophyllum spatium, Ranunculus [Batrachium] divaricatus and Potamogeton pusillus, P. pectinatus grow to near the surface of the water. In this association (Vallisneria Association) must be included the attached submerged algae as Chaetophora, Cladophora, Oedogonium. — A fourth association *Nymphaea Association* forms a conspicuous feature in Lake Erie vegetation consisting of Nymphaea tuberosa, Nuphar (Nymphaea) advena, Nelumbium luteum, Polygonum Muhlenbergii, Potamogeton natans, P. pectinatus, P. pusillus, P. Robbinsii, P. lucens, P. amplifolius, together with Sagittaria graminea and variabilis, Typha, Phragmites in other places.

A fifth association is formed by the strand-horizon, where f.e. in the neighborhood of Sandusky Bog is found an assemblage of plants on the land side of the water-lily circumarea. It consists of Decodon *Nesaea*, verticillatus, Pontederia cordata, Sagittaria, Cephalanthus occidentalis, Alisma Plantago, Lysimachia *Namauburgia*, thrysiflora and Solanum Dulcamara. This circumarea is succeeded shoreward by one consisting of Rosa carolina, Cornus stolonifera with Salix lucida, S. cordata, Lathyrus palustris, Scirpus americanus and other plants, which form a thicket that connects the aquatic formations with the forest on the higher ground.

The numerous smaller lakes of the Interlacustrine Area are of glacial origin. They have been formed in three ways, (1) by the filling of a rocky basin; (2) by the formation of a dam of morainic material; (3) by the occupancy of a Kettle hole with water. Whatever their origin they show about the same stages of development until they finally disappear as lakes by being converted into sphagnum bogs by the encroachment of vegetation. The so-called Sister lakes in the Huron Valley in Michigan are of such a glacial origin. The largest of these lakes shows four fairly well defined vegetable horizons (or circumareas) occupying all the suitable lake bottom less than twenty feet under water 1). Beginning with the innermost, they are: (1) a circumarea composed of *Potamogeton zosteraefolius*, which forms a dense tangled mat in water from eighteen to six feet in depth, with which is associated *Potamogeton lucens*; (2) a circumarea of *Nuphar advena* between thirty and seventy feet in width. This plant which is associated with *Potamogeton natans*, *Chara coronata*, *Dulichium spathaceum* and *Typha latifolia* grows as vigorously in water six feet deep as in water six inches deep. (3) A circumarea of *Carex* and *Sphagnum*, whose surface is practically at water level, extends landward from the water's edge from six to twenty five feet. The most abundant phanerogams are *Carex filiformis* and *Potentilla palustris*. (4) An circumarea of willows and poplars from ten to forty feet wide. The characteristic shrubs and trees are *Salix alba* var. *vitellina*, *S. lucida*, *S. myrtilloides*, *Populus tremuloides* and *Ulmus americana*.

Swamp Formation. This formation is typically represented at Cedar Point, Sandusky Bay. Here the tall reed vegetation passes into a wet swamp association where grow together in mixture *Calamagrostis canadensis*, carices (*C. Schweinitzii*, *stenocepis*, *stipata*, *laxiflora*, *comosa*, *lanuginosa*, *tribuloides*, *lupulina*, *culpinoidea*), *Lobelia syphilitica*, *Penthorum sedoides*, *Lathyrus palustris*,

Mimulus ringens willows (Salix co rdata, lucida, amygdaloides), Onoclea sensibilis and other ferns. The species are always somewhat mixed, but in each association some one tall species is clearly predominant. Sagittaria rigida, nearest the open channel gives place to S. latifolia mixed with Zizania aquatica and Sparganium. Following this a broad horizon of Scirpus lacustris, then S. fluviatile mixed with Scirpus lacustris, which soon increases to a second broad circumarea mixed this time with some Sparganium eurycaulps. Sparganium in places is mixed with Pontederia cordata, Sagittaria; beyond the border of Scirpus lacustris which encircles this bed of Sparganium is a bed of Typha latifolia associated with Najas, Dianthera, Sium, Asclepias incarnata. Beyond the Typha is a vast stretch of Phragmites communis occupying shallow water or exposed muddy places.

The State of Michigan is characterized by the great number of deep hollows, slight depressions and flat areas in and upon which water accumulates and drains away very slowly. Thus lakes, swamps and bogs are numerous, the swamps and bogs arising by the encroachment of vegetation upon shallow lake basins. If the history of the vegetation extends back to the period when a boreal type of flora was prevalent in the region, then a sphagnum bog is found. If the filling of the lake basin is subsequent and began when a more modern flora influenced the character of the invasion then a true swamp area has arisen. We frequently find as at Mud lake in Washtenaw County a small area held by bog plants while the shores of the rest of the lake, south, southeast and northwest are occupied by a sedge mat in which Typha latifolia, Sagittaria latifolia, Peltandra virginica, Symphocarpus foetidus are most prominent. The bog areas of such lakes will be briefly discussed under bogs. The zonation of the swamp area of Mud Lake has been described by C. A. Davis 1).

Strand Formation. The shore line of western lake Erie 2) is either sand or sandstone and the characteristic plants are Euphorbia polygonifolia, Triodia (Triplasis) purpurea, Elymus canadensis, Cenchrus tribuloides, Salix spec., Cakile and Polanisia graveolens. Many rock plants are subject to wave action.

The plants of the drift, or middle beach, along Sandusky Bay and Lake Erie are such annuals as can endure the summer environment. Perennials and biennials are not found because of the destructive effect of ice and wave action during the winter. The characteristic species are Cakile americana, Xanthium canadense, Strophostyles helvolae and the above named Polanisia, Cenchrus and Euphorbia.

Along the entire eastern shore of Lake Michigan, the dominant plant of the middle beach is Cakile americana (= C. edentula) associated with Corispermum hyssopifolium, Euphorbia polygonifolia. The flora of the upper beach is much richer than that of the middle beach 3).

Above the middle beach there is a strip characterized by the dominance of Elymus canadensis, then a strip of Geranium Robertianum, then a strip of Artemisia canadensis, and finally one of Cornus stolonifera scattered in which strips are Prunus pumila, Oenothera biennis, Lathyrus maritimus, Carduus Pilcheri, Agropyron dasystachyum, Populus balsamifera, Tanaacetum huronense, Amelone multifida.

The strand along Lake of the Woods shows three subdivisions. The lower strand is occupied by plants which usually grow in strand pools: viz., Aphanizomenon flos-aquae, various Cyanophyceae and Chlorophyceae. The mid strand vegetation consists of three types defined with reference to adaptation to prevailing winds 1 Prunus Association, which consists of Prunus pumila, Lathyrus maritimus, Populus tremuloides, Junecus articulatus and Salix fluviatilis abundant as secondary plants. 2 Cornus association, where Cornus Baileyi, C. sericea, Convulvulaceae, Oenothera biennis, Epilobium angustifolium are the prevalent plants. 3 Salix Association which is constituted by the commingling of Salix fluviatilis as dominant plant with Salix discolor, S. nigra, S. amygdaloides and Chenopodium album, Polygonum artemisia. The back strand is commonly marked at Lake of the Woods by a considerable rise in elevation. Here occur in various associations a great variety of herbaceous shrubby and arborescent species.

Dune Formation. The shore of Lake Michigan between St. Joseph and Frankfort for a distance of 250 kilometers is fringed with a narrow belt of dunes which tend to close up the mouth of the rivers emptying into the lake with the formation of small lakes behind the dunes. Many of the dunes of northern Michigan are found on the top of steep bluffs and perhaps were formed when the lake water was at a higher level. The dune formers are plants adapted to such situations, viz., Ammophila arenaria, Agropyrum dasystachyum, Elymus canadensis, Calamagrostis longifolia, while certain shrubs are equally important: Salix adenophylla, S. glaucofylla, Prunus pumila, Cornus stolonifera, and two trees: Populus monilifera and balsamifera. These dune forming plants which give rise to various dune forms according to the species concerned are not the only tenants of the beach dunes. Most of the plants that grow on the upper beach are also frequently present on the dunes.

A second type of dunes are those which grow slowly. Here occur such plants as Andropogon scoparius which forms rounded hills of sand, Arctostaphylos uva-ursi and Juniperus Sabina, Juniperus communis, Gaylussacia resinosa, Hudsonia tomentosa, Poa compressa assist in holding the sand. The established, or fixed dunes result when after the sand has been captured by the above mentioned herbs and shrubs they are tenanted by, or culminate in forest vegetation.

This succession is typically represented at Cedar Point, Ohio, along Sandusky Bay. The Andropogon held dunes are invaded by Prunus virginiana, Juniperus Virginiana, Ampelopsis quinquefolia, Arctostaphylos uva-ursi, Ptelea trifoliata, Tectona radicans, Rhus aromatica and with such of secondary importance as Gleidanthes tricanthus, Quercus tinctoria, Celastrus scandens, Prunus serotina, Vitis vulpina, Artemisia caudata, Rubus nigrobaccus, Asclepias syriaca, while Panieum virgatum, Elymus striatus, Andropogon scoparius are probably left-over plants from the preceding condition. One of the most noteworthy peculiarities of the Lake Erie dunes is the relatively large percentage of lianes which preserve the integrity of the dune against wind action.

The basswood, *Tilia americana*, early encroaches on the dune areas and becomes a dominant and controlling element, associated later with *Populus monilifera*, *Sassafras*, *Quercus tinstoria*, *Fraxinus americana*, *Juglans cinerea* etc. Lianes are frequent: *Vitis cordifolia*, *Celastrus scandens*, *Rhus radicans*, *Am- pelopsis* and *Smilax hispida*. Shrubs are abundant about the margin of the forest. Sometimes instead of the vegetation culminating in the deciduous forest, it becomes established in the form of a heath, which perhaps should be considered as a distinct Heath Formation. This is succeeded at Cedar Point by an oak forest. Such heaths consist of evergreen plants as *Juniperus virginiana*, *Arctostaphylos uva-ursi* with *Andropogon scoparius* and oaks.

The windward slope of the dunes has a different aspect and when one views them from the lakeside he sees a landscape in which coniferous trees predominate whereas a view from the land side shows a decided dominance of deciduous trees. The association of pines, *Pinus strobus*, is most prominent, at the south end of Lake Michigan *Pinus Banksiana* is more abundant, while at the north end *Pinus resinosa* is often as frequent as the white pine. *Thuja occidentalis* becomes a frequent member of these forests in the north as also *Abies balsamea*, and associated with the conifers are *Betula papyrifera*, *Tilia americana*, *Populus monilifera*, *Ostrya virginiana*.

Dunes are not abundantly developed at Lake of the Woods. A chain of islands exists called Isle aux Sables or islands of the sand hills. A list of plants collected here is given:

Juniperus communis L.	Prunus pennsylvania L. f.
sabina L.	Potentilla arguta Pursh.
Pinus Banksiana Lamb. (= P. divari-cata Ait.).	Prunus pumila L.
resinoso Ait.	Rubus strigosus Michx.
Agrostis hiemalis Walt.	Sorbus sambucifolia Man. ed. 6 (= *Pirus sitchensis* Roem.).
Calamagrostis canadensis Michx.	Spiraea salicifolia L.
Elymus canadensis L.	Lathyrus maritimus L.
Carex filiformis L.	Rhus radicans L.
» scoparia Schk.	Hudsoonia tomentosa Nutt.
Eleocharis palustris L.	Oenothera (Onagra) biennis L.
Eleocharis tenuis Willd.	Cornus sericea L. (= C. amomum Mill.).
Juncus canadensis J. Gay.	Fraxinus americana L.
» tenuis Willd.	Sambucus racemosa L. (= S. pubens Michx.).
Quercus macrocarpa Michx.	Campanula rotundifolia L. 1).
Salix discolor Muhl.	Artemisia canadensis Michx.
Betula glandulosa Michx.	» caudata Michx.
Bluffs and Alluvial Plains. There can be almost no other habitat in our climate, which imposes such severe conditions upon vegetation as an eroding clay bluff. The first vegetation to appear commonly consists of xerophytic herbs both annual and perennial. Among these are Melilotus alba, Aster laxiss, Equisetum hyemale. Soon there develops a xerophytic thicket vegetation and this may be called the shrub stage of the captured cliff and among the dominant species are Juniperus communis and virginiana, Salix glanophylla, Cornus stolonifera, Shepherdia canadensis, Rhus typhina and glabra. The succeeding tree stage is dominated by poplars 1).

The river bluff formation in the Huron River Valley on till bluffs is marked by the presence of Carya alba (= Hicoria ovata', C. tomentosa (= H. alba), C. microcarpa (= H. odorata), C. porcina (= H. glabra), with which trees are associated Quercus rubra and Q. alba. On the sandy bluffs where the hickories and red oaks disappear are found Quercus tinctoria, Q. alba and in other places Q. imbricaria.

The flood plain of the Huron River Valley is occupied by a forest growth which consists of Populus tremuloides and montifera, as the early pioneers followed by Ulmus americana, U. fulva, Fraxinus pubescens, viridis, sambucifoila, Acer dasycarpum 2) and rubrum, Platanus, Tilia, Juglans, Quercus macrocarpa and bicolor. Along the tension line nearest the streams Carpinus caroliniana is common and in similar but drier situation Ostrya virginiana is found 3).

The sphagnum bog or moors (muskegs of the Minnesota woodsmen) may be regarded as glacial ponds, or lakes, in process of conversion to forest, and almost every imaginable transition may be found from open lakes with sandy beach lines continuous on all sides to solid masses of spruce and tamarack.

A description of one of these bogs as found in Minnesota follows. The center of the moor is ordinarily softer and more yielding than the edges. Sometimes open water exists here covered with Utricularia, Lemma trisulca or species of Potamogeton, Nuphar advena etc. Farther from the center Calamia glauca and Andromeda polifolia with Pogonia ophioglossoides, Calopogon pulchellus various species of Carex and Eriophorum, Salix, Vaccinium and Sarracenia purpurea. Ledum latifolium grows in drier and more peripheral positions. Surrounding this association of plants are Picea alba or P. nigra, Larix americana and sundry species of Salix. Alnus incana and Betula pumila, B. glandulosa 4).

Sphagnum atolls are formed by an increase in the size of a lake which had an open central lagoon of water fringed by vegetation. This ring of vegetation is detached and forms atolls occupying the center of the enlarged pond. The plants established on one of these atolls according to Mac Millan, who has studied them, are Schuchzeria palustris, Carex tenuiflora, Carex tenera, Carex intumescens, Eriophorum polystachyum and gracile, Pogonia ophioglossoides, Calopogon pulchellus, Lyonia (Chamaedaphne), Kalmia glauca, Andromeda, V. Oxycoceous, Menyanthes trifoliata, Sarracenia purpurea. The arrangement of species in the atoll was such that Menyanthes occupied the outer and inner edges, Kalmia occupied five distinct patches, while Sarracenia and Eriophorum sought the firmer substratum in the center. The other plants were sparingly represented.

Floating bogs are also occasionally met with in the lakes of the Interlacustrine Area and at times when stationary they constitute the anchored bogs, which subjected to a new environment become modified in consequence. Morasses develop from attached bogs when these occur in sheltered bays or coves. Two types of morasses are distinguished, wet and dry, and the association of species gives name to the morasses such as Menyanthes morass, Utricularia morass, Salix morass etc.

Transeau has studied in a painstaking manner the bog associations of the Huron River Valley, and his description in general will apply to the bog areas, as found at Mud Lake and other localities in Michigan, as described by C. A. Cooke (most abundant) in a detailed manner, while discussing the distribution and origin of the peaty deposits throughout the state. — The first circumarea recognized by him next to the open water of the glacial lakes is the bog sedge circumarea (or association).

Here occur such dominant plants as Carex filiformis, C. oligosperma, Eleocharis palustris, Carex intumescens, Eriophorum polystachyum while as secondary species occur Nephrodium thelypteris, Onoclea sensibilis, Juncus effusus, J. canadensis, Potentilla palustris, Salix myrtilloides, Dulichium spathaceum, Equisetum limosum, Bidens trichosperma var. tenuiloba, Menyanthes, Viola blanda and Eriophorum virginicium. Here and there among the sedges occur the forerunners of the shrub association. The rootstocks of Lyonia or Cassandra calyculata send up shoots and prepare the way for other plants. The bog near Oxford is without a central lagoon but it is occupied by the bog-sedge association where Carex oligosperma and Schuchzeria palustris occur.

The bog-shrub circumarea in West Lake consists of Carex filiformis (most abundant), Nephrodium, Eriophorum, Menyanthes, Potentilla, with Eleocharis palustris, Sagittaria latifolia, Carex teretiuscula, Salix myrtilloides, S. candida, Betula glandulosa, Vaccinium macrocarpon and Andromeda polifolia.

This circumarea about First Sister Lake is more irregular. Lyonia calyculata with the bog mosses Sphagnum cymbifolium, S. subsecundum and S. recurvum are in intimate association and occupy the area.

The associated species are the moss Aulacomnium palustre and such herbs as Drosera rotundifolia, Arethusa bulbosa, Habenaria lacera, Sarracenia purpurea, Pogonia ophioglossoides, Calopogon pulchellus, Viola blanda, Osmunda regalis, Campanula aparinoides, Scutellaria galericulata

and the shrubs Andromeda polifolia, Betula pumila, Vaccinium macrocarpon, V. oxycoecus, Pirus melanocarpa (= Aronia nigra) and Nemopanthes fascicularis.

Surrounding the bog north of Delhi in the Huron Valley is a circum-area on the floating margin of the bog substratum. *Typha latifolia* grows at the outer edge while *Lyonia calyculata*, 3 *Sphagnum*-species, *Carex filiformis, Eriophorum polystachyon* and *Salix myrtilloides* are the most frequent plants.

Associated with the above are Carex oligosperma, Menyanthes trifoliata, Comarum palustre, Elodea canadana, Osmunda regalis, Onoclea sensibilis, Rumex britannica, Aselepias incarnata, Viola blanda, Cieuta bulbifera, Galium aparine, Scitetaria galericulata, Dulichium spathaceum and the mosses Hypnum cordifolium, H. Schreberi, Aulacomnium palustre.

Belonging to this circumarea, but almost distinct as an outer circumarea, are found an association of tall shrubs: *Vaccinium corymbosum, Gaylussacia resinosa, Pirus melanocarpa, Nemopanthes fascicularis, Betula glandulosa* and *Prunus serotina*.

The tamarack circumarea next succeeds on the outer drier edge of the bogs. *Larix americana* is found however as an occasional occupant of the inner circumarea. These trees in the outer edge of the bogs come to overshadow the shrubs and form an almost pure growth, but with the trees are often associated *Nemopanthes, Pirus melanocarpa, Lyonia (Cassandra), Osmunda cinnamomea* and *regalis, Nephrodium spinulosum var. intermedium, N. cristatum*, such mosses as *Polytrichium juniperinum, Plagiothectum denticulatum, Thuidium recognitum, Aulacomnium palustre, Marchantia polymorpha, Sphagnum cymbifolium* and such funguses as *Boletinus porosus* and *Thelephora intybaea*.

b) Adirondack Area.

The Adirondack mountains (compare Part II, p. 104) are of considerable elevation somewhat rugged in outline. There are few lofty inaccessible cliffs but instead rounded easily scaled hills and mountain peaks, the roundness of which has undoubtedly been increased by the scouring action of the ice of the Glacial period, which overrode the highest peaks of these mountains. Mt. Tahawus (Mt. Marcy) is the highest peak 5,344 feet (1630 m) and Mt. McIntyre comes next 5,112 feet (1560 m). Fresh water lakes abound in this area, some of large size.

1. The Forest Formations.

Deciduous Forest Formation. The forest at the base of Mt. Tahawus along the Au Sable River and about the Au Sable lakes according to my observations consists of the following dominant species: *Betula lutea, Fagus americana, Tsuga canadensis, Acer saccharum, Thuja occidentalis, Pinus strobus, Abies balsamea, Betula papyrifera*, while as secondary trees are *Acer rubrum and pennsylvanicum, Populus tremuloides, Sorbus americana*, and beneath the latter *Viburnum lantanaoides* and *Rubus odoratus*. Such occupy what are known in Adirondack phraseology as hardwood lands which are in general elevated flats and slopes where the deciduous-leaved trees are the characteristic
species. Acer saccharum, Betula lutea and Fagus attain their best development on these lands, while Tsuga is of inferior quality to that found on the moist soil of lower ground\(^1\).

Along the Au Sable River, near its source, in a gorge Acer saccharum, Tsuga and Betula lutea are preeminently first, while the beech seems to have a crown which never rises quite above that of the other trees mentioned (Tsuga-Fagus-Facies).

The herbaceous plants of the forest floor are Viola rotundifolia, Tiarella cordifolia, Medeola virginica, Mitchella repens, Maianthemum (Unifolium) canadense, Lycopodium lucidulum, Clintonia borealis, Trillium erythocarpum (= T. undulatum), Pyrola chlorantha, Oxalis acetosella, Aralia racemosa, Dalibarda repens, Impatiens fulva, Streptopus amplexifolius. Taxus canadensis forms a secondary element in this Tsuga-Fagus-Facies\(^2\). Dryopteris noveboracensis forms extensive patches in the deep recesses of the forest.

Mixed forests within the range of P. Strobus. The shores of lower Au Sable Lake (plate IX) which are mountainous and steep, are covered with Betula papyrifera associated with Abies balsamea and Populus tremuloides. Near the upper end of this lake are Sorbus americana, Picea nigra, Acer saccharum, while Thuja occidentalis becomes more abundant and virtually supplants the paper birch Betula papyrifera. The perennials of the forest floor consists of Clintonia borealis, Oxalis acetosella, Osmunda interrupta and cinnamomea, Chiogones hispidula, Maianthemum canadense, Veratrum viride. — The forest about Racquette Lake is a mixed one of broadleaf and coniferous trees, the latter predominating. Such are the spruce flats of the lumbermen, where the soil is fresh and deep with *Picea rubra* of medium height and diameter. These flats form the lower limit of *Acer saccharum* because it is common on higher ground. Abies balsamea is small.

The principal species are in the order in which they occur: Picea rubra, Betula lutea, Abies balsamea, Tsuga canadensis, Fagus americana, Acer saccharum, Pinus strobus (Picea-Betula-Facies). With these are associated Thuja occidentalis, Picea nigra, Larix americana, Pinus resinosa, Acer dasycarpum, Betula populifolia with scattered Fraxinus americana and Prunus serotina, Populus tremuloides and Prunus pennsylvanica are found on the burned over land, with an undergrowtb in the primeval forest of Viburnum lantanoides, *Acer pennsylvanicum*, *Acer spicatum*. Here the characteristic swamp species are Picea rubra, Abies balsamea, Picea nigra, Pinus strobus, Larix americana, while on the gravelly knolls in the swamps occurs also Tsuga canadensis. Thuja occidentalis and Larix americana grow on the poorest drained land\(^3\).

Acer saccharum and Fagus americana have the advantage over Betula lutea on the better soils, because the latter is less tolerant of shade. The following list shows the relative degree

2) Harshebergere, John W.: The plant Formations of the Adirondack Mountains. Torreya V: 187—194. As data are lacking for the consideration of the algal vegetation of the lakes of the Adirondack Area, the writer has been unable to add any account of his own, but the student is referred for helpful details to a paper by G. E. Stone entitled, Flora of Lake Quinsigamond, Mass.
of tolerance beginning with those that require the most light: Larix americana, Populus tremuloides, Prunus pennsylvanica, Pinus strobus, Betula lutea, Acer rubrum, Abies balsamea, Picea rubra, Tsuga, Fagus and Acer saccharum. The species in general may be arranged according to edaphic requirements beginning with the most requiring: Prunus serotina, Acer saccharum, Fagus americana, Acer rubrum, Pinus strobus, Abies balsamea and Picea rubra.—As one ascends, the associations in some places consists of the deciduous species mentioned with Adiantum pedatum, Polystichum acrostichoides, Monotropa uniflora, Chiogenes hispidula, Clintonia borealis, Cornus canadensis, Panicularia elongata on the ground below.

Coniferous forest Formation. At 3,600 feet (below 1200 m) especially on the southern flanks of Mt. Tahawus the coniferous forest formation consists of *Picea rubra* with *Betula lutea*, *leuta* and *Sorbus americana*. *Abies balsamea*, *Thuja occidentalis* and *Veratrum viride* occurs on the forest floor, with *Vaccinium canadense*, *Lycopodium annotinum* and *lucidulum*, *Aster acuminatus*, *Solidago flexicaulis*, *Coptis*, *Linnacea*, *Streptopus amplexifolius*. These southern slopes are the spruce slopes, according to the designation of lumbermen, because *Picea rubra* is prominent. The absence of any *Acer* and *Viburnum lantanoides* is due to elevation and is noteworthy. *Abies balsamea* on an elevated saddle of the mountain forms a pure association with shrubby and herbaceous companions (*Abies-Facies*), and in open swampy places surrounded by the balsam occur *Osmunda cinnamomea* and *Veratrum viride*. The hemlock *Tsuga canadensis* forms pure associations (*Tsuga-Facies*), as on the ridges at the foot of Giant Mountain. Here the beech and the maples (*Acer*) are subordinate species with a few spruce trees (*Picea*) intermixed.

The herbaceous undergrowth is typic of such forests consisting of *Linnacea borealis* in mats, *Mitchella repens* in mats, *Cornus canadensis* in patches, *Pyrola chlorantha*, *Oxalis acetosella*, *Clintonia borealis*, *Goodyera* (*Peranium*) repens, *Medeola virginica*, *Pyrola secunda*. *Viola rotundifolia*, *Chimaphila umbellata*, *Gaultheria procumbens*, *Coptis trifolia*, *Maianthemum* (*Unifolium*) *canadense*, *Cypripedium acaule*, *Habenaria* (*Lysias*) *orbicula*, *Lycopodium* *lucidulum*. This is the same association of species under the hemlocks that one finds in southern Pennsylvania with the addition however in the Adirondacks of *Linnacea borealis*, *Clintonia borealis*, *Coptis trifolia*.

In more elevated situations, the botanist finds on Giant Mountain a *Picea-Abies-Facies*, associated with three birches, *Acer rubrum*, *Ribes prostratum*, *Rubus strigosus*, and with a few ferns (*Dicksonia pumillobula*) abundant. — *Pinus resinosa* in a few localities, as on the southwest slopes of Baxter Mountain (2,400 feet = 732 m), forms an association (*Pinus resinosa-Facies*) sometimes with *Pinus strobus* interjected: *Juniperus communis* together with *Vaccinium pensylvanicum* and *V. canadense*, *Pteris aquilina* form an association on rocks (*Juniperus-Vaccinium-Assocation*). The two pines dominate the southwest slopes of Mt. Baxter down to the lowest ridges where *Quercus rubra*, *Acer pensylvanicum* and *Tsuga canadensis* are in association.

The Krummholz or dwarf timber (*Dwarf Tree Formation*) is reached at 5,000 feet (1,530 m) on Mt. Tahawus. Here *Abies balsamea* is about five feet high with its base covered by *Hypnum splendens*, *crista-castrensis*, *Dicranum*
with *Linnacea*, *Chiogenes*, *Cornus canadensis*, while *Vaccinium canadense* and *Sorbus americana* are prominent shrubs. At 1,550 meters, trees are only 1–2 feet high and disappear entirely on entering into the alpine formations, being replaced on exposed places by *Ledum latifolium*, *Vaccinium uliginosum*, *V. caespitosum* (Vaccinium-Ledum-Association), the Empetrum-Association and the Alnus-Association formed by *Alnus viridis* together with *Spiraea salicifolia* in sheltered places, *Gentiana linearis*, *Veratrum viride*, *Linnacea borealis*.

The plants credited by CHARLES H. PECK to the summit of Mt. Tahawus are given in the accompanying list with those collected by the writer 1) on the bare top marked by an asterisk (*) and those below the intermediate summit by a dagger (†).

* Coptis trifolia Salisb.
 * Viola blanda Willd.
 * Arenaria groenlandica Spreng.
 * Stellaria (Alsine) borealis Bigel.
 * Oxalis acerosella L.
 * Potentilla (Sibbaldiiopsis) tridentata Ait.
 † triflorus Richards (= R. americanus Pers.).
 * Sorbus sambucifolia Man. ed. 6 (= P. sitchensis Roem).
 * Spiraea salicifolia L.
 † Amelanchier oligocarpa Roem.
 * Ribes prostratum L’Her.
 † Epilobium angustifolium L.
 * Houstonia caerulea L.
 * Solidago macrophylla Pursh.
 * Solidago virga aurea var. alpina Bigel.
 (= Solidago alpestris W. & K.).
 * Prenanthes (Nabalus) nana Torr.
 * Drosera rotundifolia L.
 * Cornus canadensis L.
 * Linnacea borealis L.
 * Lonicera caerulea L.
 * Melampyrum lineare Lam. (= M. americanum Michx.).
 * Trientalis americana Pursh.
 * Chelone glabra L.
 * Diapensia lapponica L.
 * Ledum latifolium Ait.
 * Kalmia glauca Ait.
 * Rhododendron lapponicum L.
 * Rhinanthus crista-galli L.
 * Gentiana linearis Froel.
 * Empetrum nigrum L.
 * Betula glandulosa Michx.
 † * papyrifera Marsh.
 * Alnus viridis DC.
 * Salix uva-ursi Pursh.
 Picea alba Link (= Picea canadensis Mill.).
 * Picea nigra (= P. brevifolia Peck).
 * Abies balsamea Mill.
 * Juniperus communis var. alpina Gaud.
 (= Juniperus nana Willd.).
 * Habenaria dilatata Pursh.
 * Streptopus roseus Michx.
 † * amplexifolius DC.
 * Clintonia borealis Raf.

1) The ascent was made with Prof. Dr. O. DRUDE on August 26, 1904. See also PECK, CHARLES H.: Plants on the Summit of Mt. Marcy. Bulletin New York State Museum V: 657.
*Maianthemum canadense Desf.
*Veratrum viride Ait.
Juncus trifidus L.
 » filiformis L.
†Luzula parviflora Ehrh.
Scirpus caespitosus L.
*Eriophorum vaginatum Am. auth.
 (= E. callithrix Cham.).
Carex scirpoidea Michx.
 » canescens L.
 » brunnescens Poir.
 » trisperma Dew.
 » magellanica Lam.
 » sterilis Willd.
 » Bigelovii Torr.
 » pauciflora Lightf.
Agrostis rubra L.

Calamagrostis canadensis Michx.
 » breviseta Scribn.
Stipa Macounii Scribn.
Poa laxa Haenke.
Deschampsia flexuosa Trin.
Hierochloe alpina Sw.
Phleum pratense L.
Cinna latifolia Trev.
 » arundinacea L.
†Nephradium (Dryopteris) spinulosum
 Desv.
Phegopteris polypodioides Fée.
*Lycopodium selago L.
† » annotinum L.
† » annotinum L. var. pun-
gen Desv.
† » clavatum L.

A singular lichen *Thamnolia vermicularis* attracts attention by its pure white color and its cylindric, hollow, sharp pointed podetia 2—4 inches long growing among mosses and on the thin soil of the mountain tops in a sterile condition. It is more plentiful according to Peck on Mt. McIntyre than on Mt. Tahawus. *Lonicera caerulea* almost ascends to the top of the mountain. It occurs behind the sheltering rocks but a short distance south of the signal station. *Carex Bigelovii* is the only sedge on the highest part of the mountain.

Alpine Bog Formation. Two small marshy areas form a part of the open summit. One is a decided depression in the northeast slope; the other is on the eastern slope and is much nearer the top of the mountain.

Here were found by me Kalmia glauca, Ledum latifolium, Vaccinium oxyccoccus, Eriophorum vaginatum, Veratrum viride, Vaccinium uliginosum and several species of Carex.

Bare Rock Summit Formation. The summits of lower mountains, Mt. Hopkins (3,136 feet = 955 m) for example, are not above timber-line but frequently they are bare owing to rock exposures. On this mountain a smooth rock surface occurs in the broken areas of which *Potentilla tridentata* grows (*Potentilla-Association*) with *Vaccinium uliginosum-Association* and *Alnus-Association*. *Vaccinium penusylvanicum*, *Vaccinium pennsylvanicum* var. angustifolium, *Vaccinium canadense* are found along the edge of the forest consisting at this elevation of *Picea nigra*, *Abies balsamea*, *Betula papyrifera*, *B. lenta* etc. that reach quite to the top of the mountain.

Giant Mountain (4,622 feet = 1410 m) is not bare at the summit except where shelving rocks occur. Here were found by me Ledum latifolium, Arenaria groenlandica, Marchantia polymorpha (in abundance), Agrostis rubra, Vaccinium pennsylvanicum, Linnaea borealis, Cornus canadensis.

An interesting **Rock Gorge Formation** is typically developed in the Au Sable Chasm in the northern part of the Adirondack Area. The Au Sable River runs through a rock gorge with almost straight sides and a few overhanging shelves. Along the crest of the precipices and in the gorge,
according to my observations, are found *Pinus resinosa*, *Betula papyrifera*, *Tsuga canadensis*, *Thuja occidentalis*, *Betula lutea*, *Acer rubrum*, while somewhat back from the gorge together with the above mentioned trees, *Pinus strobus*, *Betula populifolia*, *Quercus rubra*, *Q. alba*, *Q. tinctoria* beneath which occur *Amelanchier canadensis*, *Hamamelis virginiana*, *Gaylussacia resinosa*. The rock crevices show *Campanula rotundifolia* var. *Langsdorffiana*, *Polypodium vulgare*, *Aralia racemosa*, *Rubus odoratus*, *Ribes rotundifolia* and on the shelves, clumps of *Rubus strigosus*.

Conclusion. The southward extension of the coniferous forest of which the Adirondack Mountains form a part is found following the plateau region in central, and southern New York and northern and western central Pennsylvania (west of the mountains) about as far south as the 40° of north latitude. The coniferous forest belt only extends into the southeastern quarter of Warren County Pennsylvania; the northern and western portions lying beyond the Alleghany River show oak, chestnut, hickory 1). Much the same association of species is found in this forest, as in the Adirondack mountain forests. *Pinus Strobus* is dominant here. Upon the best soils various hardwoods grew with it. For example at a place in Lycoming County, Pennsylvania near Otter Run an astonishingly large number of kinds of trees occurred on a fresh sandy loam in mixture with *Pinus strobus* 2).

Upon an area of not more than twenty acres the following species were growing in natural forest: *Liriodendron tulipifera*, *Tilia americana*, *Acer saccharum*, *Acer rubrum*, *Fraxinus pennsylvanica*, *Prunus serotina*, *Nyssa sylvatica*, *Fraxinus americana*, *Ulmus fulva*, *Juglans cinerea*, *Carya amara*, *alba* and *porcina* (= *Hicoria minima*, *ovata* and *glabra*), *Quercus alba*, *Q. Prinos*, *Q. rubra*, *Q. tinctoria*, *Castanea dentata*, *Fagus americana*, *Ostrya virginiana*, *Carpinus caroliniana*, *Betula papyrifera*, *Betula lutea*, *B. lenta*, *Populus tremuloides*, *P. grandidentata*, *Pinus resinosa*, *P. rigida*, *P. virginiana*, *Tsuga canadensis* 2). *Pinus Strobus* and hemlock are the prevailing trees mingled with *Acer saccharum*, beech and species of *Betula*, while the herbs are such as grow beneath the shade of the dominant forest trees most of which have been mentioned above. Although we have treated the Pocono plateau as part of the northern Appalachians, yet with some propriety its flora may be considered to be closely similar to that of the great coniferous of the St. Lawrence—Great Lake Region.

2. Atlantic-Gulf Coastal Region.

The plant formations, which together form the vegetation of the great Atlantic coastal plain, occupy soil of a comparatively recent geologic origin, when the coastal plain was raised permanently above sea level, for since the beginning of Cretaceous time, this country has passed through several vicissitudes of history, at times being dry land, as it is now, and at times sea bottom. So the shore of the sea has oscillated slowly back and forth across this part of the Atlantic plain and gravels, sand and clays have been deposited. Three distinct physiographic areas are recognizable: the elevated plain, the coastal marshes and the

1) The counties of Pennsylvania which together form the hemlock-white pine belt are Bradford, Tioga, Potter, McKean, Warren, Forest, Elk, Cameron, Jefferson, Clearfield, Indiana, Cambria, Somerset and parts of Armstrong, Clinton, Lycoming, Sullivan, while Centre, Susquehanna, Lackawanna, parts of Wayne and Monroe were noted for their hemlock woods.

coastal strand, consisting of sand piled up by wave and wind action. The flora, as a consequence, has adapted itself to the edaphic conditions of such a region, and floristically considered it is peculiarly American composed of plants that have passed through the vicissitudes of the physiographic changes with the admixture of a small contingent of immigrant plants.

A. Northern Pine Barren-Strand District.

This phytogeographic district may be said to extend from the mouth of the Chesapeake Bay northward and northeastward to the extremity of Long Island contributing a few of its floral elements to the vegetation of Block Island, Marthas Vineyard, Nantucket and Rhode Island 1). It is coincident with the soil formations that compose the Tertiary coastal plain east of the Archaean rocks, the edge of which is called the fall line, that represents the eastern limit of the Piedmont plateau.

1. Salt Strand-, Beach- and Dune Formations.

Strand Formation. The strand of Long Island may be looked upon as a continuation of that of New Jersey. The presence of such sand beach plants as Ammophila arenaria, Salsola Kali, Arenaria peploides, Cakile americana, Hudsonia tomentosa, Solidago sempervirens, Myrica carolinensis (= M. cerifera Gray’s Manual), Baccharis halimifolia, Iva frutescens, and such salt marsh plants as Spergularia (Tissa) marina, rubra, Salicornia (3 sp.), Kosteletzkya virginica, Hibiscus moscheutos, Discopleura capillacea, Panicum virgatum, Spartina stricta and patens etc. emphasizes the similarity of the strand floras of Long Island and New Jersey (see in this chapter § A. b. p. 381). The north shore of Long Island along the Sound is generally rocky. The steep shore lines are piles of glacial drift full of clay, siliceous sand, gravel and boulders of varying size. Just above the reach of the ordinary tides these beaches are partially covered with Spartina juncea interspersed with Rhus radicans (= R. toxicodendron of some authors); Juniperus virginiana, Myrica carolinensis, Prunus maritima are the only woody plants found here. On the more barren places back from the spray are tufts of Hudsonia tomentosa, Cladonia rangiferina 2).

The strand flora of New Jersey is typically developed on the sandy sea islands or peninsulas separated from the mainland by open bays or extensive salt marshes. If we contrast the character of the flora on the northern and southern shore of New Jersey 3), we find that the formations on Barnegat beach,

for example, are usually open while those on Wildwood beach are closed and have culminated in the forest type of vegetation. This argues for a greater age of the strand flora of Wildwood, as compared with that, for example, at Sea Side Park in the north. This conclusion is substantiated by the fact that the bays behind the sandy sea islands are converted into salt marshes in the south, while in the north they are wide and open bays of brackish or salt water. Physiographically and botanically the coast line from Bay Head south to Ocean City is younger than the coast south of the latter place extending to Cape May.

Beach Formation. The beach formation exists at the several places investigated in several modifications of the typic one, which exists at Seaside Park, N. J. The lower beach is limited by the reach of the higher tides and is marked by the constant shifting and grinding of the particles of sand against each other by wave action. The middle beach, where driftwood collects, supports a considerable number of herbaceous annuals, which show in a striking way their adaptation to unpropitious surroundings. The most abundant plant of the middle beach in all the localities studied is *Cakile americana* (= *C. edentula*). Associated with this succulent is also another, *Arenaria peploides*, which grow in clumps, and is of a dark-green color with thick, fleshy leaves. It forms the so-called annual dunes which are piled up around its succulent stems, remaining as small hillocks of sand, through which this plant protrudes, until autumn, when upon the death of the sand-binder the sand is again caught up by the wind and carried away. *Cakile* is also instrumental in catching the sand and holding it in the form of embryonic dunes. These two plants are the only ones found commonly on Barnegat Beach at Sea Side Park.

At South Atlantic City, in addition to *Cakile* and *Arenaria* which are also found there, grow *Salsola kali*, *Euphorbia polygonifolia* and *Cenchrus tribuloides*. *Salsola* is extremely xerophytic with succulent stem and leaves and spinous habit. *Euphorbia*, a prostrate herb, possesses latex, which is probably instrumental in reducing transpiration. *Cenchrus*, of annual habit, depends upon its prickly fruit for its distribution. It is abundant, as a character plant, at South Atlantic City, along the dune faces in the strip of succulents, and also as a component of the flora in the strips more distinctly removed from the ocean front. This is true of this grass both at Ocean City and Wildwood, where it is not conspicuous by its presence on the middle beach.

The most interesting distribution of plants is met at Wildwood. Here the beach is extremely flat and very wide, trending to the northeast, where apparently it is widest. The lower beach consists of sand, packing well together, and when wet presenting a hard, firm, floor-like surface. Just above the ordinary limit of high tide are little hummocks of sand held in place by the stalks of grasses and other herbaceous plants which have been washed up by tidal action. This area of loose sand is succeeded by a line of more elevated sand bordering a tidal depression inside it. Upon this low ridge of
sand *Salsola kali* grows in the greatest abundance, and an inspection indicates that the tide must flow at times between the *Salsola* patches. On the far side of the tidal pool are found, in association with isolated clumps of the marram grass, *Ammophila arenaria*, growths of an annual *Atriplex arenaria*. Proceeding up the beach in a straight line, a wind-swept area tenanted by marram grass and isolated plants of *Xanthium (echinatum)*, *Euphorbia, Salsola kali* (not as a character plant), *Sesuvium maritimum* and *Strophostyles helvola* are passed. The only area which merits the name Ammophila-Strip occupies the portion of the beach adjoining that described, but the sand grass, *Ammophila arenaria*, although abundant here, hardly can be called a zonal plant at present, although it has commenced to build a frontal dune, which when raised above the level of the beach (a stage which it has not yet reached) may separate the middle beach from the upper beach sufficiently to merit the application of the zonal name to this area of the Wildwood sea-strand. The sand grass growing here was found in full flower associated with *Arenaria peploides*, gathering the sand about it, and *Strophostyles helvola*, creeping out as a radiant plant in all directions. The *Oenothera humifusa*-strip or upper beach, comprises the hollow place in front of the low frontal dune and the seaward face of the dune itself. Here grow in perfect harmony *Gerardia purpurea*, *Strophostyles helvola* with narrower leaflets, *Solidago sempervirens* with thick leaves, which is found on the lee face of the sea dunes farther northward, *Erigeron canadensis* and *Oenothera humifusa* — the plant which gives name to this interesting assemblage of species. The latter is chosen as a character plant, because Cape May county represents the northern limit of its distribution, which extends to Florida. This species is essentially southern in its range, occurring on the sea beaches of the southern states. Its presence is proof of the mild climate of Wildwood. The lower face of the dune here supports *Lactuca canadensis* and life-everlasting, *Anaphalis margaritacea*.

Dune Formation. Ammophila Strip. Upon the top and lee side of the sea dune at Sea Side Park, which extends in some places uninterrupted there for a distance of half a mile, with a uniform height of about 15 feet, and at a uniform distance from the ocean front, grows the best of all sand-binders, *Ammophila arenaria*. Associated in a remarkable ecologic way with this grass is the sand pea, *Lathyrus maritimus*, which flourishes with it on the dune summit and supplies the grass by means of its tubercles with nitrogenous material which stimulates the growth of the marran grass, so that it makes a denser growth.

Myrica Strip. Just behind the high dune which faces the ocean and on its lee slope, protected by the top of the dune, is met an extensive belt of *Myrica carolinensis* which occurs normally at Sea Side Park, South Atlantic City and Ocean City, but is absent at Wildwood. It occurs typically at Sea-side Park and also clearly defined at South Atlantic City, but at Ocean City it is broken up in two parallel areas behind the second and third series of dunes. Normally it should occur behind the first or frontal dune. Isolated
specimens of *Myrica* are found in the thicket formation, but as far as inspection showed it does not grow as a zonal plant. Associated with the waxberry bushes at Sea Side Park is the ubiquitous sand grass (*Ammophila*), an occasional golden-rod (*Solidago sempervirens*) and a prostrate growth of *Euphorbia polygonifolia*, but that is all. At Ocean City, *Strophostyles helvola*, *Panicum virgatum*, *Baccharis halimifolia*, *Rhus radicans* are mixed together by reason of the parallelism of the three dunes which occur there, and *Myrica*, therefore, becomes an element of the dune complex.

Hudsonia Strip (the Dune Complex). This strip is of especial interest. The topography is kaleidoscopic. The dunes are constantly changing their shape, being blown away on one side and built up on the other. The hollows between them are filled up and new valleys are scooped out by the resistless action of the wind. This is true of this belt along the entire New Jersey coast, where it is a dominant feature of the landscape, but the change is not so rapid in some places as in others. Some of the dune complexes change very slowly, others more rapidly; some, it may be, have become stationary. At Sea Side Park, the dune complex extends from the limits of the Myrica-Strip already defined to the Juniper-Strip of the typic thicket formation. At South Atlantic City it does not exist; at Ocean City it is an area of established dunes clothed with a variety of plants; at Wildwood it is a narrow area of a low frontal dune and a hollow immediately behind it, encroached upon by tree growth, and is, therefore, not clearly demarcated at either of the places last mentioned.

At Sea Side Park, where it typically exists, there is not an established series of dunes, but the change is a slow one, motion being arrested by the character plant, *Hudsonia tomentosa*, which forms clumps or cespitose clusters closely set together on the top and sometimes the slopes of the slowly moving dunes. Associated with this low growing perennial herb are found *Solidago sempervirens*, *Rhus radicans*, trailing over the ground and with an etiolated appearance, expressive of its struggle for supremacy. *Linum medium*, *Lechea maritima* and others, such as *Ampelopsis*, are occasional intruders on the more established dunes 1).

Upon a transversely placed dune exist isolated trees of the following species in considerable numbers, but nowhere growing together, except it may be in companies of twos or threes, usually, however, standing alone: *Quercus ilicifolia*, is a small tree of dense growth; *Ilex opaca* is strong-growing and dark green in color; *Quercus phellos*, the willow oak, forms a dwarf tree about four feet high; *Vaccinium corymbosum*, with smooth leaves, and *V. atrococcum*, with densely pubescent leaves and gnarled form, both loaded with berries, were found to exist here, with *Kalmia angustifolia*, and *Rubus canadensis*, trailing

1) *Prunus maritima* L., the beach plum, forms by its upward growth small dunes, comparatively steep. It usually grows in isolated patches on the slopes or summits of the dunes, near the center or inside margin of the dune complex.
at their base. *Pinus rigida* also is a component element of the transverse dune complex, growing with the sassafras on the dune slopes and drier dune hollows. *Juniperus virginiana* is also abundant here. The landscape has, therefore, somewhat of a park-like aspect.

The dune complex (not Hudsonia Strip) at Ocean City is a succession of dunes and dune hollows. Upon the top of the dunes and covering their slopes to some extent the marram grass, *Ammophila*, has almost full sway, but occasionally *Sieglingia purpurea*, *Strophostyles* and *Solidago sempervirens* are associated with the above mentioned grass. The dune complex at Wildwood is a narrow belt (50 feet wide) of established dunes. It might be said to belong to the thicker formation, but for the fact that it is open. Upon the low dune, 4 or 5 feet high, flourish *Rosa carolina*, *Rhus radicans*, *Sieglingia purpurea*, *Phytolacca decandra*, and dead, badly wind-swept cedar trees. Immediately behind the dune front *Ampelopsis*, *Panicum virgatum*, *Andropogon virginicus*, in clumps, and *Monarda punctata* make up the list of conspicuous plants of the narrow dune complex of Wildwood Beach. Several isolated trees, *Juniperus virginiana*, *Quercus obtusiloba* (= *Q. minor*) of dwarf growth stand here, and form the vanguard of the tree growth which so completely covers the higher portion of Five-mile Beach.

Occupying zonally about the same position as the Myrica association of New Jersey there is found back of a second series of dunes and reaching to the forest in Delaware an area covered by a thicket. It is a wilderness of Baptisia tinctoria. Rubus villosus, *R. cuneifolius*, *R. canadensis*. In clumps or singly are *Juniperus virginiana*, *Diospyros virginiana*, *Pinus virginiana*, *P. rigida*, *Quercus foetida*, *Prunus maritima*, *P. pennsylvanica*, *Myrica carolinensis*, *Rhus copallina*, *Helianthemum canadense*, *Sassafras officinale*, *Rosa humilis*, *Ilex opaca* and among the herbs, rare or frequent, *Solidago juncea*, *S. Canadensis*, *Eupatorium album*, *E. hyssopifolium*, *Aster ericoides*, *Ascyrum Cruc-Anreae*, *Aesclepias tuberosa*, *Trichostema dichotomum*. *Andropogon virginicus* (important next to *Ammophila*) arena the last associated with *Agrostis alba*, *A. hyemalis*, *Eragrostis pectinacea*, *Panicum sphaeroecarpum*, *P. viscidum* (= *P. scoparium*), *Poa compressa*. Lanes are almost entirely absent, but *Cladonia rangiferina* is abundant in patches.

On Seven Mile Beach the Myrica-Strip is absent in the hollows back of this dune. Its place is taken by the social groups of *Strophostyles* which forms dark-green mats. In the deeper hollows, *Gerardia maritima* and *Euphorbia polygonifolia* may be called character plants. The dune complex is undulating with rising hills of sand, covered on the seaward side by *Strophostyles* and on the landward slope are *Solidago sempervirens* and occasional clumps of *Myrica carolinensis*, not dominant; *Oenothera humifusa*, *Baccharis halimifolia* and *Andropogon virginicus*. Across the area controlled by these herbaceous plants, the barren wind-swept strip is reached upon which no vegetation grows except the marram grass *Ammophila*, an occasional red cedar, and as rare plants, *Phytolacca decandra* and *Euphorbia polygonifolia*. Dead trees stand up out of the sand over this zone, which is about six hundred feet wide, a forest graveyard. The forest which is being destroyed consists of *Juniperus virginiana*, *Ilex opaca*, *Nyssa sylvatica*, *Prunus serotina*, *Quercus lyrata*, *Celtis occidentalis*, *Quercus phellos*, *Acer rubrum*, *Diospyros*
virginiana, Pinus rigida, Morus rubra (see fig. 23), while as lianes may be mentioned Ampelopsis, Vitis labrusca and aestivalis, Tecoma radicans, which reminds one of the dunes on the seashore of eastern Virginia, where the trumpet creeper abounds with Smilax rotundifolia. As the sand blows in about the trees, these lianes are covered up with the trees until the tops of the trees only are exposed. The lianes then take root and spread out in all directions circumferentially a distance of many feet from the tree which, now dead, formerly supported them.

The presence of so much wood undergoing decay accounts for the growth of the fungi found by the writer in the pure (?) sand of the dune complex. Astraeus stellatus is common. Thelephora terrestris is found growing about the stems of Hudsonia tomentosa. The puffball, Lycoperdon Turcotii, was found associated with these, while Clitocybe trullisata, found with largely developed base and small pileus, indicates, according to Prof. Peck, who identified it, something unusual in the conditions of growth. Acthalimn septicum, a myxomycete, is found commonly attached to decaying driftwood.

Dune Marsh Formation. The dune-marsh formation is typically developed at Sea Side Park, and to a less extent at Ocean City. The plants which form it inhabit the depressions of the dunes, which reach to water level. The species, therefore, associated together are essentially of a marsh habit. The dune marshes at Sea Side Park are somewhat different in character in different
localities and under varying surroundings. The marshy hollows of the transverse dune complex at Sea Side Park resemble, physiognomically, a typical pine barren swamp in its constituent elements. Such a one, explored, yielded Juncus effusus, Panicum amarum, Drosera filiformis, the cranberry Vaccinium macrocarpon, as the character plant of such situations, while near by, as already mentioned, grew other pine-barren forms such as Sassafras, Quercus ilicifolia, Q. phellos etc.

A dune valley, which has not been brought down to the level of the ground water, may consist of pure sand bottom and sides without vegetation, or if plants be present, they are confined to the area of drifted sand and not to the area that is wind-swept. In such a hollow, the drifted sand supports three character plants, viz., Myrica carolinensis, Solidago sempervirens and Hudsonia tomentosa. The sides of the irregular basin, not wind-swept, support the marram grass, and an occasional clump of wax-berry. If the sand is still farther transported by the wind, there remain hillocks of dry sand in the center of a damp stretch on the level of the ground water. Sometimes the bottom of the hollow forms a level trough of wet sand, surrounded by sun-dried sand on all sides. Such a hollow is tenanted by three character plants. The wet sand supports a continuous growth of Scirpus debilis and the side of the dune trough, Panicum virgatum, a grass which may be called a tussock grass, because it does not form a continuous turf, but grows in clumps more or less isolated from each other. In the higher drier sand of the depression, before the slopes of the dunes of the dune complex are reached, there grows another character plant, Solidago sempervirens. We have, therefore, a replacement of the original dune occupants, viz., Ammophila, Hudsonia, Myrica, by three plants, Scirpus, Panicum and Solidago. If this process is carried still farther, then we have a larger number of marsh-loving species appearing in the wet sand of the basin-shaped or elongated depression.

The lower damp, marshy places are covered with a growth of Scirpus debilis, from which arises Typha latifolia and a tall sedge, Scirpus sylvaticus. The higher still damp areas support Cyperus Nuttallii and Juncus sp., although these two plants are, as a rule, not found in association. The islands, or knolls of sand, which remain in the marshy area are held in situ by Myrica carolinensis, Ammophila arenaria and Solidago sempervirens. These three plants grow together side by side. Solidago tenuifolia is found where the sand is damp. The sand marsh is fringed directly with Ammophila arenaria, Solidago sempervirens and an occasional Myrica shrub, while outside of these the slopes of the dunes are windswept and destitute of vegetation. In the degradation of a dune and the formation of a wind-swept hollow, we have a succession of associations which are approaching the ultimate state, that of a mesophytic thicket. The transition, noticed in the dune complex, at Sea Side Park, is from an intensely xerophytic association of species to marsh-dwelling xerophytes, and from these in turn to xerophytic shrubs and trees culminating in a mesophytic thicket filling the extent of the original dune valley.

Thicket Formation. The thicket formation developed typically at Sea Side Park and Ocean City reaches its greatest proportions at Wildwood. At South Atlantic City it covers a long, high dune, which is situated, as an island, in the middle of the salt marsh which everywhere surrounds it. It will, therefore,
be described in sequence with the others, although it is misplaced, zonally speaking.

On mile below the town of Sea Side Park the beach thicket covers a considerable area, many acres in extent and quite impenetrable in some places. It is fronted by a strip of juniper trees which are wind-tossed and gnarled by their long struggle with the elements.

Juniper Strip. The vanguard consists of cedars, which never rise above the dunes of the dune complex upon which they grow. Young trees in the dune hollows are spire-shaped, but upon reaching the general level of the dune summit they become flat-topped, incline in the direction opposite to the prevailing wind, and become gnarled and weather-beaten. The cedars of the zone proper form an almost pure growth in front of the main thicket, grow much larger and seem to be more independent of their surroundings. The Juniper Strip clearly defined, is not met with a South Atlantic City, Ocean City or Wildwood, and is apparently absent from those places.

Strip of Mixed Vegetation. This at one mile below the town of Sea Side Park is a veritable jungle, composed of trees, shrubs and lianes, broken there by dry or swampy open glades. The thicket is impenetrable in a number of places owing to the thick growth, and to *Smilax rotundifolia*, covered with spines, and *Ampelopsis quinquefolia*, which together grow as climbing vines, looping themselves from limb to limb and from tree to tree. The most notable species entering into the formation are *Juniperus virginiana* (see fig. 24), *Ilex opaca*, *Iva frutescens* along the margins, *Quercus ilicifolia*, *Rosa carolina*, *Pinus rigida*, *Rhus copallina*, and the climbing form of *Rhus radicans*.

The mesophytic thicket at South Sea Side Park occupies from what has gone before the hollows or rounded depressions in the dune complex, and in its simplest make-up consists of the following associations of species: One thicket examined consists of *Pinus rigida*, *Sassafras*, *Vaccinium corymbosum*, *Juniperus virginiana*, *Chamaecyparis thyoides (= C. sphaeroidea)* and *Myrica carolinensis*. Another hollow contains *Ilex opaca*, *Juniperus virginiana*, *Prunus maritima* while, as an undergrowth, associated together, are *Rhus radicans* and *Solidago sempervirens*. Either before the final condition is reached, or after such thickets have been formed, the original condition of the dune complex may be restored by the drifting in of sand into the depression, resulting in a destruction of the long-established plant associations. Such vicissitudes in the life history of plant associations are not common, although examples are found occasionally on the New Jersey strand. As a rule, before the final culmination of dune hollow history is reached, the elevated sand hills surrounding it are captured by sand-binding plants, such as *Ammophila arenaria*, but especially *Hudsonia tomentosa*, which forms heaths about the depression, effectually preventing the transport of the sand and its deposition in the basin-shaped valleys adjoining.

The thicket at South Atlantic City covers the high insular dune and the hollows and minor dunes behind it. The crest of the dune is probably 30 or 35 feet above the level of the salt marsh, and the hollow behind it is correspondingly depressed. The trees reach a large size, but when they reach the height of the dune summit become flat-topped and wind-swept. The ground of the valley is open, almost entirely destitute of smaller growth, except the smaller trees, and the bracken, *Pteris (Pteridium) aquilina*.
Wildwood forest, using a dignified term for a remarkable growth of trees and shrubs, is part of the thicket formation on Five-mile Beach, constituted by the association of the following arborescent species: Juniperus virginiana, Prunus maritima, Quercus alba, Q. obtusiloba = minor, Myrica carolinensis, Sassafras officinale, Nyssa sylvatica, Magnolia glauca = virginiana, Acer rubrum (see Fig. 25), Prunus serotina, Quercus falcata and Vitis Labrusca. The vine which grows here reaches a foot in diameter, and is a true liane. Upon the ground, usually in the shady open places, abound Cassia Chamaecrista, Strophostyles helvola, Solidago odora, S. pilosa, Panicum amarum, Eupatorium hyssopifolium, Micania scandens, Lespedeza capitata, Lycopodium sinuatus, Lippia lancolata and Ambrosia artemisiifolia. Within the area of the thicket formation are open spaces representing the depressions of the surface, as well as more elevated sandy glades. Several well-marked associations of plants take possession of these spaces, varying in ecologic composition according to the physiography.

Occurring in the jungle of Wildwood\(^1\) are a number of well-defined societies classified as follows, with the names of their component character plants:

\(^1\) Forest Leaves, VII, p. 67 and 92. Two articles describing the remarkable tree growth on Five-mile Beach.

Harshberger, Survey N.-America.
Part IV. Chapter 2.

Osmunda-Association: Osmunda regalis, Scirpus sp., Impatiens biflora. Lobelia cardinalis.

Discopleura-Association: Discopleura (Ptilimnium) capillacea.

Fig. 25. *Acer rubrum* (Red Maple) in Thicket Formation of Sea Strand at Wildwood, New Jersey. Northern Pine-Barren Strand District. Photograph by Geo. D. Firmin.
Cowbane-Association: Tiedemannia (Oxypolis) rigida, Hibiscus moscheutos.

Polygonum-Association: along the borders of a swampy area grows Polygonum lapathifolium.

Salt pond- and Salt-marsh Formation. This formation may be studied to advantage along the northern sea coast of New Jersey, as it is derived from the salt bays, or inlets, that characterize the coast, and it in turn is replaced by the freshwater ponds represented in the region. If an ocean inlet is wholly or partially closed by a barrier of sand that has been formed by ocean currents, or by wind action, a salt pond results. Ultimately such salt ponds are transformed into small fresh-water lakes with a corresponding change in the vegetation, but before that happens, the salinity of the water is maintained, if the pond has a narrow outlet to the sea by the renewal of its water at high tide. If the pond is closed from the sea by a low sand bank, then it is only at exceptionally high tides, or during storms that a new supply of salt water replaces the old which has become essentially brackish. These ponds were studied by the author who has arranged them according to their progress from saline to fresh-water ponds. The transition from a salt water vegetation to a fresh-water can be studied in Sylvan Lake where near the old outlet occur Spartina patens, Juncus Gerardi, Scirpus pungens, Panicum crus-galli and Baccharis halimifolia, while some distance back from the ocean Nymphaea odorata and Typha latifolia grow in abundance. The vegetation of the true salt ponds is essentially similar to that of the salt marshes, that of the fresh-water ponds like those of the interior.

The inner strip of the salt marsh is characterized by the presence of Hibiscus moscheutos. On the marsh proper occurs in several well-marked zones Distichlis spicata in the more elevated portions, while Salicornia herbacea and Bigelovii, Spartina patens and polystachya, Limonium carolinianum grow in the wetter areas with occasional patches of Scirpus robustus. Along the edge of the thorofare through which the tidal water circulates is found a pure association of Spartina stricta maritima. Near the outer edge of the marsh Hydrocotyle umbellata is found, while on exposed sand slopes Opuntia vulgaris is at home with a rose and a willow forming nearby thickets.

The salt marshes of New Jersey have been investigated by the author1) along Newark, Raritan, Sandy Hook Bays, Shrewsbury River, Shark River and Wreck Pond in the north, at South Atlantic City, at Piermont and at Wildwood in the south. The association of salt-marsh species varies in the different localities, but in general it may be said, pending a more detailed statement elsewhere, that Spartina stricta var. maritima, fringes the open salt water of bays, channels and lagoons back of which grows Spartina patens, if the ground is low, while Distichlis spicata, Juncus Gerardi, Scirpus pungens form extended patches back of the fringe of salt grasses; or if the marsh is narrow and the bank steep back of it, then these plants form strips in pure association. In the autumn these meadows are made bright with Gerardia maritima and species of Sabbatia with showy flowers, while in autumn is found in the marshes at Beesley’s Point1) in a slight depression

where a fresh-water spring bubbles up the recently rediscovered Lilaeopsis lineata, first collected by THOMAS NUTTALL at this place 1).

Bay-beach Formation. This formation and its ecologic constitution was studied only at Sea Side Park. At exceptionally high tides the whole beach is subject to tidal action, but ordinarily, high-water mark is removed several feet from the limit of vegetation. Along Barnegat Bay large quantities of eel-grass, Vallisneria spiralis, is washed ashore. At low-tide mark it is still green, but at high-tide mark it has become dry, hay-like, and of a chocolate-brown color. The supply is derived from the fresh-water rivers which empty into Barnegat Bay. The high beach, out of reach of ordinary tides, supports the following plants: Amaranthus retroflexus, Suaeda linearis var. ramosa, Chenopodium album, Salsola kali, Atriplex hastata, Cakile americana, Xanthium canadense, Erechtites hieracifolia and Spartina patens, which is extremely abundant.

Barnegat Bay and many similar ones along the Jersey coast are practically free from aquatic vegetation, such as Zostera marina, Fucus vesiculosus, Vallisneria spiralis, etc., which may contribute material to fill up the bay with vegetal detritus. The water in physical constitution oscillates between two extremes, salt and fresh. If the barrier between the sea and the lagoon is at times closed, so that the water in the bays become fresh, the result is that plants which are especially adapted to the production of salt marshes are killed by the fresh waters, while the occasional invasion of salt water during storms by way of the dune hollows and stronger tides through the inlets destroys the fresh-water plants, which might otherwise establish a swamp. By these alternations some of the largest bays have been kept open, although in many places shallow in the extreme. Ruppia maritima, as it grows in Barnegat Bay, seems to be the only species which has succeeded in adapting itself to such fluctuating conditions. It has been referred to as the character plant of the shallower waters of that bay in about 12—18 inches depth of the sandy bottom, and with the consideration of the above facts its probable future role in preparing the way for other adaptive hydrophytes becomes evident. (Ruppia Shelf.)

2. Pine Barren Formation.

The northward extension of the pine barren flora on Long Island and Staten Island has been studied by BRITTON and HARPER 2). The soil of the region is generally sandy, but is occasionally firm where strata of clay approach and form the surface. The geologic formations to the south and southeast of a line drawn from a point below Long Branch to another near the head of Delaware

Bay are Tertiary, while those to the north of it are Cretaceous. The Tertiary soils extend southward along the Atlantic to Florida. As the soil over both the Cretaceous and Tertiary is composed of similar materials, it is impossible to say, from surface indications, where one ends and the other begins. On Long Island, the great terminal moraine occupies a position marked by a range of hills extending throughout its whole length at an average distance of ten miles from the Atlantic. South of these hills sandy plains prevail, the material composing them having been formed partly from the modified drift of the hills, partly from the underlying Cretaceous strata.

In Suffolk County these plains are covered with Pinus rigida which is dominant associated with Quercus alba, Q. cocinea, Q. obtusiloba = Q. minor, and an undergrowth of Q. ilicifolia, Q. prinoides, Andromeda mariana, Gaylussacia resinosa, Rhus copallina, Comptonia asplenifolia, Aretostaphylos uva-ursi and a number of herbs.

Of these herbs, the following have been detected in Suffolk County, Long Island: Pteris aquilina, Tephrosia virginiana, Baptisia tinctoria. Lespedeza hirta, Desmodium viridiflorum, Rubus cuneifolius, Ipomoea pandurata, Gerardia pedicularia, Phlox subulata, Droséra filiformis, Ascyrum stans, Sericeocarpus conyoides, S. linifolius, Eupatorium hyssopifolium, Eupatorium leucolpis, Eupatorium album, Aster spectabilis, A. concolor, Solidago puberula, S. bicolor, Chrysopsis falcata, C. mariana, Helianthus angustifolia, Coreopsis rosca, Utricularia subulata, Chamisycarpus thyoides (= spheroidea), Juncus pelocarpus, Xyris caroliniana, Eleocharis melanoarpa, Sporobolus serotinus. Thus it appears that thirty four of these characteristic pine barren plants grow in the southern part of Staten Island, and that a large contingent of them have been detected in Suffolk County, Long Island.

Grass Plain Formation. Prairie-like plains (locally the Hempstead plains), are found in west central Long Island. Here Andropogon scoparius, Chysopogon avenaceus. Juncus Greenei form the character plants with which are associated Andromeda mariana, Gaylussacia resinosa, Tephrosia virginiana, Lechea villosa, Aletris farinosa, Viola pedata, Polygala cruciata. P. Nutallii, Bartonia tenella, Solidago puberula, Antennaria neglecta and small isolated trees of Betula populifolia, Populus tremuloideae. In general these plains resemble the bunch grass prairies of the prairie region. In the valley of Meadow Brook, which crosses the plains, a swamp and a thicket occur. The ticket shrubs are Rhus vernix, Vaceinium corymbosum, Viburnum dentatum while the swamp plants include Dulichium spathaceum, Polygonum sagittatum, Eriophorum gracile, etc.

These species show a tendency to follow the course of the two more recent geologic formations throughout their whole extent along the Atlantic coast. Another fact, which stands out prominently in this connection, is that not a single one of the above mentioned plants, growing, as we have seen, along the edge of the glacial drift, is native of Europe, but belong to a true

American flora, which had its origin in the southern part of the continent and migrated northward into Staten Island and Long Island at the close of the great ice age.

In contrast one third of the species on the morainic material is common to northern Europe and America. There are no features on the north side of Long Island that are not duplicated in New York and Connecticut. In the woods the herbs are distinctly northern in their type, hardly extending beyond the ridge. The most important of the pine barren plants which extend north into Long Island and some of them into Martha’s Vineyard (see ante p. 380) and Nantucket are here given:

Andropogon glomeratus Walt. (= A. macrourus Michx).
Ascyrum hypericoides L. (= A. crux Andree L.).
Ascyrum stans Michx.
Aster spectabilis Ait.
» nemoralis Ait.
» concolor L.
Andromeda (Pieris) mariana L.
Drosera filiformis Raf. [Nutt.]
Desmodium (Meibomia) laevigatum » viridiflorum L.
*Asclepias obtusifolia Michx.
Arenaria caroliniana Walt. (= A. squarrosa Michx.).
Catharinea crispa James (= Atrichum crispum James).
Crataegus parvifolia Soland. (= C. uniflora Moench).
Chrysopsis mariana L.
» falcata Pursh.
Coreopsis rosea Nutt.
Cyperus cylindricus Ell. (= C. Torreyi Britton).
Eupatorium rotundifolium L.
» album L.
» hyssopifolium L.
» leucosepis T. & G.
Euphorbia ipecacuanhae L.
Eleocharis melanocarpa Torr.
Gnaphalium purpureum L.
Gaylussacia dumosa Andr.

Glyceria (Panicularia) obtusa Muhl.
Hudsonia ericoides L.
Helonias bullata L.
Helianthus angustifolius L.
Ipomoea pandurata L.
Spiranthes (Gyrostachys) simplex
Stipa avenacea L. [Gray.
Sporobolus serotinus Torr.
*Tephrosia (Cracca) virginiana L.
Utricularia subulata L.
Xyris flexuosa Muhl.
» caroliniana Walt. 1)
*Chamaecyparis thyoides L. (= C. sphaeroidea Spach).
*Juncus pelocarpus E. Meyer.
» scirpoides Lam. (= J. scirpoides var. macrostemon Engelm.).
*Kalmia angustifolia L.
Lycopodium inundatum L.
Magnolia glauca L. (= M. virginiana Polygala lutea L. [L.].
Phlox subulata L.
Panicum verrucosum Muhl.
Quercus marylandica Muench. (= Q. nigra L.).
» prinoides Willd.
» Phellos L.
» heterophylla Michx.
» Rudkii Britt.
Rubus cuneifolius Pursh.
*Solidago puberula Nutt.

1) JELLIFFE, SMITH ELY: The Flora of Long Island. Lancaster 1899: XI—XII.
Those plants marked by an asterisk in the above list extend north to Canada. Twenty-five of the plants occur on the south shore of Massachusetts about Buzzards Bay near New Bedford\(^1\), while twenty listed below are found in a limited area about Worden’s Pond in southern Rhode Island\(^2\).

Chaenactis thyoides L.
Kalmia angustifolia L.
Gaylussacia dumosa Andr.
Sporobolus serotinus Torr.
Glyceria (Panicularia) obtusa Muhl.
Xyris flexuosa Muhl.
» caroliniana Walt.
Spiranthes (Gyrostachys) simplex A. Gray.
Lachnanthes tinctoria Ell. (= Gyrotheca capitata Walt.).

| Asclepias obtusifolia Michx. | Aster nemoralis Ait.
| » concolor L. | » spectabilis Ait.
| Solidago puberula Nutt. | Eupatorium hyssopifolium L.
| Coreopsis rosea Nutt. | Chrysopsis falcata Pursh.
| Tephrosia (Cracca) virginiana L. | Hudsonia ericoides L.
| Lycopodium inudatum L. |

The pine barrens of New Jersey may be divided into two portions, one comprising the coniferous area and the other a portion of the transition area, where the conifers encroach on the deciduous vegetation. The coniferous, or pine-barren belt is a strip of land sixty miles long by from eight to twenty miles wide. Its soil varies from a light sandy loam to clean beach sand. Its streams rarely overflow their banks, there are peat bogs, barren plains marl beds, hardwood swamps and cedar swamps which diversify the monotonous landscape. Little diversity in either geology or topography is presented in this territory. The soil has an almost uniform character throughout and the surface irregularities are relatively small. The coniferous vegetation is conterminous with the northern border of the Tertiary gravels, sands and sandy clays, and it is limited on its southern and eastern borders by a fringe of modern sand beaches and salt marshes, while southwestward, it extends beyond the limits of the state, while the tension zone includes practically the whole of the Cretaceous plastic clays and the Cretaceous and Tertiary clay-marls and marls.

The following list according to Witmer Stone (Proceedings Academy Natural Sciences of Philadelphia 1907: 452–459) includes the peculiar pine-barren species and those which occur southward along the Atlantic coastal plain but which find their northern limit in New Jersey:

| Lycopodium carolinianum. | Carex stricta.
| » alopecuroïdes. | Cyperus cylindricus.
| Calamofila breviblipis. | Rhynchospora Torreyana.
| Sporobolus Torreyanus. | » gracilenta.
| Panicum sphagnicola. | » oligantha.
| Rhynchospora pallida. | » kniesknii.
| Scleria Torreyana. | Juncus marginitius aristulatus.
| » asper. |

The northern element in the New Jersey pine-barren flora consists of the following species which practically find their south low-ground limits in this region or a little south of it: Schizaea pusilla (recently discovered on the sea strand at Sea Side Park, N. J.), Sporobolus serotinus, Carex livida, C. folliculata, C. trisperma, Eriophorum polystachyum, Juncus pelocarpus, J. militaris, Corema Conradii, Uticularia elandestina, Gaultheria procumbens, Cassandra (Chamaedaphne) calyculata, Arestostaphylos uva-ursi, Vaccinium atrocoecum, Chrysopsis falcata. The botanist notices the absence from the pine barrens of such plants as *Symlocarpus Spathyema*) foetidus, *Arisaema triphyllum, Anemone nemorosa, Ranunculus abortivus, R. fsecularis, Thalictrum polygonum, Caltha palustris, Viola cucullata, V. sagittata, *Lobelia cardinalis, Helianthus giganteus, *Vernonia noveboracensis, Senecio aureus. These are found in the woods of the Delaware Valley and uplands beyond and those marked near the seacoast.

Forest Formation. The pine barrens consist of unbroken extents of dark green pine forest never rising over fifty feet above ground level. *Pinus rigida* is the most abundant tree and forms according to my observations an open forest with an undergrowth of oaks and ericaceous plants. (*Pinus rigida — Facies.*) The second layer comprises such trees as *Quercus marylandica, Q. obtusiloba (= *Q. minor, Q. stellata), Q. alba* rare) and the third layer consists of many shrubs and small trees sometimes in dense masses at other places in widely open formation and varying in composition according to the locality and edaphic conditions.

These are: *Quercus ilicifolia (=* Q. nana), Q. prinoides, Crataegus parviflora, Vaccinium pennsylvanicum, corymbosum, vacillans, Gaylussacia dumosa, resinos, frondosa, Andromeda liguustrina, Azalea viscosa, Leucothoe racemosa; Kalmia latifolia, K. angustifolia, Viburnum nudum and Comptonia, Leiothlyum buxifolium, while of prostrate habit are Mitchellia repens and Arestostaphylos Uva-ursi [in masses several yards in extent], together with such herbs as Xerophyllum asphodelioides, Petris aquilina, Chimaphila maculata, C. umbellata (both in large patches, while in such an association of species in different places in the forest we find also Lupinus perennis, Hieracium venosum, Euphorbia ipecacuanhae, Diploppappus lineariifolius, Chrysopsis mariana, C. falcata, Lithis spicata, L. graminifolia, Agulegia canadensis, Arenaria caroliniana. In more open sandy places with a gentle slope grow Pyxianthera barbulata, Epigaea repens, Gaultheria procumbens, Breweria Pickeringii, Croton capitatus, while Hudsonia ericoides cover hillocks of sand together with Galactia glabella, Cladonia rangiferina, Phlox subulata, Opuntia vulgaris, Helianthemum canadense, Crotonopsis linearis, Euphorbia ipecacuanhae and Lechea minor. In dry woods occur Rubus cuneifolius, R. hispidus, Baptisia tinctoria, also Monarda punctata, Asclepias tuberosa, Amianthum muscaetoxicum, Tephosia virginiana, Cyripedium acaule, Corallorhiza multiflora, Melanocyrum lineare, Viola pedata. *Pinus inops (= P. virginiana) is abundant along the Delaware River on gravelly ridges. Small clumps and single trees are scattered through the southern interior. Pinus mitis (= P. echinata) grows on sandy or light clayey soil. It is quite common in the

Cedar Swamp Formation. This formation is characterized by the white cedar Chamaecyparis thyoides (= sphaeroidea). It grows in dense masses along fresh water streams. Associated with this tree are Magnolia glauca, Acer rubrum, Azalea viscosa, Itea virginica, Ilex verticillata, I. glabra, Clethra alnifolia, Gaylussacia frondosa. Usnea barbata hangs from the trees and other lichens cover the stems and branches, while sphagnum forms cushions at the base of the trees. In sandy open places of small extent or about the bases of the cedar trees in sphagnum, notably at Island Heights Junction, at Forked River at Chatsworth and Quaker Bridge is found the rare and local Schizaea pusilla, associated with Lycopodium carolinianum and Drosera rotundifolia, intermedia and filiformis. In such swamps also grow Orontium aquaticum, Eriocaulon, Osmunda cinnamomea, O. regalis and Sarracenia purpurea.

The cedar swamps in Long Island according to Harper and Bicknell (Torreya VII: 198, VIII: 27) occur in a few localities along the south shore of the island. Here are associated with the white cedar Sassafras officinalis a foot in diameter, Acer rubrum and the following shrubs and herbs: Viburnum dentatum, Kalmia latifolia, Clethra alnifolia, Aralia nudicaulis, Ampelopsis quinquefolia, Nemophanthes fascicularis, Rhus radicans, Rubus hispidus, Maianthemum canadense, Arisaema triphyllum, Symphoricarpus foetidus, Carex folliculata, Lycopodium lucidulum, Osmunda regalis, O. cinnamomea, Woodwardia areolata, Tridentalis americana, Azalea viscosa and Gaylussacia frondosa.

Hardwood Swamp Formation. The hardwood swamps along streams, or interspersed in low places through the pine barrens usually contain Acer rubrum, Liquidambar styraciflua, Nyssa sylvatica, Magnolia glauca, Rhus venenata, Clethra alnifolia, Vaccinium corymbosum, Ilex verticillata, and

Itea virginica, Alnus serrulata. In Griscom's swamp between Tuckahoe and Great Egg Harbor rivers occur Fagus americana, Liriodendron tulipifera, Quercus bicolor, Q. phellos, Q. alba, Q. prinus, Ilex opaca, Sassafras, Nyssa, Pinus rigida and Magnolia. It is remarkable that in this swamp one finds Quercus bicolor the only place where it grows in South Jersey and also Fagus and Liriodendron separated from the broad leaved forest by a broad stretch of pine land. Similar swamps, according to Harper, occur in Long Island.

Grass Slough Formation. There are many acres of grassgrown land in New Jersey, which approach the "savanna". This so called savanna consists of sloughs covered with a variety of grasses associated with Hibiscus moscheutos, Decodon verticillata, Tofieldia, Narthecium, while knolls or ridges are covered by Pinus rigida with Xerophyllum asphodeloides. The sloughs are underlaid near the surface by a layer of bog-iron ore and are fringed by boreal plant: Lyonia (Chamaedaphne) calyculata with Vaccinium corymbosum. — There are in these territories also cranberry bogs, forming a Cranberry Bog Formation proper; the basis of these bogs is sphagnum moss of several species, and they may occupy depressions of surface, or they may fringe the banks of some fresh water stream. The bog is too wet for trees to grow, but we find characteristic species in it, such as Vaccinium macrocarpon, which forms dense tangles of growth on its surface, Sarracenia, Lachenanthes tincturia, Lophiola aurea, Pogonia (2 spec.), Calopogon, Arethusa, Drosera (3 spec.), Utricularia clandestina, and near the margins of the bog Helonias bullata.

Pond Formation. This includes both floating amphibious and pond margin plants. — (Nymphaea Association): The water surface of the pond is covered either in whole or part by Nymphaea (Castalia) odorata, Nelumbo lutea (rare), Nuphar (Nymphaea) advena, Brasenia peltata (= B. purpurea), Limnanthemum lacunosum and Orontium aquaticum. In the water inside of the floating aquatics is found the Typha-Sagittaria Association, together with Peltandra virginica in the shallower water and Pontederia cordata, Eriocaulon, Scirpus subterminalis and two or three species of Xyris, floating species of Utricularia: in thick tangled masses.

The vegetation of Watering Place Pond, according to Saunders, is characterized by Nymphaea odorata and several floating islands of sphagnum supporting Lyonia calyculata and in the shallowest water Carex Walteriana, Woodwardia virginica, while in the sphagnum-lined margin of the pond (circum-area) grow Pogonia ophioglossoides, Calopogon pulchellus, Drosera filiformis, D. intermedia, Polygala Nuttallii, P. lutea, Lysimachia strieta, Proserpinacea pectinata, Hypoxis erecta and the shrubs Azalea viscosa, Vaccinium corymbosum.

Mention should be made of the grasses of the following genera which abound in the pine barrens: Andropogon, Uniola, Triodia (Triplasis), Stipa, Panicum, Glyceria, Cenchrus and the following characteristic species not mentioned before: Habenaria cristata, H. ciliaris, Calopogon pulchellus, Tephrosia virginiana, Lespedeza hirta, L. repens, L. angustifolia, Polygala cruciata, P. brevifolia, P. incarnata, P. mariana, P. Nuttallii, P. polygama, Aserum stans, Oenothera sinuata, Bartonia tenella, Sclerolepis verticillata covering old ditch bottoms, Eupatorium rotundifolium, E. album, E. hyssopifolium, Solidago puberula.

B. Carolinian Pine Barren-Strand District.

This district includes the coastal plain east of the "fall line" between Chesapeake Bay and south central Florida. Its physical characters are similar to those of the plain in New Jersey, but more pronounced, because in the south the plain is wider and better developed. Floristically the district is richer than that north of the Chesapeake and there are many plants, such as Uniola paniculata, Borrichia frutescens (peculiar to it) to be mentioned sub-sequently which do not extend northward.

The Lafayette and Columbia geologic formations cover almost the entire surface of the coastal plain in Georgia. R. M. Harper in a detailed account of this region distinguishes in addition to the Lafayette and Columbia formations the fall-line sand hills, the Altamaha Grit region and the southern lime-sink region, while the Cretaceous, eocene and oligocene geologic regions are also noteworthy. These formations may be identified by the plants growing upon them. Certain species of herbaceous plants occur only on the Columbia sands others only on the Lafayette clays. The best indicator of the Columbia formation is Eriogonum tomentosum which flowers in late summer ranging from South Carolina to Florida and Alabama. Froelichia floridana has a similar distribution.

Baldwinia angustifolium, Aselepias humistrata, Baptisia perfoliata, Chrysobalanus oblongifolius, Calamintha coecinea, Croton argyranthemum, Dicerandra linearifolia, D. odoratissima, Petalostemon corymbosum, Nolina georgiana, Paronychia herniarioides, Sarracenia flava, Serenoa serrulata are also characteristic. — The Lafayette formation is easily distinguished by Berlandiera tomentosa, Crataegus aestivalis, Dichromena latifolia. There are, however, quite a number of species in the coastal plain which seems never to occur where the Lafayette is present, but only on the Columbia or on outcrops of the older underlying strata. Among these are Bumelia lanuginosa, Dichromena leucocephala, Erythrina herbacea, Hydrangea quercifolia, Melanthera hastata, Taxodium distichum and Yeatesia Justicia, latevirens. Lastly Tiedemannia teretifolia and Taxodium imbricarium seem to indicate the simultaneous occurrence of both the Lafayette and the Columbia geologic formations.

1. Sea Coast- and Dune Formations.

Marine Algal Formation. The nature of the bottom of the ocean and sounds along the southern coast of the United States is such as to provide few habitats of the sort most frequented by marine algae. There are no rocks whatever, except those artificially deposited for wharves and revetments. Rock pebbles are also wanting. It is not surprising, therefore, to find that the marine algae are such forms which attach themselves to shells lying on the

1) The most detailed account of the physiography and soils of the coastal plain with the best agricultural map ever published of the district will be found in a report by Eugene A. Hilgard entitled, "Report on cotton Production in the United States also embracing agricultural and physiographical Descriptions of the several cotton States". Tenth Census of the United States, volumes V and VI, 1884. This is indispensable in a study of the flora of the Southern states in connection with the chapters in Hilgard's book on "Soils" concerned with the recognition of soils from their native vegetation, pages 487—549; Consult also Milton Whitney, Soils of the United States. Bulletin 55 U. S. Bureau of Soils, 1909 with excellent colored map.
sandy or muddy bottom. Probably the most common marine plant of the sounds, except perhaps *Ulva lactuca*, is *Hypnea musciformis*, which grows in thick masses in every available situation. Scattered quite generally with this plant are tufts of *Dictyota dichotoma* here near its northern limit, associated with *Rhabdonia tenera* and *Gracillaria confervoides*. *Codium tomentosum* frequently occurs on shells in the sounds but more abundantly on the rocky breakwaters associated here with *Dictyota*, *Padina paonia*, *Sargassum vulgaris*, upon which is found an epiphyte *Ectocarpus siliculosus*, while on exposed breakwater rocks are found *Enteromorpha* and many delicate Rhodophyceae, chief among which are *Dasys elegans*, *Erythrotrichia*, *Gelidium*, *Grinnelliia americana*, *Trentepohlia virgatula* with several species of *Callithamnion*, *Ceramium* and *Polysiphonia*. *Zostera marina* is abundant in the sounds and on its leaves flourishes *Melobesia pustulata*. — Paralleling and fringing these sounds and inlets are the salt marshes of the coast many of them very extensive in area. According to Kearney the following formations may be distinguished in southeastern Virginia and North Carolina.

Salt Marsh Formation. Salt marshes exist as a conspicuous element in the topography of the region bordering tidal streams and sounds up to the point where the water ceases to be brackish, but not infrequently, they cover wider areas in lagoons and bayous. At the meeting place of the salt and freshwater marsh vegetation, the plants of the tension line are *Spartina polystachya* and *Scirpus americanus* (salt water plants), associated with *Sagittaria lancifolia*, *Pontederia cordata*, *Polygonum hydropiperoides*, *Typha latifolia*, *Zizania aquatica* (freshwater marsh species).

Several associations of species may be distinguished in the salt marsh: *Spartina stricta* Association. This association in which *S. stricta* var. *maritima* is the most important species occupies the edge of the open water, associated with it as secondary species are *Salicornia*, *Distichlis spicata*. Where these plants grow the tidal range is marked, so that the plants are partially submerged at high tide.

Juncus Roemerianus Association. This association occupies more ground than the former and is best developed on land that is merely wet a great part of the time and covered at most with only a few centimeters of water at high tide. *Juncus Roemerianus* is perhaps the most abundant salt marsh plant of the region growing inside *Spartina* and affording a striking contrast to that plant by its dark green almost black color. In Virginia besides *Juncus Roemerianus* among the most abundant plants is the shrubby *Iva frutescens* associated with *Aster subulatus*, *Lythrum linceum*, *Statice caroliniana*, while at one point below Virginia Beach an assemblage of species

occupies the pools among the rushes — *Herpestis monniera, Eleocharis mutata* and *glaucescens, Paspalum distichum*.

Typha Association. This association covers rather wide strips in nearly pure association especially near the upper limit of brackish water along streams in Virginia. — *Spartina juncea Association.* This forms dense meadow-like areas on the salt marshes in Virginia, and breaks the usually uninterrupted stretches of the Juncus Roemerianus Association. *Spartina patens (= S. juncea)* is the chief species associated in midsummer with *Sabbatia stellaris, Fimbristylos spadicea* and clumps of the grass *Panicum virgatum. — Baccharis-Hibiscus-Association.* A number of species are mostly at home in the wet soil at the inner edge of the salt marshes whence they stray into the other associations. Most important of these is *Baccharis halimifolia, Hibiscus moscheutos, Borrichia frutescens*, only occasional in Virginia, although common farther south along the coast. *Panicum virgatum* in clumps is also a conspicuous feature of marsh borders as also *Kosteletzkya virginica, Mikania (Willugbaea) scandens, Rumex verticillatus, Pluchea camphorata, Atriplex hastatum*.

The lack of space enables us only to mention the *Dune Marsh Formation* which cover limited areas of wet sand in depressions among the dunes on Ocracoke Island, N. C. with the most characteristic species of *Herpestis monniera, Lippia nodiflora*, associated with *Hydrocotyle umbellata, Centella asiatica, Diodia virginiana*; then the *Tidal Flat Formation*, an open formation occupying the margins of shallow lagoons at the end of Ocracoke Island, North Carolina, with the soil as a mixture of silt and sand and an association of a sparse growth of *Sesuvium pentandrum, Spargularia (Tissa) marina* and *Scirpus pungens*, followed by the *Strand Formation* of Virginia, North Carolina, Georgia and Florida, where as in other parts of the world, the well marked topographic feature, the sand strand, is occupied by a sparse vegetation, in open formation, i. e., where the individual plants mostly grow far enough apart to leave much of the soil visible among them.

Beach Formation. In the Dismal Swamp region in Virginia at Virginia Beach, according to my observations and those of Kearney 1), the lower and middle beaches are almost destitute of plants except *Zostera marina* which has been thrown up by the waves. The upper beach, however, is characterized by a growth of *Cakile americana, Salsola Kali, Arenaria peploides* and a scattered growth of *Ammophila arenaria*.

The plant associations of the sand strand of Lynnhaven Bay are less exposed to the wind than the shores of the Chesapeake and the open Atlantic and they are therefore somewhat different. The narrow strip of beach is in front of an abrupt bank upon the top of which is found the edge of the inland forest. The outer beach supports a growth of *Ammophila arenaria, Panicum amarum, Salsola Kali, Cakile americana, Hudsonia tomentosa, Lechea maritima, Spartina juncea, Cenchrus tribuloides var. macrocephalus* Several leguminous plants also occupy the beach: Strophostyles helvola, Centrosema virginiana.

Along Pamlico Sound in North Carolina, according to Kearney 2) the gently sloping sandy

beach is occupied by herbaceous plants, named the *Croton-Physalis Association*. The most abundant is *Croton maritimus* which forms at places close associations *Physalis viscosa*, a perennial herb, is also frequent, while *Ilex vomitoria* (= *I. cassine*), *Zanthoxylum*, *Juniperus virginiana*, *Opuntia* pes-corvi form diminutive thickets only 1–3 decimeters high. The well known Euphorbia polygonifolia, *Triodia purpurea*, *Solanum nigrum* (a caescent form), *Salsola kali, Teucrium Nashii, Chloris petraea, Panicum neurbanthus, Cynodon daetlyn*. Rubus trivialis and *Smilax bona-nox* form the herbaceous element of the beaches.

Dune Formation. A visit to the dunes of Virginia Beach by the writer confirmed in all essential details the observations of *Kearney*. The outer line of dunes is inhabited by certain hardy, strong-rooting plants, viz., *Ammophila arenaria*, with small colonies of *Uniola paniculata*, which entirely replaces *Ammophila* not far south of this region. *Iva imbricata* forms roundish clumps on the outermost dunes. *Panicum amarum* is associated with the above plants.

Myrica Strip. This association is found on the middle open dunes (dune complex). Here *Cakile americana* and *Salsola Kali* occur, but are not characteristic. *Uniola* and *Iva* are absent, while on the other hand *Ammophila* and *Panicum amarum* are quite at home. *Ammophila* at times forms meadows like growths associated with scattered dwarf plants of *Myrica carolinensis*, *Quercus virginiana* var. *maritima*, *Rhus copallina*, but *Myrica* forms dense thickets on the higher dunes to the exclusion of other shrubby species.

Other shrubs, however, occur on the open dunes such as *Prunus angustifolia*, *Salix fluviatilis*, *Quercus virginiana* (= *Q. virens*), *Baecharis halimifolia*, *Cephalanthus occidentalis*, *Platanus occidentalis*. The live oak *Quercus virginiana* (= *Q. virens*) hardly occurs as a tree on the Virginia coast nor does it form thickets. Among the open dunes it is a straggling shrub usually wind swept. While the open dunes are not forested, scattered trees often grow upon them. *Pinus taeda* usually advances farthest toward the beach while *Prunus serotina*, *Diospyros virginiana*, *Quercus falcata*, *Ilex opaca* also occur. — Climbing plants according to my observations abound in the middle dunes. *Teocoma radicans*, *Vitis rotundifolia*, *V. aestivalis*, *Smilax bona-nox*, *S. rotundifolia*, *S. glauca*, *Loniceram sempervirens*, *Rhus radicans*. *Amelopsis quisquefolia* as lianes. — Beneath and among these occur on the sand *Hudsonia tomentosa*, *Lechea maritima*, *Diodia teres*, *Rubus villosus*. In the shelter of the bushes of *Myrica carolinensis*, not especially adapted to the dune environment, are *Erigeron canaden시스*, *Eupatorium capillifolium*, *Phytolacca decandra*, *Chenopodium antheminthiicum*.

The open dunes of Ocracoke Island, North Carolina are occupied by sea oats, *Uniola paniculata*, associated with *Muhlenbergia filipes*, rather small plants of *Yucca gloriosa*, an occasional *Yucca aloifolia*, and *Myrica carolinensis* (*Uniola-Yucca Association*). Of secondary importance, *Panicum amarum*, *Spartina patens*, *Carduus spinosissimus*, *Oenothera humifusa*, *Croton maritimus* are found.

The tops of the low outer dunes on the *Isle of Palms*, South Carolina, according to *Coker*, are held by several sand-binding grasses, each of which seems to dominate particular elevations. *Uniola paniculata*, which is most abundant, covers many of the ridges, *Sporobolus virginicus* has possession of others, and *Panicum amarum* and *Spartina polytaehcha* occur in considerable quantity. Here grow also *Croton maritimus*, *Iva imbricata*, *Salsola kali, Euphorbia polygonifolia, Oenothera humifusa* and *Cenchrus tribuloides*. At certain places the tide makes in between the outer ridges and flows the depressions behind them. Here Coker found *Ipomoea*
littoralis its northern limit. In the somewhat sheltered depressions among the dunes there are also a few scattered specimens of Yucca gloriosa and near the inner ridges Sabal palmetto grows together with Yucca aloifolia, Uniola paniculata, Quercus virginiana (= Q. virens, in low contorted thickets) over which twines Gelsemium sempervirens. The sand on the steep leeward slopes of the highest dunes is anchored by such vines as Cissus bipinnata (= Ampelopsis arborea) Ampelopsis quinquefolia, Rhus radicans, Vitis rotundifolia, Passiflora incarnata, Smilax bona-nox. Occasionally Quercus virginiana, Persea carolinensis, Morus rubra, Callicarpa americana, Myrica carolinensis and Ilex Cassine (= vomitoria) grow here.

The dunes in Florida, at Daytona for example, consist of two parallel ridges, according to Weber. Uniola paniculata is the main sand-binding grass to be found on the top and seaward side of the first line of dunes. Species of Spartina, Panicum, Ipomoea, Yucca, Serenoa, Croton, Euphorbia, Opuntia are also commonly found mingled with Uniola. At the base of the main line of dunes are Panicum amarum, Ipomoea pes-caprae, Ipomoea littoralis, Iva imbricata, Calicle americana. On the dunes at Pablo Beach, Quercus virginiana and Q. aquatica (= nigras are shrubs associated with the saw palmetto Serenoa serrulata, and such herbs as Physalis viscosa, Croton maritimus (= C. punctatus), Helianthemum arenicola, Oenothera humifusa, Houstonia rotundifolia, Acanthospermum xanthoides, Eclipta errecta, Samolus floribundus, Herpestis monniera, Lippia nodiflora.

The Shell Islands are situated on the east coast flora of Florida, scattered through the marshes and composed entirely of oyster shells. Yucca aloifolia is a dominant plant on some of these islands associated with shrubby growths of Sageretia Michauxii, Forestiera porulosa, Quercus virginiana while climbing over these is Vincetoxieum sp. and beneath a growth of Capsicum frutescens. Possum Island, another shell island, is covered with Opuntia pes-corvi, O. vulgaris, Yucca gloriosa, Mentzelia floridana.

2. Coast Forest Formations.

Dune Forest Formation. The higher, inner, wooded dunes at Virginia Beach bear, according to my observations, an open forest of Pinus taeda and the following according to Kearney mingle with or take the place of the pine: Prunus serotina, Diospyros virginiana, Zanthoxylum, Sassafras, Juniperus virginiana and at Cape Henry occur thickets of laurel oak Quercus laurifolia. Quercus virginiana (= Q. virens) attains its best development beneath the pines in Virginia although it never becomes a tree in this region.

Strand Pine Association. The principal tree of this facies in the Dismal Swamp Region is Pinus taeda; associated with the pine and giving character to the association are: Callicarpa spinosa, C. americana, Zanthoxylum, Gelsemium sempervirens, Tecoma radicans and other lianes are abundant. Where the strand forest is moist, Baccharis halimifolia is often the principal element of the undergrowth. In very dry soil, in openings among the trees are Rubus cuneifolius, Robinia pseudacacia, Prunus angustifolia. The herbaceous species of this association are such as typify the drierparts of the inland pine-barrens: Danthonia sericea, Uniola gracilis (= U. laxa), Convolvulus americana, Eupatorium many species, etc. In somewhat boggy soil occur Galium

claytonia, Panicum ciliaturn, Polytrichum commute and small quantities of peat mosses.

The summit of the bluff along Lynn Haven in the Dismal Swamp neighborhood is occupied by the edge of the island forest. The prevailing pine is Pinus mitis (= P. echinata). At other points Pinus taeda predominates. Other characteristic trees are Quercus obtusiloba, Q. falcata, Diospyros virginiana, and Carya porcina (= Hicoria glabra). Myrica carolinensis, Rhus copallina, Sympleocos tinctoria, Persea pubescens, Quercus falcata form in places thickets at the foot of the bank. Tillandsia usneoides drapes the trees. Of lianes there are Smilax bona-nox, Tecoma radicans, Rhus radicans. In the open pine woods at the foot of this bank are swards of Festuca rubra, clumps of Panicum virgatum and numbers of Yucca filamentosa, Opuntia vulgaris. In the more elevated pine woods occurs a scanty herbaceous flora of Tragia urens, Jatropha stimulosa, Desmodium strictum, Sporobolus asper, Chrysopsis graminifolia, Galium hispidulum, Uniola longifolia, Helianthemum canadense, Rubus trivialis.

Quercus virginiana Association. Scattered over Ocracoke Island, Kearney states there are small groves of *Quercus virginiana* (= *Q. virens*) either in pure association or mixed with other trees. The branches gnarled and twisted are clad with *Usnea barbata* and small wisps of *Tillandsia usneoides*. Associated with the oaks are small trees of *Myrica cerifera*, *Zanthoxylum*, *Ilex*, *Juniperus* and lianas.

The herbaceous members of this association are in the smaller groves: Chloris petraea, Physalis viscosa, Diodia teres and in the larger groves where the light is more diffused and humus collects Oplismenus setarius, Asplenium ebeneum, Uniola gracilis, Panicum laxiflorum and two mosses on the ground Bryum argenteum, Rhynchostegium serrulatum.

Ilex Cassine Association. Thickets of *Ilex vomitoria* (= *I. Cassine*) on Ocracoke Island cover the low dunes of the inner side of the island. The branches of this shrub are shaggy with *Ramalina montagnei*. Associates of the *Ilex* are *Myrica carolinensis*, *Parietaria debilis*, and *Melothria pendula* with twining stems. Inside of the dune formation on Bogue Bank near Beaufort, N. C. the strand forest formation consists of a scrubby forest made up chiefly of *Quercus virginiana* (= *Q. virens*), *Ilex opaca*, *Morus rubra*, *Persea carolinensis*, *Carpinus caroliniana*, *Juniperus virginiana* and *Pinus taeda*. The shrubby undergrowth consists of *Myrica gale*, *Ilex glabra*, *I. cassine*.

The distribution of species here is dependent largely upon the level of the surface. Pinus, Juniperus, Morus occur chiefly in elevated places while *Ilex* opaca, *Carpinus* and *Persea* with the three species of *Quercus* occupy the hollows and these trees are everywhere overgrown with dense tangles of Berchemia volubilis, *Vitis* rotundifolia, *Rhus* toxicoedron, *Amabelopsis quinquefolia*, *Smilax bona-nox*, S. rotundifolia, *Cissus* stans, *Melothria pendula*. Where the growth is densest epiphytes occur. *Polypodium ineanum*, forms straggling clumps, usually on the live oak, species of *Frullania*, *Liochaena*, *Lejeunia* and *Archelejeunia* form reddish or yellowish patches on the trunks of the trees with lichens of the genera *Parmelia*, *Ramalina*, *Placodium*, *Buellia*, *Leceidea* and *Usnea barbata* with a bright red lichen *Tryphethium cruentum*.

Palmetto Formation. *Sabal Adansonii* (= *S. glabra*), present on these banks borders pools of muddy water beneath which are dense patches of *Saururus cernuus* (*Saururus Association*), *Sagittaria lancifolia* together with *Nephorodium thelypteris*, *Onoclea sensibilis*, *Osmunda regalis* (*Sagittaria Association*).
Sabal (Inodes) Palmetto (Walt.) R. & S. (cabbage palm)
on Smith's Island, mouth of Cape Fear River, North Carolina. Palmetto Formation, Carolinian
Pine Barren — Strand District, Young palmettos are shown in the right hand foreground.
Reproduced by permission U. S. Forest Service.
On Smith's Island, a delta-like formation at the mouth of the Cape Fear River, North Carolina, *Sabal Palmetto* (= *Inodes palmetto*) reaches its northern limit 1) (see plate IX).

Associated with it in a forest of considerable denseness and impenetrability are: Ilex (= *I. cassine*), Ilex opaca, *Quercus virginiana*, *Q. aquatica* (= *nigra*), *Juniperus virginiana*, *Osmanthus americana*, *Pinus Taeda*. *Sabal palmetto* makes a magnificent growth in soil consisting of pure sand and shell fragments and on the Isle of Pines, South Carolina, according to Coker, it is associated in the hammocks with *Quercus virginiana*, *Q. laurifolia*, *Juniperus virginiana* and such shrubs as *Zanthoxylum clava-herculis*, *Ilex vomitoria*, *Bumelia tenax*, *Callicarpa americana*, *Yucca filamentosa*, *Opuntia vulgaris*, *O. pes-caprae* and the herbs *Stenotaphrum americanum*, *Cynodon dactylon*, *Sporobolus indicus*, *Panicum lanuginosum*, *Sanicula canadensis*, *Galium hispidulum*, *Monarda punctata*, *Bidens frondosa* and *Eupatorium leucopelis*. *Smilax laurifolia* festoons the trees and *Mitchella repens* forms carpet on the ground in the shade beneath. *Sabal Adansonii* which ranges farther south is absent from this island.

Oak Flats Formation. In this connection must be mentioned the oak flats which border most of the gum and cypress swamps, lying between the swamps (see later) and the level pine land. The soils of these flats are damp or moist usually deep loams covered with broad-leaved trees, viz., *Quercus aquatica* (= *Q. nigra*), and other oaks, species of *Ulmus*, *Acer*, *Liquidambar*, *Nyssa*. These form an upper story 80 to 100 feet in height and of considerable density while beneath them are *Carpinus caroliniana*, *Quercus obtusiloba*. There is little undergrowth. Where the soil of the oak flats becomes peaty, *Liriodendron tulipifera* occurs occasionally among the other trees.

3. Inland Forest Formations.

The forests of the interior of the Carolinian coastal plain are of three types constituting three groups of phytogeographic formations: Mixed Forest Formations, Pine Barren Formations, Hygrophile Forest Formations, the latter including the forest of the black gum swamp (cypress swamp) and that of the open light swamp. These formations have been most carefully studied in southeastern Virginia and northeastern North Carolina and we owe our knowledge to the energetic field labors of THOMAS H. KEARNEY. Less is known of similar portions south of North Carolina and in the absence of more detailed information the character of the Virginia and North Carolina areas must be considered as typical and in all probability the difference is not in the physiognomy of the vegetation north and south, but in the presence or absence of certain north or south ranging plants.

Mixed Forest Formations. The forest which still covers large areas of the coastal plain is usually a mixture of coniferous and deciduous trees. Where the conditions have not been disturbed, the loblolly, or rosemary pine (*Pinus taeda*) is still the dominant species in sandy soils. On stiffer soils, especially away from the sea, hardwoods of several species constitute the

Harshberger, Survey N.-America.
strongly predominant or even in small areas, sole element of the forest growth. *Pinus mitis* (= *P. echinata*), is not rare and *Pinus palustris* (= *P. australis*) occur sparingly in the formation. The most important deciduous tree is *Liquidambar styraciflua* with *Quercus alba*, *Q. Michanxii*, *Q. falcata* (*Q. obtusiloba*), *Q. phellos*, less common are *Q. rubra*, *Q. tinctoria*, *Q. laurifolia*. The beach most abounds where the subsoil is particularly rich in clay or silt and therefore retentive of moisture. *Acer rubrum* (fig. 25 page 418) is common generally in swamps. *Carya tomentosa* (== *Hicoria alba*), *Liriodendron* are less abundant than the preceding. *Cornus florida*, *Oxydendrum arboreum*, *Ilex opaca*, *Diospyros virginiana*, *Nyssa sylvatica* are abundant.

Other elements of forest growth are in places *Celtis occidentalis*, *Carya poreina* (== *Hicoria glabra*), *Juglans nigra*, *Juniperus virginiana*, *Morus rubra*, *Ulmus americana*, *Castanea pumila*, *Persea pubescens*, *Sassafras officinale*, *Prunus serotina*. All of these species, but especially *Liquidambar styraciflua*, and species of oaks, also occur as undergrowth in the pine woods mixing with the species that are true shrubs. Mingling especially with the young trees of coniferous or deciduous growth is a great variety of shrubs: *Myrica carolinensis*, *Vaccinium corymbosum*, *Rhus copallina*, *Aralia spinosa*, *Oxydendrum arboreum*, *Sassafras sassafras*, *Diospyros virginiana*, while in heavy moist soils grow *Amelanchier botryapam*, *Azalea canescens*, *Symphlocos tinctoria*, *Ilex glabra*, *Kalmia latifolia*, *Styrax grandifolia*, *Vaccinium* (*Batodendron*) arboreum are rare and local. As under shrubs beneath the larger shrubs are *Vaccinium stamineum*, *V. vacillans*, *V. virgatum* var. *tenellum*, *Gaylussacia frondosa*, *Rubus hispidus* (in moist low pine woods).

River Bluff Forest Formation. The mesophytic forest extends into the Altamaha Grit Region, according to Harper (loc. citato), along the steep bluffs of the muddy rivers which cross it. Ninety percent of the plants that occur on these bluffs occur on the Piedmont plateau a large proportion finding congenial habitats in the cool shaded valleys of the Blue Ridge.

Pine Barren Formations. The pine forests extend from within a few miles of the sea coast inland to near the western limits of the coastal plain region. The pines of this formation are *Pinus palustris*, *P. Taeda*, *P. serotina*, *P. mitis* (== *P. echinata*). They are for the most part confined to the uplands, and form the dominant growth with broad-leaf trees beneath them, or occur as a pure growth. Other trees are *Taxodium distichum*, *Chamaecyparis thyoides*, *Juniperus virginiana*, all of which in the original forests are confined to the lowlands. Forests of pine covered, at least in their original distribution, all of the uplands, there being only a few local areas on which broad-leaf trees were not subordinate to them 1). A very large part of eastern Virginia and North Carolina is pine land. In the vicinity of Washington, and especially in Maryland, *Pinus rigida* with *Pinus inops* (== *P. virginiana*) in similar situations is prominent (*Pinus rigida* Facies). As one proceeds southward, both of these species of the northern pine barrens become more rare, *Pinus rigida* almost completely disappearing before the Rappahannock River is reached. *Pinus Taeda* comes in around the margins of groves of *Pinus rigida*. Still further southward *Pinus rigida* seems to be worsted in the struggle by *Pinus Taeda*. Finally when the James River is reached, *Pinus Taeda* becomes

the prevailing pine (Pinus Taeda Facies)\(^1\). To the north of Tar River, except on the porous and highly silicous soils where pure and uninterrupted growths of Pinus palustris occurred, the original forests were composed of alternating belts of Pinus mitis (= P. echinata) (Pinus mitis Facies) and Pinus Taeda (Pinus Taeda Facies). Pinus mitis with a subordinate growth of broad-leaf trees, largely oaks, dominated the crests and grew on the drier and more gravelly soils; while on the lower, moister, loamy soils Pinus Taeda as a rule formed a pure growth sometimes associated with broad-leaf trees. Pinus palustris crosses the Roanoke River extending in small groves about as far north as the southeastern boundary of Virginia, a few trees occurring in the pine forests, as far, as Chesapeake Bay. The low pine barrens within the tide water area of the coast which consists of forests of Pinus palustris which occupy the poorly drained grassy flats are very open interrupted by swamps densely covered with cypress and other trees. The rolling pine lands, pine hills or pine barrens proper are the true home of Pinus palustris\(^2\). On the Atlantic coast these uplands rise to hills over 600 feet in height. Thus spreading out in extensive table-lands, these hills are covered exclusively with forests of Pinus palustris for many hundreds of square miles without interruption. Here it reigns supreme.

The forests of this tree in South Carolina follow more closely the coast line with an extension inland averaging 100 miles. In the low perfectly level pine barrens covered by Serenoa serrulata, Pinus serotina, and a stunted growth of Pinus Taeda and P. cubensis, Pinus palustris is rarely seen. In the flat woods bordering the alluvial swamps Pinus palustris becomes more frequent and finally prevails on the sandy ridges associated with Quercus Catesbiana, Q. cinerea and Q. falcata. In Georgia the pine barren proper forms a vast plain covered exclusively by Pinus palustris beneath which is the wire grass Aristida stricta. This area merges into the flat woods or savannas of the coast plain.

The Atlantic pine region extends into Florida between the Suwanee River and the Atlantic coast as far south as St. Augustine where Pinus palustris is less common and inferior in size being replaced by Pinus caribaca (= cubensis) which forms open forests associated with Serenoa serrulata, the saw palmetto (See plate VI at page 306). In the central section of the peninsula with its numerous lakes Pinus palustris is largely associated with the sand pine, Pinus clausa, and hard woods prevail on the upland hammock lands.

Near the edge of the Piedmont Plateau this forest merges into one of mixed growth. The short leaf pine Pinus mitis rather sparingly distributed in the pine barrens of the south. With the appearance of Pinus palustris

south of Virginia *Pinus mitis* recedes from the coast and is found chiefly in upper part of the southern coast pine belt. In Florida it is confined to the uplands along the northern border of the state scattered among *Pinus palustris*, and broad-leaved trees. *Pinus Taeda* in Virginia is not found beyond the northern limit of the Tertiary strata of the coast region and it occurs generally in the flat lands of the tidewater districts forming rarely continuous forests. In North Carolina, *Pinus Taeda* is the predominating tree throughout the eastern coast plain and in the lower part of the state where it forms extensive forests, more or less frequently interspersed with *Pinus palustris*. South of Cape Fear River however the latter prevails almost exclusively. In the extensive region watered by numerous streams flowing into Albemarle and Pamlico sounds, in the rich, moist soil of the wide swamps above tidewater, *Pinus Taeda* reaches its best development.

In general these pine forests resemble a two-storied high forest, there being an upper story of pine 70—100 feet in height, with a rather thin cover and beneath the pine an open growth of scrub oaks 10—15 feet in height. As the cover of the pines becomes thinner the oaks become more numerous. The floor is grassy with coarse tufts of *Aristida stricta* or broom grasses, or it is covered with shrubs.

In the Dismal Swamp Territory of Virginia the dry sandy soil of the open pine woods is provided with a more or less close carpet of grasses and other herbaceous plants. Grasses of the genera *Andropogon*, *Panicum* and *Danthonia* prevail with such herbs as *Polygala mariana*, *Stylosanthes biflora*, *Psoralea pedunculata*, *Desmodium strictum*, *Elephantopus nudatus*, *Eupatorium linearifolium*, *Aster graeilis*, *Koellia hyssopifolia*, *Gratiola pilosa*, *Linum medium* etc. In somewhat moister but otherwise very similar soil, species of *Rhynchospora*, *Eupatorium rotundifolium*, *Rhexia mariana*, *Aseyrum stans*, *Bartonia virginica*, *Spirea tomentosa*, *Ilysanthes gratioloides*, *Herpestis acuminata* are characteristic. In small depressions along streams, diminutive marshes are frequent and here grasses give place almost entirely to sedges; *Rhynchospora inexpressa*, *R. coriiculata*, *Cyperus pseudovegetus*, *Eleocharis tortilis*, *Carex verrucosa*, as well as *Juneus setaceus*, *Habenaria cristata*, *Trachelopseum differome* (a thin stemmed lila).

Southward, the pine barren formation becomes more and more the predominant element of the vegetation. The drier more open soil beneath *Pinus palustris*, the dominant tree, is occupied by *Aristida stricta*, *Ctenium americanum*, *Linum floridanum*, *Ludwigia virgata*, *Hypericum pilosum*, *H. virgatum*, *Rhynchosia tomentosa*, *Indigofera caroliniana*, *Zornia tetraphylla*, *Eupatorium pinnatifidum*, *E. rotundifolium*, *Solidago petiolaris* and species of *Lespedeza* and *Desmodium*. The lower marshy places are characterized by *Carex verrucosa*, *Dichromena lenceocophala*, *Fuirena squarrosa*, *Hypericum galioides*, *Polygala lutea*, *Rhexia, Aster paludosus*, *Trilisa*, *Carphophorus*, *Solidago puvverulenta*, *S. pilosa* while in still wetter situations occur *Lycopodium alopecuroides*, *Habenaria blephariglottis*, *H. cristata*, *Sarracenia flava* and often species of *Sphagnum*.

In South Carolina two kinds of pine land may be distinguished: lobolly pine land and longleaf pine land. The lobolly pine *Pinus Taeda* occupies the fresh moist uplands extending

in places into the bottoms. The soil on this land is light, sandy loam with considerable admixture of clay. The under story of hardwoods may be dense or open and consists of Liquidambar styraciflua, Nyssa sylvatica, Acer rubrum, Quercus aquatica (= Q. nigra), and occasionally Fagus americana with a third layer of Persea carolinesis etc. The longleaf Pinus palustris is confined in the main to higher situations and to drier and lighter soils in South Carolina. On the drier parts of loblolly pine lands the two trees intermingle. Underbrush while not so plentiful as on loblolly pine lands is often present 1. Stunted trees of Quercus falcata, Q. tinctoria and Q. obtusiloba occur.

There are several kinds of pine barrens botanically considered in Georgia 2) differing principally in the amount of water in the soil. First are the wet pine barrens in which the ground is usually covered with water a few inches to a foot, or so, in depth, occupied by the following species:

- Rhynchospora corniculata Lam.
- Hypericum fasciculatum Lam.
- Proserpinaca peetinata Lam.
- Gratiola quadridentata Mill.
- Pontederia cordata L.
- Stillingia aquatica Chapm.
- Ilex glabra L.
- Herpestis (Monniera) caroliniana Walt.
- Utricularia purpurea Walt.
- Lobelia Nuttallii R. & S.
- Selerolepis uniflora Walt.

In the moist pine barrens where there is no standing water on the surface the species are more numerous, the following being a partial list of them:

- Lycopodium alopecuroides L.
- Taxodium imbricarium Nutt 3.
- Rottboellia (Manisuris) rugosa Nutt.
- Dichromena latifolia Baldw.
- Rhynchospora axillaris Lam. (= R. cephalanthi A. Gray).
- \(\text{Sarracenia variolaris} \) Michx. (= S. minor Walt.).
- Polygala cymosa Walt.
- Ilex myrtifolia Walt.
- Hypericum myrtifolium Lam.
- virgatum L.
- Herpestis (Monniera) caroliniana Walt.
- Hydrocotyle (Centella) repanda Pers.
- Gerardia linifolia Nutt.
- Lachnanthes racemosa Walt.
- Spartina (S. alterniflora) racemosa Walt.
- Lachenanthes tinctoria Walt. (= Gyrotheca capitata Walt.).
- Habenaria nivea Nutt.
- Calopogon pulchellus R. Br. (= Limodorum tuberosum L.).
- Selerolepis uniflora Walt.

The pine barrens are characterized by a great variety of herbaceous plants with showy flowers displayed especially in early autumn, when the gay colors of many Compositae are everywhere a feature of the landscape.

In the Altamaha Grit Territory, according to Harper, as we pass down the slopes of any of the low ridges, we pass gradually into pine barrens perceptibly moist. This transition strip may be designated as the intermediate pine barrens and here are found some species which are rare or wanting in both adjacent strips, viz., the dry pine barrens and the wet pine barrens. Here occur Pinus palustris, P. serotina, P. caribaea (= P. Elliottii, P. bahamensis), Kalmia hirsuta,

Serenoa serrulata, Ilex glabra, Vaccinium nitidum, Gaylussacia frondosa, G. dumosa, Quercus pubila, Myrica cerifera var. pubila, Hypericum opacum, H. myrtifolium etc. Perennial herbs predominate and the trees belong to the genus Pinus. Most of the shrubs are evergreen and there seem to be no vines or parasites.

The dry pine barren occupies the summits and upper slopes of all the ridges and constitutes at least half the area of the whole Altamaha Grit. Only four or five herbaceous vines occur and the adaptions of many of the plants is to reduce transpiration. Flowers seem to be most abundant in June. The flora of these barrens consists of Pinus palustris associated with Quercus cinerea, Q. Catesbaei, Q. marylandica, Q. falcata, Q. Margareta, Diospyros virginiana, Ceanothus etc.

Central peninsular Florida is a lake region. There are five well marked areas, the flora of each being different, viz., high pine land, scrub land, low pine land, bay heads and hammocks. The high pine land is covered by Pinus palustris associated with Quercus Catesbaei, Q. cinerea, Ilex glabra and dahoon, Andromeda (Pieris) nitida, A. speciosa, while on the ground underneath are many herbaceous plants 1).

The scrub flora is different and antagonistic to that of the high pine land. Pinus clausa is the prevailing tree. Ceratiola ericoides occurs abundantly, as also Persea humilis, Bumelia lanuginosa, Ximenia americana, Breweria grandiflora, Rhynchospora dodecandra, while Smilax Beyrichii climbs all over the scrub oaks and is the only one of this genus observed growing in the scrub.

The flora of the low pine land is not so distinct because it grades into that of the high pine land. Pinus serotina, P. caribaea (= P. cubensis = P. heterophylla) are the prevailing trees. Some of the species peculiar to this formation are Podostigma pedicellata, Bejaria racemosa, Rhexia ciliosa, R. serrulata, Bletia vellecunda, Aristida stricta and Andropogon floridanus.

Where the clay tops the sand, hammocks occur. Quercus virginiana (= Q. virens) is the principal tree with Sabal Palmetto (see plate IX) on the trunk of which grow Polypodium incanum and Vittaria lineata, associated with Sabal Adamsonii.

Hammock Formation. In east Florida the vegetation of the hammocks consists of Lobelia Cliffordiana, Vicia mierantha, Ilysanthes grandiflora, Micromeria Brownei, Eryngium Baldwinii, Samolus valerandi var. americanus, Nephrodium (Aspidium) patens, Blechnum serrulatum and as epiphytes Tillandsia junccea, T. utriculata. Along meandering streams are dense thickets composed of Chionanthus virginicus, Magnolia glauca, Aronia (Pyrus) arbutifolia var. erythrocarpa, Amorpha fruticosa, Bignonia capreolata, Leucothoe racemosa, Decumaria barbara and Smilax Walteria).

Probably to be included in this formation are the sand hammocks of the Georgia Altamaha Grit Region described by Harper. The soil of these hammocks is Columbia sand mixed with varying amounts of humus. The higher hammocks perhaps resemble the “scrub” of Florida. The constituent plants are Quercus Catesbaei, Q. laurifolia, Magnolia grandiflora, Ilex opaca, Osmanthus americana, Pinus palustris (higher ground), P. glabra, Cornus florida, Hamamelis virginiana, Gelsemium sempervirens, Asimina parviflora, Amelanchier canadensis etc. Here the pro-

portions of vines and epiphytes is large and the herbs are most by perennial. The flowering period in the hammocks, according to Harper (A phytogeographical Sketch of the Altamaha Grit Region. Annals of the New York Academy of Sciences XVII, Part 1: 101) is the latter part of March.

Hydrophile Forest Formations. In Virginia and North Carolina by far the greater part of these formations is embraced within the limits of the great Dismal Swamp proper. Two principal formations may be distinguished: (1) the Black Gum Swamp Formation consisting of heavy deciduous forest; and (2) the White Cedar Swamp Formation which is light open and originally in great part covered with an evergreen forest of white cedar *Chamaecyparis thyoides* called locally juniper, but now in many places almost destitute of trees and bearing a growth of shrubs, of cane (*Arundinaria macroperma*) and of ferns and peat moss.

Black Gum Swamp Formation (see plate X). According to my observations, the black gum *Nyssa biflora* is predominant associated with the prevailing conifer *Taxodium distichum*, *Pinus Taeda* comparatively scarce and unimportant. Such a deciduous forest alone occupies the low, flat banks of rivers and it is likewise characteristically developed within the Great Dismal Swamp about Lake Drummond. At all seasons, the soil is nearly or quite saturated.

Nyssa biflora and *Acer rubrum* are the most abundant trees with *Nyssa uniflora*, *Fraxinus platycarpa* (= *F. caroliniana*), *Quercus phellos*. Among small trees Magnolia glauca, *Persea pubescens*, *Carpinus caroliniana*, *Salix nigra*, *Ailus rugosa* while *Populus heterophylla* is rather frequent in the smaller swamps along streams. Near the eastern border of the Dismal Swamp where *Pinus Taeda* is most abundant. The tulip tree *Liriodendron tulipifera* and the sweet gum, *Liquidambar styraciflua* occur in the deciduous forested swamp and are often of considerable size.

A peculiarity of *Taxodium distichum*, *Nyssa biflora* and *Fraxinus caroliniana* in these swamps is the enlarged base of the tree trunk where it is sometimes submerged and the "knees" of *Taxodium* may be looked upon in the nature of aerating organs. Many woody lianas occur and drape the larger trees, viz., *Berchemia scandens*, *Gelsemium sempervirens*, *Bignonia capreolata*, *Vitis labrusca*, *Smilax rotundifolia*, *S. Walteri*, *S. laurifolia* in open swamp), *Clematis crispa*. Two epiphytes occur on the branches of *Taxodium* in open light situations: *Polypodium inceanum*, *Tillandsia usneoides*. A woody parasite, *Phoradendron flavescens*, is abundant upon the branches of *Nyssa biflora* and *Acer rubrum*. On old logs in the swamps grow *Tipularia unifolia*, *Gaultheria procumbens*, *Mitchella repens*, liverworts and mosses.

The prevailing undergrowth in the more open places consists of *Leucothoe axillaris*, *Clethra alnifolia*, *Arundinaria macroperma* and in places such ferns as *Woodwardia areolata*, *Osmunda regalis*, *O. cinnamomea*, and according to my observations, *Saururus cernuus* along streams in the Dismal Swamp forms pure associations. In places where the ground is rather high notably upon the eastern shore of Lake Drummond, the following perennial herbs are abundant; *Boehmeria cylindrica*, *Polygonum arifolium*, *Scutellaria lateriflora*, *Lycopus rubellus*, *Euatorium purpureum*, *Impatiens fulva* and *Woodwardia areolata*. The rare Pinckneya pubens occurs in such swamps in South Carolina.

Generally speaking the gum, or cypress swamps occupy the deepest parts of nearly all the swamps in the coastal region which have a sufficiently porous

soil to permit the penetration of the deeply seated cypress roots and which are not subject to drying out in the late summer. The trees are all shade enduring in their youth and probably with the exception of water gum Nyssa biflora all shade demanding in the earliest seedling stages.

In South Georgia 1) the following species are found in alluvial woods and swamps and on muddy banks of creeks and rivers subject to overflow.

Taxodium distichum L.
Juniperus virginiana L.
Carpinus caroliniana Walt.
Populus monilifera Ait. (= P. deltoides Marsh.).
Quercus lyrata Walt.
 » Michauxii Nutt.
Fraxinus americana L.
 » caroliniana Mill.
Liriodendron tulipifera L.
Nyssa uniflora Wang.
Chionanthus virginicus L.
Leucothoe racemosa L.
Ilex opaca Ait.
Berchemia volubilis DC. (= B. scandens Hill.).
Clematis crispa L.
Tecoma radicans L.
Sabal Adansonii Guerns. (= S. glabra Mill.).
Arundinaria macrosperma Michx.
Tillandsia usneoides L.
Iris versicolor L.
Hydrocotyle verticillata Thunb.
Peltandra virginica L.
Commelina hirtella Vahl.
Scirpus divaricatus Ell.
Rhynchospora corniculata Lam.
Saururus cernuus L.
Boehmeria cylindrica L.
Dianthera americana L.
Conoclinum coelestinum L.
Pluchea petiolata Cass.
Lobelia cardinalis L.
Botrychium obliquum Muhl.

This formation exists in the Altamaha Grit Region of Georgia (Harper loco citato) in the branch swamps occupying the troughs of the streams, small rivers and creeks. There is a wide diversity in these swamps (as to be seen in comparing the preceding plant list) and the constituent plants vary with the character of the stream and valley bottom) but the following plants are characteristic of such swamps:

Pinus caribaea (= P. Elliottii, P. bahamensis).
 » serotina.
 » Taeda.
Taxodium imbricarium.
 » distichum.
Acer rubrum.
Liquidambar styraciflua.
Nyssa biflora.
 » Ogeeche. (N. capitata).
 » uniflora. (linensis).
Persea pubescens (= P. caro- Planera aquatica.
Gordonia Lasianthus.
Pinekneya pubens.
Viburnum nudum.
Clethra alnifolia.
Cyrilla racemiflora.
Cliftonia ligustrina (= C. monophylla).
Leucothoe racemosa.
Berchemia scandens.
Phoradendron flavescens.
Wisteria frutescens.

Rhus radicans.
Iris versicolor.
Orontium aquaticum.
Sarracenia flava.
Sabal Adansonii.
Serenoa serrulata.
Smilax laurifolia.
 » Walteri.
Ericaulon lineare.
 » decangulare.
Tillandsia usneoides.
Isotes laceida.

The aspects of the vegetation of Okefinokee Swamp, Georgia2) seem to depend on the distance of the sandy bottom below or above the water level. When the sand rises above the

water level, islands are formed upon which grow Pinus caribaea, P. serotina, Serenoa serrulata. These islands are surrounded by swamps in which Taxodium imbricarium and Pinus caribaea are dominant, the pine disappearing when the pond muck is three or four feet deep. Beneath the trees in the sphagnum grow Woodwardia virginica, Sarracenia variolaris = minor, S. psitacea. The trees are draped with Tillandsia usneoides while Andromeda (Piers) philyreifolia ascends the trees to a height of 30 feet by insinuating stems between the outer and inner layers of the bark. Where the sandy bottom lies six feet below the water level wet savannas (prairies) are formed in which the bulk of the vegetation consists of Panicum digitarioides, Orontium, Pontederia, Nymphaea odorata while the surface is marked by cypress clumps with evergreen vines and shrubs called ‘houses’ because hunters camp in them.

White Cedar Swamp Formation. This formation usually known locally as juniper swamp is most characteristically developed in the outer portion of the Great Dismal Swamp. The prevailing tree is the white cedar, *Chamaecyparis thyoides* (= sphacroidea). The cedar swamp is usually not so wet as the black gum swamp and it has a substratum of a red brown peat composed largely of the stems, leaves and roots of *Chamaecyparis* and often buried logs in a remarkable state of preservation. Where undisturbed it forms pure associations consisting besides of *Magnolia glauca*, *Persea, Ilex opaca*, *Acer rubrum*, *Nyssa*, as subordinate species. On somewhat higher ground *Quercus aquatica* (= *Q. nigra*), *Q. Michauxii*, *Fagus americana* invade land formerly occupied by white cedar.

4. Swamps and Marshes.

Arundinaria (Canebrake) Association. In the open parts of the swamps is the canebrake which covers extensive areas often in nearly pure association where the shrubby growth has not secured the upper hand’. The cane *Arundinaria macrosterna* grows to a height of two meters (over 6 feet) although along ditches it may grow taller. The plant spreads rapidly by means of its creeping, much branched rhizomes.

Woodwardia-Sphagnum-Association. The open parts of swamps are not always canebrake, occasionally a large fern *Woodwardia virginica* prevails usually on low tussocks surrounded by standing water. The fronds often measure four feet (12 dm.). Associated with this fern are: *Eriophorum virginicum*, *Calopogon pulchellus*, which with the fern grow out of a bed of *Sphagnum cymbifolium* var. glaucescens and its form *serrulosa*.

The large swamps in Florida lying generally along the low pine land have a peculiar flora. These swamps are known locally as “bayheads”. A large number of trees of *Magnolia glauca*, occur in them associated with *Andromeda nitida*, *Leucothoe racemosa*, *Gordonia lasianthus* with *Smilax laurifolia* climbing over all the shrubs and bushes. Here and there are open places where sphagnum grows in quantity and *Utricularia fibrosa*, *Peltandra sagittaeolia*, while *Andropogon brachystachyus* is locally distributed in the vicinity and is found no where else.

1) Kearney, l. c. p. 427.
Fresh Water Marsh Formation.

These formations are frequent in the southern states where so many rivers rising in the mountains flow eastward and southeastward to meet the ocean. Briefly we may distinguish the following formations and associations.

Reed Marsh Formation. This is typic along rivers in Virginia and elsewhere. — Typha-Sagittaria Association. The larger rivers are fringed by a narrow belt of marsh vegetation which merges into salt marshes down stream and into the wooded swamps above. Such trees as Taxodium distichum, Acer, Magnolia, Salix nigra occur associated with bushes of Alnus rugosa, Salix longipes, Itea, Rosa carolina, Clethra and with certain lianas (Smilax, Berchemia, Clematis). The outermost growth in water 6—10 inches (15—30 centimeters (deep is most often denominated by Typha latifolia, Sagittaria lancifolia, Pontederia cordata, while Scirpus lacustris, Zizania aquatica, Sium cicutifolium, Polygonum hydropiperoides are ordinarily abundant elements in this association. Acorus calamus sometimes grows in almost pure association, while in limited areas Juncus effusus fringes open water as does Dianthera americana in other places infested with Cuscuta Gronovii.

Scirpus-Erianthus Association. The edges of the hydrophilic forest are occupied by an association in which Scirpus cypérinus var. eriophorum is the most important element with Erianthus saccharoides, Typha, Andropogon glomeratus, Woodwardia and Arundinaria tecta. — Along the ditches and pools in the heart of the Dismal Swamp Dulichium arundinaceum and Triadenum virginicum are abundant in the shallow water.

Low Marsh Formation. This formation includes the limited areas of marshy ground or swales in the forested plain which are chiefly covered with a low rather than a tall reedy growth. — Rhynchospora-Eleocharis Association. The vegetation of the low marshes in Virginia comprises a great variety of species among which occur: Rhynchospora cymosa, R. inexpressa, R. glomerata, R. corniculata, Eleocharis ovata, E. tortilis, Carex verrucosa, Fimbristylis autumnalis, F. laxa, Lipocarpha maculata, Fuirena squarrosa, Cyperus-juncus-species, Xyris caroliniana and ambigu. Grasses mostly with weak stems are often an important element: Glyceria pallida, Panicum gibbum, P. verrucosum, P. viscidum.

Aquatic Formations. This unlike most of the other formations presents no clearly defined associations corresponding to topographic conditions. On the contrary, the distribution of aquatic plants seems to be largely determined by accidents of dissemination. The greater part of the aquatic vegetation occupies lakes, ponds, open ditches, river channels and bayous throughout the region. Elodea canadensis grows in the swifter reaches of the streams. Myriophyllum heterophyllum, Nymphaea odorata, Utricularia purpurea, U. inflata, Callitriche heterophylla are among the most common aquatics of the region. Riccia fluitans, often growing terrestrially, is abundant. Ludwigia (Isnardia) palustris, Juncus repens are also aquatic marsh plants. — Ponds in Georgia are surroun-
ded by *Taxodium imbricarium*. The aquatic vegetation of these consists of *Cabomba, Brasenia, Nelumbo, Nymphaea odorata, Nuphar advena* which associated with *Limnanthemum aquaticum* cover the surface of the water very densely).

These ponds in the Altamaha Grit Region are characterized by a rather dense growth of pond cypress, *Taxodium imbricarium*, associated with *Pinus caribaea*, *Nyssa biflora*, *Ilex myrtifolia*, *Pontederia cordata*, *Ludwigia pilosa*, *Saururus cernuus*, *Lobelia Boykinii*, *Proserpinaca pectinata*, *P. palustris*, *Sphagnum macrophyllum* etc. Perennial herbs are here much more abundant than woody plants and the cypress exceeds all other vegetation combined. *Ludwigia pilosa* often has spongy tissue several times as thick as the rest of the stem. The number of flowers is greatest in midsummer. In the shallower pine barren ponds, while not essentially distinct from the cypress ponds, the number of cypress trees is very materially reduced until in some places this tree entirely disappears.

Originally many of the rivers in Florida were characterized by floating masses of *Pistia stratiotes*, but recently the original aquatic vegetation of some of the principal rivers notably the St. Johns and tributaries has been almost exterminated by the appearance and spread of the water hyacinth *Eichhornia crassipes* (= *E. speciosa*), a plant introduced about 1890 at Edgewater about four miles above Palatka. This plant has spread so rapidly and grows in such dense masses, as seriously to impede the navigation of those streams where it is found.

C. Gulf Pine Barren-Strand District.

This district includes the coastal plain from the lower course of the Suwannee River west and southwest to the subtropic littoral of the Texan coast. It merges imperceptibly into the Atlantic coast district on the one hand and into the subtropic Tamaulipas region in Texas and northeastern Mexico on the other. It is considered as distinct from either of these districts for purposes of convenience, and also, because there are quite a number of plants peculiar to the Gulf coastal plain, or which reach their most pronounced development or most extensive range in this portion of the continent.

No observations are at hand concerned with the plankton and the marine algal associations of the Gulf coast. The strand flora, however, is comparatively well known from the researches of Charles Mohr 3) R. S. Cocks and those of Francis E. Lloyd and S. M. Tracy 4).

1. Strand, Sand Plain- and Low Flat-Formations.

Beach Formation. The sandy flat beach in Alabama is almost destitute of vegetation. The upper beach is characterized by Ipomoea pes-caprae, Sesuvium portulacastrum (in shallow salty pools) with Cakile maritima geniculata, both frequent in the West Indies, associated with Iva imbricata, Suaeda linearis and in Louisiana Salicornia ambigua and Heliotropium curassavicum. The snow white sand along the shore of Mobile Bay and the land-locked Perdido Bay are covered by a scattered growth of grasses: Panicum repens, Stenotaphrum secundatum, Cenchrus incertus and tribuloides var. macrocephalus, Tricuspis (Triodia) purpurea. A small group of small shrubs herbaceous plants (Euphorbia, Froelichia, Paronychia etc.) mingle on the sandy benches with the above, viz., Chrysoma (Solidago) pauciflosculosa; Conradina canescens, Polygonella polygama, Helianthemum arnicola.

The middle beach in Mississippi and Louisiana is occupied by Suaeda (Dondia) linearis, Cakile fusiformis, Salsola Kali, Cenchrus tribuloides var. macrocephalus, Sesuvium portulacastrum, Euphorbia polygonifolia, Oenothera humifusa, Erigeron repens, Heterotheca subaxillaris, Eragrostis secundaeflora, while inside of these are found Ipomoea pes-caprae, I. accestisfolia, Strophostyles helvola, Canavalia obtusifolia. The upper beach association may at times consist wholly of three plants: Panicum amarum, Ipomoea pes-caprae, I. accestisfolia. Associated with Panicum amarum is Uniola paniculata, which on the east coast of Florida and northward is predominant, while on the Gulf coast it becomes of secondary importance, Panicum amarum becoming the leading grass. Yueea gloriosa occurs on the beach dunes.

The strand vegetation of Texas, according to Bray, consists of the tropic salt grass Monan- tochloë littoralis, forming a dense mat. Salicornia mueriata (= S. Bigelowii), S. ambigua (on compact wet sands), while Borrichia frutescens and Lyeium carolinianum are shrubs that grow on the crest of the beach.

Delta Formation. The "passes" of the Mississippi River are broad channels of fresh water separated from the waters of the Gulf by an irregular and frequently narrow strip of land of river deposit. Two associations of plants may be recognized. These are the Phragmites-Vigna- and the Spartina-Associations, according to Lloyd and Tracy). The former occupies the higher levels and, therefore, the portion of the alluvial bank near the fresh water. Phragmites communis (= P. phragmites) and Vigna glabra are prominent associated at times with Salix nigra and vines of Cissus (Ampelopsis) arborea. In the swampy ground of the lower levels which border on the salt water Spartina polysstachya gives character to the vegetation.

Dune Formation. Hillocks of drifting white sand rise above the beach in Alabama. On these dunes Quercus virginiana makes a scrubby growth associate with the sand oak Quercus myrtifolia. These with Ceratiola ericoides, Chrysoma, Polygonella intertwined with Smilax auriculata form an association of evergreen bushes. Uniola paniculata grows on the crests and steep sides

of the dunes associated with *Opuntia pes-corvi* and *Siphonochia erecta*. The dead tops of *Pinus clausa* and buried trunks of *Yucca aloifolia* covered by the drifting sand heighten the impression of aridity. In Mississippi and Louisiana the wandering dunes are frequently captured by thickets of *Ilex* and *Myrica gale*. Other dunes show on their windward slopes a vegetation of annuals and perennials composed chiefly of *Iva imbricata*, *Serenoa serrulata* with occasional clumps of *Uniola* and *Siphonochia*. These dunes are in rapid motion and have left behind them a "graveyard" of dead pines.

The crests of the barrier islands along the Gulf coast of Texas, according to the researches of Bray¹) are composed of unstable sand dunes. In front of this crest the compact beach sands slope to the surf line, while on the shore side, the islands slope away to the marsh tide flats or lagoons, or a succession of older dunes tenanted by salt plants, prairie grasses, *Yucca Tre-culeana*, *Prosopis juliflora*, *Celtis occidentalis*. On Brazos Island, the unstable dune crests are held by *Uniola paniculata*, so that as the sand blows away hay-cock dunes are formed.

Sand Plain Formation. Physiographically the sand plain consists of (1) shallow depressions generally wet; (2) low dunes; (3) level stretches of sand. The shallow basins are tenanted by a species of *Hydrocotyle* and *Mollugo verticillata*. The dunes are formed by *Panicum repens* and *halophilum*, *Iva*, *Serenoa*, while extending between the elevations and depressions are plants which do not produce a network of roots and stems, viz., *Scirpus*, *Cyperus*, *Dodia*, *Syntherisma*, *Cenchrus*. Open grass plains exist in these places characterized by a plant covering of a large number of herbaceous species of low stature with such grasses as *Chaetochloa magna*, *Uniola paniculata* and certain slender vines. Another type of sand plain is the forest-covered area found only on the larger islands of the Mississippi Sound. Broadly speaking the whole area is covered by a forest of pines of two species, *Pinus palustris* (= *P. australis*), *P. Taeda* with *Sabal Adansonii* and *Serenoa* as prominent elements in the undergrowth. Old long captured dunes are occupied by *Quercus geminata* and *Q. virginiana* whose trunks are clothed by *Ramalina*.

Shell Strand Formation. On the shore of the sea of the mainland and smaller islands along the banks of the bayous are heaps of bivalve shells 6 to 15 feet and over in height the accumulation of refuse from the food supply which served a race of men unknown to history. In Alabama large live oaks *Quercus virginiana*, *Magnolia* sp., *Carya porcina* (= *Hicoria glabra*) cover these heaps of shells together with dense copes of *Aesculus pavia*, *Rhamnus caroliniana*. The West Indian red cedar, *Juniperus barbadensis* here reaches perfection but elsewhere in exposed situations it becomes low and stunted. *Thurberia arkansana* is typic of these shell heaps from South Carolina to Texas. *Evolvulus alsinoides* widely distributed in the tropics has been observed on the shell deposits of Dauphin Island.

Salt Marsh Formation. The low islets along the Alabama coast and elsewhere along the Gulf coast are bare of tree growth and their soil is soaked by the

briny sea. Near Lake Pontchartrain in Mississippi salt marshes are common. Where sand and shingle are raised above continuous overflow occur evergreen shrubs preferring a saline soil: *Iva frutescens*, *Baccharis halimifolia* and *angustifolia*, *Chenopodium Berlandieri*, *Lycium carolinianum*, *Batis maritima*, *Salicornia* with *Fimbristylis spadicea* form a dense close cover and near the Mississippi mouth with the addition of *Spartina patens* and *stricta*. The black mangrove *Avicennia nitida* with its well known pneumatodes grows abundantly on some islands in the muck marshes.

The shallow inlets of the sea in Alabama with their floor of deep sandy mud are covered exclusively by *Juncus Roemerianus* (see ante p. 428). This rush forms the great bulk of the vegetation of the saline marshes associated with *Fimbristylis*, *Spartina polystachya*, *Cladium effusum* etc. In higher situations the rushes and grasses disappear and more or less open associations of low perennials and herbaceous plants grow in the damp ground which is covered by a salty efflorescence.

The low Texas coast throughout most of its extent is shielded from the Gulf by a series of sand islands which front a series of lagoons and salt marshes tenanted by such salt grasses as *Spartina junciformis*, which according to J. G. SMITH forms fully ninety percent of the vegetation of the marsh together with *S. patens*, *S. cynosuroides*, *Sporobolus*, *Distichlis* and *Monanthochloë littoralis* which forms the seaward edge of the marsh.

2. Forest Formations.

Low Flat Pine Barren Formation. These formations occupy the second terrace of the lowlands of the coast rising to a height of from 10—30 feet above the low flood plains and river bottoms and consisting of sandy loams.

Open forests of *Pinus palustris* sparsely intermixed with *Pinus caribaea* (= *P. heterophylla* = *P. cubensis*) and *P. Taeda* covered this plain. *P. palustris* when removed was succeeded by *P. caribaea* which occupies the clearings. The ground is covered by a dense sod of low perennial monocotyledonous plants which upon decomposing yield a rather peaty soil in a semibogggy condition in rainy weather. Here grow *Sphagnum imbricatum*, *S. compactum*, able to resist occasional droughts. The plants typic of this association are *Rhynchospora plumosa*, *pusilla*, *cymosa*, *Kobresia odorata*, *Juncus Elliottii* and *marginitus*, *Andropogon Mohrii*, *Paspalum praecox*, *Rottboellia corrugata* (= *Mantisurus rugosa*).

The spring plants are *Bartonia verna*, *Houstonia patens*, *Chapthalia semifloscularis*, *Pinguicula lutea*, *P. punina*, *Lupinus villosus*, *Helianthemum carolinianum*, *Drosera capillaris*, *D. brevifolia*, *D. Traeyi*, *Euphorbia inundata*, *Polygala lutea*, *P. polygama*, *Calopogon multiflorum*. During the summer the flowers of the following plants are seen: *Linum floridanum*, *Polygala Chapmani*, *P. Hookeri*, *Zygadenus glaberrimus*, *Habenaria nivea*, *Ludwigia hirtella*, *L. linears*, *Eryngium yuccifolium*, *E. synchaetum*, *Sabbatia gentianoides*, *Gerardia paupercula*, *Ascyrum stans*, *A. crux-Andreae*. In autumn appear, *Helianthus heterophyllus*, *Solidago stricta*, *Baldwinia uniflora*, *Eupatorium leptophyllum*, *E. pubescens* (= *E. rotundifolium* var. *ovatum*), *Trilis odoratissima*. *Ophioglossum crotalophoroides*, *Lycopodium carolinianum* are typic plants of the coast plain.
Hammock Formation. There are more or less extensive tracts of black soil generally well drained skirting the lower river swamps or the low swamps of tide water. In these hammocks occur Quercus virginiana (= Q. virens), Magnolia sp. associated with Pinus caribaea, P. Taedea, Quercus laurifolia and Q. aquatica, Fagus and many small trees and shrubs (as Osmanthus americana, Ilex, Myrica cerifera, Xanthoxylum, Prunus, Pirus, Crataegus, Chionanthus, Vaccinium arboreum. Vines of Vitis [Muscadinia] rotundifolia, Brunnichia cirrhosa, Cissus and Smilax add to the maze of shrubs in the low hammocks. Apteria setacea is confined to the rich mold of the hammocks.

The shady borders of the hammocks are marked by the presence of Nemophila micromalix, Asarum arifolium, Zephyranthes atamasco, Lupinus villosus, Rhexia mariana, R. lanceolata, Agrimonia incisa, Amorpha glabra, Sanicula canadensis, Panicum gibbum, Oplismenus hirtellus, Arundinaria tecta etc.

Where the hammocks merge into the alluvial lands, the soil becomes of a semi-swampy character. Here Halesia diptera, Cliftonia ligustrina. Cornus stricta, Cyrilla racemiflora, Ilex cassine, Sabal Adansonii, Andromeda nitida, Leucothoë axillaris form the thicket, while as lianas occur Decumaria barbara, Wistaria frutescens, Lonicera sempervirens, Gelsemium sempervirens. Nepho-dium Aspidium patens is confined exclusively to the hammocks accompanied by Polystichum aerostichoides, Pteris aquilina, Asplenium ebeneum, Woodwardia angustifolia and virginica, Lyco-podium cernum. In the deepest recesses of the hammocks on the limbs of old magnolia trees is found Epidendrum conopseum.

Pine Barren Swamps and -Ponds. The swamps where the pine barren streams overflow their low banks of shifting sand and gravels have the same general tree covering as the pine barsens proper. When the soil is more deeply submerged, Chamaecyparis thyoides and Taxodium imbricarium prevail over the trees. Where the water is more shallow the botanist finds Osmanthus americanus, Myrica inodora, Ilex amigua while in many places between the trees are Mayaca Michauxii, Osmunda and Woodwardia.

In the stagnant water of ponds flourish Nymphaca odorata, Brasenia peltata, Limnanthemum lacunosum, Cabomba caroliniana, Nuphar advena, Potamogeton, Utricularia, Spirodela, Lemma. The main channel of pine barren streams is inhabited by floating plants; other aquatics are Fontinalis disticha, Hydrochoa fluitans, Nuphar sagittafolium, Utricularia purpurea, Orotium aquaticum and Scirpus cylindricus. The fresh water estuaries of the rivers are characterized by a submerged vegetation consisting of Zamichellia, Ruppia, Ceratophyllum, Potamogeton etc.

In Texas the most conspicuous and constant plant of these ponds is the spider lily Hymenocallis occidentalis and rattle bush Daubentonia longifolia. The cane grass Arundo donax occurs as a river bank species along the Rio Grande to the mouth of the Pecos and above the canyon part of the latter stream it forms a dense bank jungle.

Other herbaceous associations are found in the open river marshes. Reed-like grasses, large rushes and tall umbelliferous plants are characteristic of these swamps. Among these marsh plants are: Phragmites communis, Spartina polystachya, S. cynosuroides, Zizania aquatica, Scirpus lacustris, S. Olneyi, S. fluviatilis, Cladium effusum, Typha latifolia, Cicutia maculata, Tiedemannia.
teretifolia, Sium cicutaefolium while below and covering the soil as secondary species of this association are: Cyperus erythrorhizos, C. strigosus, Carex lurida, C. alata, Rhynechospora caduca, R. corniculata while intermixed are Sagittaria montevidensis, S. latifolia, Pontederia cordata, Ipomoea sagittata, Kosteletzkya virginica, Boltonia diffusa, Vernonia gigantea, Lythrum lineare, Rumex altissimus. The dark waters of ditches and shallow pools at the outskirts of these marshes are filled with the floating stems of Jussiaea diffusa and bordered by Hydrocotyle ranunculoides, H. verticillata, Ranunculus sceleratus, Discipleura capillacea, Aeschynomene virginica.

Cypress Swamp Formation. Where the banks of the rivers and their deltas are perpetually submerged they are covered by the cypress, *Taxodium distichum*. Associated with *Taxodium* in Alabama are *Nyssa aquatica*, *Fraxinus platycarpa* (= *F. caroliniana*). Slightly above the level of long-continued overflows hardwood trees mingle with the cypress (*Nyssa bifora, Quercus aquatica, Carya [Hicoria] aquatica etc.*) and form the high forest overshadowing *Planera aquatica, Acer rubrum*, *Carpinus caroliniana, Crataegus, Styrax decidna*. A few paludial plants are found in the depth of these swamps (*Onoclea, Osmunda, Woodwardia, Peatandura, Hymenocallis occidentalis*) and in the openings where pools occur *Saururus cernus, Sabatia calycina* and *Bidens involucrata*. This swamp formation is also typically represented in Texas for example along the lower Neches and Sabine rivers 1). It also extends northward into Arkansas, where I have seen it along the valley of the Red River and as far as southeastern Missouri. The relative representation of species varies greatly in different areas. In one place *Nyssa bifora* is dominant, in another *Taxodium distichum* elsewhere *Carya aquatica*. In Mississippi near New Orleans, the species of these swamps, according to Harper, consist of *Taxodimm, Sabal Adansoni*, draped with *Tillandsia usneoides*, together with *Salix nigra, Acer rubrum, Baccharis, Zizania, Panicum gymnocarpum, Cladium effusum* and *Pontederia cordata*. Such differences, however, do not alter the general type of the cypress swamp and bayou forest, which within its own territory retains undisturbed possession.

Long Leaf Pine Barren Formation. The forests of *Pinns palustris* form a narrow strip along the course of the Suwannee River and along the coast to the Appalachicola River. At their southern limit they merge into the oak and hickory uplands of middle Florida. Along the coast they are surrounded by marshes and swamps. The pine lands of western Florida rise slowly above the coastal plain and form a vast expanse of undulating surface. In Alabama where the sandy and gravelly deposits of the latest Tertiary strata prevail *Pinns palustris* forms pure forests with the exception of narrow strips of hardwood, bordering the water courses. On by far the greater part of the sandy, poor and dry soils of Alabama this pine forms pure stands. In some cases there is a rather dense undergrowth of stunted specimens of *Quercus mary-

landica, Q. falcata (≡ Q. digitata), obtusiloba, coccinea and species of Carya, together with Cornus florida and Oxydendrum arboreum etc., but more often the undergrowth is entirely lacking or consists of a few widely scattered individuals of the above species. In the latter case the ground cover consists of a mat of grasses and numerous species of the orders Compositae and Leguminosae. Where the soil is more fertile and retentive of moisture the hardwoods form an important part of the forest. Here Pinus mitis (≡ P. echinata) and P. Taeda make their appearance and sometimes crowd out Pinus palustris. The steep northern slopes of higher elevations such as York and Reedy mountains and the Weogufka range are covered with deciduous trees. On the southern slopes a pure forest of Pinus palustris extends up to 1000 feet to be replaced at higher elevations by hardwoods. The occurrence of Rhododendron maximum and Kalmia latifolia as an undergrowth considerably alters the appearance of the forest as on the hills between Finnegotchkee and Weogufka creeks, the former on cool northern exposures and the latter in small clumps on the steep, rocky and dry southern exposures 1). The coastal plain above the extensive grassy marshes in Mississippi consists of rolling pine lands (7,712,000 acres = 31,5302 qkm) almost exclusively covered by the long-leaf pine. West of the Mississippi River, the long-leaf pine is limited to the sands and gravels of the latest Tertiary formations. They are found above the great alluvial plain in Louisiana where towards their northern limit they pass gradually into a mixed growth of deciduous trees and Pinus mitis. In the center of this region the pine ridges alternate with tracts of white oak and hickory. Tending toward the Red River the pure forest of Pinus palustris is unbroken. In Texas this forest formation extends from the Sabine River west to the Trinity River and from the grassy savannas of the coast region north and are unrivalled elsewhere except perhaps in Louisiana. This forest area is unique in its isolation far to the southwest of the main longleaf pine belt, east of the Mississippi. The Texas portion is shaped like a broad wedge thrust in between Pinus Taeda 2) at the south and Pinus mitis at the north and extends southwestward to the Trinity River where the overlapping areas of Pinus Taeda and Pinus mitis form its western boundary.

The high forest is almost bare of undergrowth and its monotony is frequently unbroken for long distances, no other trees or shrubs appearing among the tall trunks of the pine. On sterile ridges deeply covered with a

2) Wherever swamps are drained, prairie surface disturbed, or original forest removed there the loblolly pine Pinus Taeda finds congenial conditions for growth, so that four types of loblolly pine forest are recognizable in eastern Texas, viz., loblolly pine in pure groups on wet prairie; loblolly pine in pure stands on fairly well drained light soil; loblolly pine in mixture with hardwoods. On poorly drained soil or on well drained fertile soils and loblolly pine in pure stands on old fields. Zon, Raphael: Loblolly pine in eastern Texas. U. S. Forest Service Bulletin 64. 1905.

Harshberger, Survey N.-America.
mantle of loose white sands the long leaf pine becomes stunted and is replaced by *Quercus cinerea* and *Catesbaei*, trees below medium size, and among the latter *Vaccinium stamineum*, *V. myrsinites*, *Gaylussacia dumosa*, *Asimina parviflora*, *Ceratiola ericoides* the latter extending to the Mississippi.

The floor of these open pine forests owing to the abundant and evenly distributed rainfall is covered with a carpet of grasses and other herbs, mostly perennials 1).

Pine Barren Flat Formation. The oldest strata of the post-Tertiary beds of loose sands and compact more or less aluminous clays toward the northern limit of the pine barrens of Alabama reach the surface. The higher levels include tracts of badly drained barrens underlaid by the older strata flooded after every heavy rain, droughty during hot and dry weather. On these flat *Pinus caribaea* (= *P. heterophylla* = *P. cubensis*), reaches its northern limit. Excepting *Ilex glabra* scarcely any tree or shrub shades the ground, but herbaceous plants clothe the extremely poor soil, viz., *Andropogon virginicus*, *Anthaenanta rufa*, *Paspalum glabratum*, *Panicum polyanthes*, *Sabbatia gracilis* and *chloroidea*, *Helenium brevifolium*, *Rhexia mariana*, *stricta*, and *Cynocontactum sessilifolium*.

Similar flats in Texas are frequently covered with a dense growth of large shrubs and small sized trees consisting of *Crataegus crus-galli*, *C. viridis*, *C. mollis*, *C. berberidifolia*, *Ilex decidua*, *Ilex caroliniana*, *Forestiera (Adelia) acuminita*, *Platanus occidentalis* and *magnolias*. These impenetrable thickets are common.

Sagittaria-Association. In exposed shallow pools in the dry pine barren formation occur *Sagittaria Chapmanii*, *S. cycloptera*.

Sarracenia-Association. In many localities the deprivities of the table-lands are perpetually wet with water which oozes from the porous siliceous strata immediately overlying the impervious clay and the depressions are clothed with Sphagnum macropmyllum, *S. imbricatun* var. *cristatum*, *S. recurvum*, *Lycopodium alopecuroides*, *Rhynchospora pusilla*, *R. plumosa*, *R. rari-flora*, *R. oligantha*, *Eleocharis acicularis*, *Calopogon pallidum*, *Juncus trigonoecarpus*, *Lophiola aurea*, *Eriocaulon decangulare*, *Drosera intermedia* (Tracy2), *Utricularia juncea*, *U. subulata*, *Sarracenia purpurea*, *S. psittacina*, *Sabbatia macropyllum*. The above mentioned pitcher plants (Sarracenia) rest their leaves on the water-soaked peat moss. *Sarracenia Drummondii*, *S. rubra* with erect leaves are abundant on the black peaty soil which covers the undulations where the impervious aluminous clays and compacted sand prevail.

Cypress-White Cedar Swamp Formation. This formation occupies the damp or wet, more or less sandy banks of the numerous streams of the Gulf coastal plain. *Quercus laurifolia*, *Q. aquatica* (= *Q. nigra*), *Magnolia grandi-flora*, *Pinus caribaea* (= *P. heterophylla* = *P. cubensis*), *Taeda, mitis* (= *P. echinata*), *Taxodium imbricarium*, *Chamaecyparis thyoides* largely prevail over *Nyssa biflora*, *Acer rubrum* and *Liquidambar styraciflua* (see p. 448). Among the trees of smaller size and shrubs which form a dense undergrowth are 1)

2) This plant up to 1903 had been called *Drosera filiformis* Raf., but Dr. J. M. Macfarlane has shown it to be distinct and named it *D. Traeyi* for Prof. Tracy of Biloxi, Miss.
Cliftonia ligustrina (= C. monophylla), Cyrilla racemiflora, Ilex myrtifolia, I. coriacea (= I. lucida), I. glabra, Myrica cerifera, M. inodora, Kalmia latifolia, Illicium floridanum, Andromeda (Pieris) nuditida, Leucotohe axillaris, Oxycaryum arboreum, Calycanthus (Butneria) florida, Clethra alnifolia, Halesia (Mohrodendron) diptera, Viburnum nudum, V. molle, Styrax pulverulenta.

Upper-Pine Mixed Forest Formation. This formation consists of a mixed growth of pine and broad-leaved evergreen trees alternating with belts of pure forests of Pinus palustris. In Alabama this phytogeographic formation is confined within the limits of the older Tertiary strata. On account of its vegetation it is difficult to define the floral character of this region. Where the rocky ridges are covered by more recent strata, the pine forms magnificent forests. Cornus florida and Quercus Catesbaei form the scanty undergrowth. The rocky hills where the pine hardly grows are sparingly covered by Vaccinium stamineum, Gaylussacia dumosa, Viburnum acerifolium, Smilax bona-nox. The herbaceous plant associations in these pine forests do not differ from those forming the soil cover in the open pine forests of the adjoining lower pine belt. In the eastern extension of this region the loose Ozark sands form the arid surface soil spreading over a large portion of western Florida and southern Georgia.

On the lower flanks of the ridges and on the lower hills of the central pine region, Pinus mitis (= P. echinata) in Alabama mingles with Pinus palustris and with Castanea pumila, Tilia heterophylla.

As these declivities merge into the narrow valleys with fresher soil more retentive of moisture the following representative trees appear. Pinus glabra, Quercus aquatica, Q. laurifolia, Magnolia grandiflora, M. macrophylla, Fagus americana associated with Styrax grandifolia, Illicium floridanum, Aesculus parviflora, A. pavia, Ilex longipes, Calycanthus florida, Chionanthus virginica. Clematis Catesbyana, C. reticulata, C. crispa may be added as lianes. The terraces of these streams overflowed in the times of the heaviest freshets are covered with a valuable growth of Quercus Michauxii, Q. falcata (= Q. digitata), Q. texana, Fraxinus americana, Gleditschia triacanthos, Caryya alba (= Hicoria ovata).

The hardwood forests of the alluvial bottoms in Texas extending up the valleys (worn inland by erosion) for a distance sometimes of a hundred miles and five miles in width consist of Quercus Michauxii, Q. macrocarpa, Q. lyrata, Q. alba, Q. texana, Q. phellos, Q. aquatica (= Q. nigra) while as secondary species occur Fraxinus americana, Liquidambar styraciflua, Nyssa sylvatica, Caryya olivaceformis (= Hicoria pecan), Caryya alba (= Hicoria ovata), Nyssa aquatica, Platanus occidentalis, Tilia americana, Acer saccharinum, Ostrya virginiana, Carpinus caroliniana, Maclura aurantiaca (= Toxylon pomiferum), Juglans nigra. On the rich loose bottom soil the timber grows very large and the undergrowth is generally very dense. Certain tracts of this forest in the Red River Valley are occupied by an almost pure growth of Quercus macrocarpa. On the lower Trinity, the San Jacinto, Quercus pagodaeolia and Q. alba are especially abundant. On the Red River, Populus monilifera is common, while Nyssa sylvatica in places forms a pure forest on the Sulphur
Part at occupies Forest typically while Chapter 36x371 palustris filamentosa. of into fertile which sands, predominant service the above loam situations, decomposition clayey soils, occurring in the belt are Quercus alba, Q. Michauxii, Q. obtusiloba, Q. prinus, Q. tinctoria, three or four species of Carya (Hicoria), Fagus, Liriodendron tulipifera, Fraxinus sp., Liquidambar styraciflua, two or three species of Magnolia, Cornus florida, Oxydendrum arboreum, Acer rubrum, Acer saccharum, Carpinus caroliniana, Tilia americana, Ilex opaca, Ostrya virginiana, and Betula nigra. Pinus Taeda is scattered through this forest with an occasional tree of Pinus mitis. The underbrush is usually dense and consists of various deciduous shrubs and herbs.

Forest Formation. This belt varies in width from 10 miles to a little over 35 miles in width the soil consisting of sand and pebbles. The deeper sandy loam of this pine belt is occupied by Pinus palustris associated with Quercus obtusifolia, Q. falcata, Q. tinctoria, Q. Catesbaei, Carya alba and C. porcina (= Hicoria ovata and glabra) and where more silicious soils prevail, Pinus palustris reigns supreme. Illicium floridanum, Cliftonia ligustrina, Persea carolina occur along the streams with Sabal Adansonii, Yucca aloifolia and filamentos.

The Central Prairie Territory comprises the plain of Cretaceous rocks which crosses Alabama in a belt from 35 to 45 miles wide, its mean elevation above the Gulf of Mexico exceeding 200 feet.

Post-oak Prairie Formation. This phytogeographic formation occupies clayey loams, sands and pebbles which mingle with the soil resulting from the decomposition of the underlying limestone strata. Open xerophilous forests of Quercus falcata, Q. tinctoria, post oak Q. obtusiloba (= Q. minor) the last predominant associated with Carya alba and porcina (= Hicoria ovata and glabra). Under cover of the brush, the gramineous associations predominate.

This formation is typically represented in Texas where it occupies the sands, gravels and clays of the lignitic belt far into the Rio Grande plain. But isolated from the main belt are other extensive areas of this type of forest, which in general occurs westward to the one hundredth meridian. This is the type of forest which the Atlantic forest assumes when it passes into the arid southwest. Aside from Pinus mitis, Quercus obtusiloba is the most abundant and universal and after this Quercus marylandica, Q. cinerea, Carya porcina (= Hicoria glabra) and C. myristicformis, while a few species of the alluvial bottoms penetrate into the upland forest, viz., Ulmus americana, Quercus alba, Q. rubra, Liquidambar styraciflua *).

Prairie Forest Formation. This occupies the black, calcareous, highly fertile soil rich in humus of the uplands. Quercus lyrata, Q. laurifolia, Q. aqua-

tica, Liquidambar, Fagus, Hicoria ovata and minima all draped with Tillandsia usneoides are prominent. With the rise of land above the action of occasional overflows are found Liriodendron, Tilia americana, Celtis occidentalis, Persea borbonia, together with Quercus breviloba, Carya olivaeformis (= Hicoria pecan) and C. myristicaeformis. Trees of smaller size occur here: Asimina, Cercis, Rhamnus caroliniana, Laurus benzoïn and many lianes (Vitis aestivalis, V. cinerea, V. rotundifolia, Berchemia, Bignonia crucigera, Ampelopsis, Tecoma, Smilax, 3 spec., Brunnichia cirrhosa, Aristolochia tomentosa, Calycocarpum Lyoni, Schizandra coccinea).

Cedar Hammock Formation (Juniperus virginiana). On the highest swells of the plain where the strata of rotten limestone are overlaid by lighter loams poorer in humus, deep and perfect drainage forests prevail of a mixed tree growth. Fraxinus americana, Quercus laurifolia, Q. texana, Celtis mississippiensis, Ulmus americana, Juniperus virginiana. Originally Juniperus virginiana forms about 30 per cent of the timber growth. The Edwards Plateau in Texas is covered with dense growths of this Juniper called cedar brakes. The trees stand thickly and the forest is so dense as to be penetrable only with extreme difficulty. The most extensive of these areas are those of the Colorado River from Austin to the San Saba country.

Treeless Prairie Formation. The lower eminences of the plain with the strata of limestone near the surface and destitute of trees are named in Alabama "bald prairies." These bald prairies can be regarded as the true home of the original campestrian flora, which is peculiar to a calcareous soil rich in humus and with a sunny exposure. Many of its types are common to the prevalent associations on the grassy timberless plains of eastern North America.

The coast prairie of Texas, according to Bray, is so low and flat that where the rainfall exceeds 35 inches, the vegetation has many aspects of the prairie marsh. Moisture-loving grasses, sedges and wet-soil annuals constitute the vegetation of the coast prairies, whose vegetation is coincident with that of certain prairies that extend through Alabama to Florida and South Carolina previously noted. The grasses are species of the genera Paspalum, Panicum, Andropogon, Eragrostis, probably the same as above noted, together with such wet soil annuals as Sisyrinchium angustifolium, Hymenocalis occidentalis, Ranunculus trachyspermus and muricatus, Baptisia laevicaulis, B. sphaeroarpa, Oenothera sinuata etc.

D. Arkansas-Louisiana District.

This district floristically speaking possesses many of the plants found along the Gulf coast, but the absence of the longleaf pine, *Pinus palustris,*
and its replacement by the short leaf pine, *Pinus mitis* (= *P. echinata*) is sufficient to characterize it. The line which demarcates the two regions, therefore, is the northern boundary of *Pinus palustris*. Besides it is inland, and physiographically it covers a territory entirely different in character from the coastal plain. It is a district which owes its physiographic condition to the Mississippi River, which in its meanders has swung several times across its flood plain giving rise to freshwater alluvial deposits, or bow lakes, numerous bayous, freshwater swamps and marshy plains. The type of forest and vegetation has been modified accordingly and although many species of the Gulf coast are present yet the character of the association of species rather than the constitution of the primary formation show a considerable modification.

1. Lower Alluvial Forest land.

The alluvial bottom land of the Mississippi Valley is covered by mighty forests. In the lowest levels with the surface soil, constantly under water are found the cypress swamps where *Taxodium distichum* is supreme. On slightly elevated ground *Quercus virginiana*, *Q. laurifolia*, *Q. aquatica* drapped with *Tillandsia usneoides* occur, and under the shade of the older larger trees a growth of secondary species: *Quercus texana*, *Fraxinus viridis* (= *F. lanceolata*), *Salix nigra*, *Crataegus viridis*, *Ilex verticillata*, *I. decidua*, *Forestiera acuminata*. The trees in the shallow portions of these swamps support certain lianas: *Smilax bona-nox*, *S. pseudo-china*, *Clematis crispa*. Certain of these sloughs are almost exclusively occupied by *Leitneria floridana* a plant found nowhere else except in coastal Florida, its northern extension being due to the swampy character of much of the land along the general course of the Mississippi River in southern Missouri, northern Arkansas as well as further toward the Gulf.

Cypress Swamp Formation. The cypress swamps of southeastern Missouri are typically developed about the Saint Francis River. Here in deep swamps occur *Taxodium distichum*, thickets of *Planera aquatica* (in soil never covered with a great depth of water) and the rare and monotypic *Leitneria floridana* with *Polygonum densiflorum*, which seems to be the first in order of succession of those plants which obtain a foothold in the soil and lift themselves out of the water. A large part of the river bottom is covered with *Myriophyllum*, *Ceratophyllum*, *Potamogeton* and *Cabomba* and the consequent filling up of the channel enables *Polygonum densiflorum* and *Zizaniopsis miliacea* to grow. In many quiet places the water is covered with *Azolla caroliniana*, *Lemma*

minor, Ricciocarpus natans and on the drier shore line Saururus cernuus, Sium cinctacfolium. Outside of these Cephalanthus occidentalis abounds. The swollen bases of Nyssa uniflora afford a favorable foothold for the epiphytic fern Polypodium incanum. The vegetation of the sloughs in the state of Arkansas is essentially similar to the cypress swamps in Missouri and elsewhere in the Mississippi Valley, according to Record 1). In the Wabash Valley the southern cypress Taxodium distichum, Carya (Hicoria) aquatica, Planera aquatica, Gleditschia inermis, all of the south, find their northern home and there the rare swamp cottonwood Populus heterophylla grows to its largest size. Beneath these trees grow Cephalanthus and Lindera. The lizard tail, Saururus cernuus is also abundant in low wet spots.

Pond Formation. Nelumbo lutea occupies the shallow margins of the ponds near which grows Polygonum amphibium and in association with these Pontederia cordata, Echinodorus radicans, Heteranthera reniformis, species of Sagittaria, Hibiscus moscheutos, H. militaris. The floating vegetation consists of Nymphaca, Nuphar, Cabomba, Brasenia and partly submerged partly floating species. Margining the pond grew Cephalanthus occidentalis with its lower branches bearded with black tufts of a species of lichen Ramalina. Behind the buttonbush stood the tall dark wall of the forest.

Nelumbium Association. Paralleling the mighty river between the bayous and rivers are troughs as one of the characteristic features of the topography 2). They are of various extent depth and shape forming tracts of wet forest swamp or swamps rarely entirely free from water or ponds and lagoons more or less shallow usually open or more or less studded with the knees and mighty trunks of the cypress Taxodium distichum. Nelumbo lutea, Nuphar advena grow in these pools and in open places Nasturtium (Roripa) laeustre, while Hottonia inflata is a characteristic floating plant.

Populus Association. The cottonwood Populus monilifera (= P. deltoides) is found reaching large dimensions especially along the banks of the Mississippi River.

Hardwood Bottom Formation. Below the bluff in northern Mississippi, according to Hilgard (Soils: 492) lies the great Mississippi Bottom with its rich soils and varied forest growth. This subdivides into at least three distinct soil and vegetation strips, viz., the sandy frontlands, the backlands, whose soils are partly the product of modern swamp deposits, partly from the disintegration of calcareous clays, and thirdly, the dogwood ridge, a narrow belt of slightly elevated land, mostly above ordinary overflows. In the forests covering the lower lands which slope back to the swamps and lagoons the cow oak, Quercus Michauxii is prominent while the overcup oak Q. lyrata occurs everywhere in the more or less saturated soil. Here Liquidambar styraciflua reaches its greatest size associated with Carya amara (= Hicoria minima), Sassafras officinale (= S. Sassafras), Ulmus americana, Carpinus caroliniana, Platanus

2) Ed. Some river bank Flowers. Botanical Gazette I: 51; also consult HUGH EMERSON: The Sunken Lands. Recreation, October 1909 where a description is given of these bayous with good reproductions of native vegetation.
occidentalis, Negundo aceroides, Acer rubrum of enormous size. Gleditschia triacanthos, Quercus aquatica, Q. falcata, Q. rubra are equally common 1). Dense growths of cane, Arundinaria tecta (Arundinaria Association) forms in many places a large part of the ground cover under the large trees.

In central Arkansas along the Arkansas River and its tributaries this plant formation exists in narrow belts on either side of the creeks and larger streams. At any considerable rise of the streams they are flooded and during the rainy season (in late winter and spring), they often remain under several feet of water for weeks at a time. Liquidambar and Nyssa sylvatica form here about a fourth of the total stand.

West of the Mississippi River south of the Arkansas River the trees of this forest are Ulmus crassifolia, Fraxinus americana; Quercus Michauxii and obtusifolia forms the post oak associations which extends westward into Texas.

This oak is associated on the drier less sour soils with Quercus alba, Q. falcata, Celtis mississippiensis, while the undergrowth consists of Bunelia lanuginosa, Diospyros virginiana, Crataegus viridis, Planera aquatica, Cornus stricta, C. sericea, Ilex decidua. Lilies are frequent comprising Vitis rotundifolia, V. aestivalis, Ampelopsis cordata, A. arborea, A. quinquefolia, Clematis virginiana, C. crispa and several species of Smilax. Sabal Adansonii grows everywhere in the higher drier ground that border the morasses and swamps. The wet soil of these woods supports Carex crus-corvi, C. stipata var. maxima, C. decomposita, C. intumescens, C. Torreyi, Muhlenbergia mexicana, M. diffusa.

The herbaceous plants of these hardwood bottoms are Dioeclea Boykinii, Amorpha fruticosa, Aster diffusus, Solidago (several species), Dianthera humilis, Hygrophila lacustris, Trepocarpus aethusae, Cynoscyadium digitata, Asclepias perennis, Trachelospermum difforne, Gratiola virginiana.

Perhaps the most remarkable aggregation of trees in the north temperate zone is found in the lower Wabash Valley in Illinois where the number of indigenous species south of the mouth of White River is one hundred and seven. Our knowledge of this forest is due to two men Dr. ROBERT RIDGWAY and Dr. JACOB SCHNECK 2).

The forests of this territory are emphatically of the mixed type as it is rare to find a single species predominating over the others though in particular localities Quercus alba, Acer saccharum, Liquidambar styraciflua may largely prevail. Usually however the 107 species of trees are mixed together indiscriminately the relative abundance of the component species varying with the location, character of soil, geologic formation and other local causes. An area of less than one square mile showed the following seventy five species of trees:

Asimina triloba L.
Acer saccharum Marsh. (== A. saccharinum Wang.).
Acer rubrum L.
Gleditschia triacanthos L.

Gymnocladus canadensis Lam. (= G. dioicus L.).
Cercis canadensis L.
Prunus virginiana L.
> serotina Ehrh.
Pirus (Malus) coronaria L.
> angustifolia Ait.
Crataegus crus-galli L.
> coccinea L.

Liquidambar styraciflua L.
Cornus (Cynoxylon) florida L.
Nyssa sylvatica Marsh. (= N. multiflora Wang.).

Juglans nigra L.
> cinerea L.
Carya amara Nutt. (= Hicoria minima Marsh.).
> porcina Nutt. (= H. glabra Mill.).
> olivaeformis Nutt. (= H. pecan Marsh.).
> alba Nutt. (= H. ovata Mill.).
> sulcata Nutt. (= H. laciniosa Michx. f.).
> microcarpa Nutt. (= H. odorata Marsh.).
> tomentosa Nutt. (= H. alba L.).

Quercus alba L.
> bicolor Willd. (= Q. platanoideas Lam.).
> Muhlenbergii Engelm. (= Q. acuminata Michx.).
> coccinea Muench.
> Michauxii Nutt.
> imbricaria Michx.
> palustris Muench.
> rubra L.
> tinctoria Bartr. (= Q. velutina Lam.).
> aquatica Walt. (= Q. nigra L.).
> falcata Michx. (= Q. digitata Marsh.).

Quercus stellata Wang. (= Q. minor Marsh.).
> lyrata Walt.
Tilia americana L.
> heterophylla Vent.
Aesculus glabra Willd.
Gleditschia monosperma Walt. (= G. aquatica Marsh.).
Amelanchier canadensis L.
Fraxinus viridis Michx. f. (= F. lanceolata Borkh.).
> sambucifolia Lam. (= F. nigra Marsh.).
> americana L.
> quadrangulata Michx.
> pubescens Lam. (= F. pennsylvanica Marsh.).

Diospyros virginiana L.
Sassafras officinale Nees et Eberm. (= S. varifolium Salisb.)

Ulmus americana L.
> fulva Michx. (= U. pubescens alata Michx. [Walt.].

Celtis occidentalis L.
Morus rubra L.
Platanus occidentalis L.
Liriodendron tulipifera L.
Rhus typhina L. (= R. hirta L.).
Betula nigra L.
> lenta L.
Salix lucida Muhl.
> nigra Marsh.

Populus monilifera Ait. (= P. deltoides heterophylla L. [Marsh.).
> tremuloides Michx.

Carpinus caroliniana Walt.
Viburnum prunifolium L.
Catalpa speciosa Warder.
Celtis mississippensis Bosc.
Ostrya virginiana Mill.
Fagus americana Sweet.
Taxodium distichum L.
The entire absence of coniferous trees except in special and usually very restricted localities is noticeable. The trees which usually attain the largest size are Platanus occidentalis, Liriodendron tulipifera, Carya olivaeformis (= Hicoria pecan), Carya alba (= Hicoria ovata), Quercus macrocarpa, Q. coccinea, Fraxinus americana, Taxodium distichum, Liquidambar styraciflua, Juglans nigra, Ulmus americana, Gleditschia triacanthos, Populus monilifera, Fagus americana, Quercus alba. All of these exceed one hundred and fifty feet in height and are in one sense dominant.

In the primeval forest the river flowed between walls of forest which stood up to the very banks with a dense fringe of willows. Salix lucida, S. nigra at the water’s edge overrun by luxuriant masses of wild grape or other vines falling down in festoons. Such are Ampelopsis (Parthenocissus) quinquefolia, Vitis cordifolia, Tecoma radicans, Rhus radicans, Wisteria frutescens, Bignonia capreolata (= B. crucigera) which climb the trees to great heights and with massive climbing lianescent stems. Smaller woody vines are Cocculus carolinus, Menispernum canadense, Celastrus scandens, Smilax rotundifolia, S. glauca, S. Walteri, S. lancea, while the following herbaceous vines should also be included as they trail over the ground or run up the undergrowth of shrubs: Clematis Pitcheri (= C. Simsii), C. viorna, C. virginiana, Passiflora lutea, Ipomea (Quamoclit) coecinea, Convulvulus (Calystegia) sepium, Convulvulus (C) spithamea, Echinocystis lobata, Humulus lupulus, Dioscorea villosa, Smilax herbacea. Very often the smaller vines are twined about the larger.

Viewed from a high bluff this forest presents the appearance of a compact, level sea of green apparently almost endless, but bounded by a line of wooded bluffs three to seven miles back from the Ohio River. The general level is broken by occasional giant trees which rear their massive tops one hundred and eighty feet above the ground; the approximate height of the other trees being about one hundred and thirty feet. The size of the trunks of some of the trees of the forest is hardly less remarkable than their height. A sycamore (Platanus occidentalis) girded thirty-three and a third feet; Liriodendron tulipifera, twenty-five feet; Quercus alba, twenty two feet; Quercus tinctoria (= Q. velutina), twenty feet; Quercus texana twenty feet.

2. Upland Pine Flat and Forest Land.

Upland Deciduous Forest Formation. Along the elevated ridges fronting the streams Quercus alba, Q. phellos, Juglans nigra, Carya alba and C. tomentosa occur in great numbers together with Liriodendron tulipifera, Sassafras, Morus rubra, Quercus falcata, Liquidambar, Nyssa sylvatica. The undergrowth consists of Crataegus viridis, C. erus-galli, Lindera benzoin, etc.

This forest in Texas reaches its western limit. Here along the creek bottoms Fagus americana is found associated with Quercus aquatica, Acer sac-
charum, rubrum, A. dasycarpum, Fraxinus americana, Ulmus, Ostrya virginiana, Carpinus, Tilia, Cornus florida, Hamamelis, Negundo, Prunus serotina. The botanist might fancy himself in a northern forest but the presence of Magnolia grandiflora (= M. foetida), M. glanca (= M. virginiana), Persea carolinensis, Ulmus alata, Planera aquatica, Castanea pumila, Ilex cassine convinces him that he is in the woods of the Arkansas-Louisiana District 1).

Pine Flat Formation. On the low almost perfectly flat lands of Arkansas-Louisiana, Mississippi and Texas the soils are of the same general character, but contain a large amount of clay and are, therefore, moist. Over considerable areas on these flats, and especially in the open spaces, there is a dense and often quite high growth of grasses, ferns and ericaceous plants. Pinus Taeda is the most common tree on the pine flats, and usually dominates. Pinus mitis (= P. echinata), is also well represented associated with Quercus alba, Q. obtusiloba, Q. falcata, Q. tinctoria while hickory is very scarce 2). In this forest the pines stand high above the crown of the hardwoods, the latter forming a kind of undergrowth; but instead of occurring by single trees, the pines of these flats have a decided tendency to grow in large groups, or forming open groups and clumps are the oaks, gums and other hardwoods. In Texas the sandy ridges are covered normally with a pure growth of Pinus Taeda, while the flats are covered with a jungle of hardwood (oaks of several species) with some loblolly pine, a dense undergrowth of small trees, palmetto thickets and climbing vines looping over the branches of the trees. The forests on the pine flats are the densest in Texas with a very thick undergrowth of shrubs and small shade-loving trees.

Pine Ridge Formation. The pine ridge forests occur on all the gently rolling or hilly portions of the country. The soils are deep, dry and rather compact loamy sands, usually with a slight admixture of clay and with an occasional bed of gravel or pebble. Pinus mitis (= P. echinata) forms a little more than fifty per cent of the total stand and is more than twice as abundant as Pinus Taeda. These pines tower high above the hardwoods, forming a second story above Quercus alba, Q. obtusiloba, Liquidambar styraciflua, Q. falcata, Q. tinctoria. The undergrowth consists of species of Vaccinium, Kalnia latifolia, Persea pubescens and species of Smilax are found both in large and small groups and scattered openly and irregularly, while over large areas it is entirely absent, leaving the ground clear and bare under the mature trees. This type of shortleaf pine reaches by far its best development in the United States in northwestern Louisiana, southern Arkansas and northeastern Texas forming forests scarcely surpassed in their timber wealth. Its general distribution west of the Mississippi River is the country

north of the longleaf pine belt where it is most abundant and reaches its greatest perfection. In Arkansas in the hilly country *Pinus mitis* forms a large part of the tree covering of the silicious rocky soil and frequently extensive forests on the wide table-lands. In northeastern Texas the pine forests are called pineries" forming a compact growth over many hundreds of square miles.

In Alabama and Mississippi *P. mitis* is rarely seen in the lower part of the coast-pine belt (see ante § C, p. 451), but forms a more or less conspicuous part of the forest covering of the uplands in the central and upper territories (20—30 per cent) and sometimes predominates to such an extent over the usually dominant hardwoods as to impart to the woodlands the somber aspect of a pure pine forest. Dense groves of this tree cover the shallow depressions deficient in drainage which are particularly frequent on the Warrior table land.

3. **Piedmont-Appalachian-Ozark Plateau-Mountain Region.**

This phytogeographic region occupies territorially the Piedmont Plateau, the Appalachian mountains and valleys, the Alleghanian Plateau west of the mountains and a portion of the great central plain extended west to the Ozark-Plateau and mountains in Missouri. Geographically it extends from central New Jersey and the Catskills south to northern Alabama.

This vast area is generally speaking the home of the broadleaf species of trees. The entire region sloping toward the Atlantic Ocean, the Appalachian mountains and plateaus and spreading far westward to the Mississippi River, and beyond, is characterized by the presence of broad-leaf trees. Not that the conifers are here entirely absent, for several of these including the white pine, *Pinus strobus*, follow the mountain ranges and scatter throughout the hills and plains, but their number is small in the proportion of the whole. The higher mountains are characterized by such trees as *Picea nigra (= P. mariana)*, *Sorbus americana*, which have their main center in the north; but the deciduous-leaved trees cover valleys and plains, and ascend in serried ranks the mountain sides, pass from one valley to another through the mountain passes and cross whole mountain ranges by surmounting and covering the lower crests and mountain tops.

Variety is one of the marked characteristics of the eastern woods. As several hundred different kinds of trees enter into their composition under every form and modification of circumstance and association, we find in these forests an endless novelty. Three districts are recognizable, viz., the Piedmont District; the Appalachian District; the Alleghanian-Ozark District. These will be treated of in order.

A. **Piedmont District.**

This is coincident with the Piedmont Plateau. The common boundary of the coastal plain and the Piedmont Plateau is usually well defined though sometimes inconspicuous. Between the Hudson River and the Tuscaloosa (or Black Warrior) River the streams cross it in cascades, or rapids, and the
boundary is thus known industrially and geographically as the "fall line". This boundary is one of the most strongly marked physiographic and cultural lines on the surface of the globe, so writes Professor W. J. McGee 1). On the one hand lie the crystalline rocks, while on the other, there is a series of incoherent and undisturbed deposits of clay, sand and gravel, through which the waters move sluggishly in broad tidal estuaries. The pioneer settlers ascended the tidal channels to the falls of the rivers, where they found sometimes within a mile, clear, fresh water, the game of the hills and woodlands and the fish and fowl of the estuaries, as well, as abundant water power. Here are found such cities as Philadelphia, Baltimore, Washington, Richmond, Raleigh, Columbia, Macon, Montgomery in Alabama.

There is also a marked delimitation of the floras of the coastal plain and the Piedmont Plateau. The forests of the former are mainly coniferous, of the latter, composed of broad-leaved trees with the corresponding undergrowth of shrubby and herbaceous species.

In New Jersey along the front of the Piedmont Plateau, which ends at the Hudson River, crossing the Delaware River at Trenton, where rapids occur, there is a transition belt where the coniferous forests of the coastal plain blend with the deciduous forests of the Piedmont Plateau, producing a constant state of strain, or tension. The elements in the deciduous flora are always ready to seize upon any advantage which will give them a foothold further south, while the elements in the coniferous flora are always ready for an advance in the opposite direction 3).

The Piedmont Plateau in New Jersey 3) is characterized by the deciduous tree formation composed of Quercus rubra, Q. coccinea, Q. alba, Q. tinctoria (= Q. velutina), Carya alba (= Hicoria ovata), Carya porcina (= Hicoria glabra), Carya tomentosa (= Hicoria alba), Ulmus americana, Fraxinus americana, Fagus americana, (= F. ferruginea, Castanea dentata (= C. americana), Liriodendron tulipifera, Carpinus caroliniana, Platanus occidentalis, Ulmus americana, with occasional groups of Juniperus virginiana and Pinus strobus. Liquidambar styraciflua, Sassafras officinale and Populus tremuloides also occur in this forest, but are also abundant in the coniferous (southern) belt. — West Jersey from Trenton southward, west and southwest of the pine barrens, is characterized by a far greater variety of trees than the pine barrens. The most plentiful species, not found in the latter region, are Pinus inops (= P. virginiana), Juniperus virginiana, Quercus phellos, Q. falcata (= Q. digitata), Q. bicolor (= Q. platanoides), Q. coccinea, Castanea dentata, Fagus americana, Betula nigra, Ulmus americana, Carya tomentosa (= Hicoria alba), C. porcina (= H. glabra), C. amara (= H. minima), Carpinus caroliniana, Liriodendron tulipifera, Platanus occidentalis, Diospyros virginiana, Cornus florida, Liquidambar styraciflua, Prunus serotina, Ilex opaca.

A striking fact first emphasized by Witmer Stone is that the narrow Atlantic coast strip between the pine barrens and the salt marshes has much the same flora as the lower Delaware Valley, though many of the trees are absent. The Piedmont Plateau is not typically developed, however, until the Delaware River is crossed at Trenton, and southeastern Pennsylvania is entered.

The flora of this section of country may be considered to be typic of the northern extension of the Piedmont Plateau.

a) Northern Area.

Southeastern Pennsylvania is a region of hills, of valleys, of meadows and of rocky ravines sloping down in general from the Laurentide hills to the Delaware River. It represents an original table-land whose general elevation was about 500 feet above tide-level. Originally the surface, hills, as well, as river-plain above the fresh water marshes, which line the Delaware River, was covered by a dense forest of trees. Since the settlement of the country, the most desirable land has been under cultivation, with many flourishing manufacturing towns.

Botanically considered, the following ecologic plant formations and associations may be distinguished, and these are determined approximately by the character of the areas above mentioned 1).

1. Formations of the Estuaries, Ponds and Marshes.

Aquatic Formation. The river and creeks of the region, especially in their lower courses, have smooth stretches of water in which grow a number of aquatic species. These species in the tidal estuaries are usually of the larger sort and are well adapted to grow in water where there is a change of level between high and low tide of about three feet. In many of the streams, the tidal flow is of considerable strength and the current established, therefore, influences the distribution of the vegetation to a marked extent. Where the flow is less strong and swift, there the material in the form of mud and silt is deposited and upon this alluvial material aquatic plants take root and gradually raise the level of these areas by catching and holding fresh deposits of silt. The result is a tidal marsh intersected by numerous meandering channels through which the tidal water ebbs and flows.

Vallisneria spiralis forms a pure association of such extent, as seriously to interfere with the navigation of some of the streams (Vallisneria Association). In some of the smaller creeks and in ponds formed in artificial depressions, Elodea canadensis abounds. The spatterdock, Nuphar advenum is probably the commonest aquatic plant that grows in the tidal portions of the streams of southeast Pennsylvania. It covers acres of mud ground and stretches as a pure association for miles along the Delaware and Schuylkill rivers (Nuphar Association). Associated with it in shallow water the pickerelweed, Pontederia cordata abounds, forming in places pure associations. This interesting plant with trimorphic flowers is most abundant on the New Jersey side of the Delaware River (Pontederia Association). The duckweeds are found in the ditches and ponds of the region. This is true especially of the

district in South Philadelphia known as the Neck. The agricultural land, kept in a high state of fertility by the application of city manural waste, is intersected by numerous ditches where abound Spirodela polyrhiza, Lemma minor, Wolffia brasiliensis and W. columbiana (Lemma Association). Orontium aquaticum, the goldenclub, is also a plant that forms in places ecologic groups (Orontium Association). The water-chinquapin. Nelumbo lutea, twenty five years ago, existed in the region of the "Neck". With the spread of the city southward, the plant was destroyed.

Pond Formation. There are no ponds or lakes of any size natural to southeastern Pennsylvania; all that now exist are artificial. Some of them occupy depressions from which clay has been taken for bricks; others occupy the bottom of rock quarries, while still others have been formed by the damming of streams. The only natural ponds are of small size and are rather pools formed in a depression near some perennial spring. The ecologist finds in such natural pools, or along their edges, a collection of species that seem to give character to them, such as Chryssosplenium americanum (Chryssosplenium Association), Veronica americana, Elodea canadensis, Typha latifolia, Acorus Calamus, Iris versicolor, Myriophyllum verticillatum, Spirodela polyrhiza, Cardamine rhomboidea (= C. bulbosa), C. rotundifolia, Caltha palustris, Myosotis palustris, Nasturtium palustre, Nasturtium officinale (Nasturtium Association), Ludwigia (Isonardia) palustris and various algae, viz., Spirogyra, Hydrodictyon, Confera, Nitella, Oedogonium, Volvox, Euglena and Mesocarpus.

Tidal-marsh Formation. The tidal marshes have been formed by a variety of contributing forces. Material brought down by the rivers has been sorted and distributed over the tidal areas by the tides and currents of the streams that meet here. The location of these deposits and their superficial extent has depended upon the character, force and direction of the currents.

The banks of the streams influenced by tidal action are lined by thickets composed of Platanus occidentalis, Gleditschia triacanthos, Alnus serrulata, Acer rubrum, Salix alba, Liquidambar, Fraxinus, Sambucus, Cephalanthus, Rosa lucida, Ampelopsis, and Rubus nigroacaulis.

The herbaceous plants are in this rich alluvial soil Thalictrum polygamum, Heracleum lanatum, Agrimonia parviflora, Allium vineale, Ambrosia trifida, Impatiens fulva. In mud near the bank, associations of rose mallow, Hibiscus moscheutos, occur, with occasional patches of the sensitive fern, Onoclea sensibilis. Along the edges of the stream banks in the shallow water grow Jussiaea repens, Calamintha clinopodium, Sagittaria variable, Cicuta maculata, Ludwigia alternifolia, Stachys palustris and Asclepias incarnata. In the deeper water, fringing the shore of the creeks, strips of wild rice, Zizania aquatica (Zizania Association) and of Nuphar (Nymphaea) advenum (Nuphar Association) are found.

The tidal marshes of the rivers Delaware and Schuylkill are extensive and may be in places one half a mile wide. Several well marked zonal areas of marsh vegetation are noticeable in making an ecologic survey. Some of the marshes have been diked. Others at high tide are flooded with water, and yet the ecologist can distinguish relative depths of water by the character of the vegetation alone. If one begins with the open channels of the creeks and ditches that intersect the marshes, the following zonal areas can be distinguished. In the deeper water along the channel, the reed-grass, Zizania aquatica (Zizania Association) forms the outer fringe of vegetation and where
it does not occur, *Nuphar advenum* replaces it and forms a pure growth (Nuphar Association). In July, two colors of reed-grass are noticeable: a dark green mature form in deep water and a light green immature growth of reed-grass inside of the dark green area. In the shallower water behind the reed-grass and spatterdock, several associations of plants are seen. One area is characterized by the commingling of *Sagittaria variabilis*, *Impatiens fulva*, *Ambrosia trifida*, *Nuphar advenum*, with an occasional association of *Hibiscus moscheutos*. In other areas, *Impatiens fulva*, *Rudbeckia laciniata* and *Sagittaria variabilis* occur, and on drier soil *Thalictrum polygamum* and *Heracleum lanatum*. *Typha latifolia* forms a pure association (*Typha Association*) surrounded by *Ambrosia* and *Sagittaria*; in other areas this forms pure associations and in still other situation it is mixed with *Cicuta maculata* (*Sagittaria-Cicuta Association*). *Cephalanthurus occidentalis* always occurs in the drier soil of the tidal marshes and in a number of places with it grow *Corunus sciracea*. Alluvial islands occur in the channels of the streams, These are at first covered by the spatterdock, and as the soil becomes drier through the building action of these plants, the spatterdock is replaced by other plants until the island becomes dry enough to support tree vegetation. The marshes have been drained in many cases sufficiently to raise marsh-grass for hay. The ditches of such converted marshes afford many interesting plants of the *Lemna-Association* (vide p. 463), *Pontederia*, *Hibiscus*, *Asclepias incarnata*, *Typha — Sagittaria — Zizania — Association*. Outside of these associations and growing in the deeper water along the banks of the Delaware River is an association of *Scirpus lacustris* (*Scirpus Association*). The between-tide, mud-inhabiting plants along the Delaware River shore are *Micranthemum Nuttallii* (= *M. micranthemosides*), *Isoetes riparia* (on gravelly beaches), *Tillaea simplex* (= *T. aquatica*), *Limosella aquatica*, *Eriocaulon (Dapatya) flavidulum*, *Sagittaria subulata* and *Elatine americana*. *Isoetes-Limosella Association*.

Swamp-plant Formation.

The swamps of the region under consideration are of three kinds, as determined by their origin: (1) Swamps that owe their origin to a stream flowing over a low, flat area of country; (2) swamps due to underground springs; (3) swamps due to the collection of the drainage water of an area into a natural basin-shaped depression. True sphagnum bogs are not represented in southeastern Pennsylvania. This does not exclude sphagnum mosses from the category of swamp plants, but bogs which owe their character to them are absent, and peaty deposits such as one finds associated with the sphagnum are entirely wanting. The swamp plants characteristic of the region fall naturally into several ecologic associations. Thus, we have the *Symplocarpus-Association*, consisting of *Symplocarpus (Spathyema) foetida*, *Osmunda regalis*, *O. Claytoniana*, *O. cinnamomea*, *Cardamine rhomboidea* and *Onoclea sensibilis*. The Iris-, *Typha- and Acorus-Associations* are clearly de-
a. **Wissahickon Creek**

Fairmount Park, Philadelphia (Piedmont Plateau District), Deciduous Forest Formation.

b. Hemlocks, *Tsuga canadensis* (L.)

in pure formation above Stony Creek, near Shenandoah City, Penna. (Appalachian District). Coniferous Forest Formation (*Tsuga Facies*).
marked. *Heraclum lanatum* forms in swampy places a pure growth, as do also *Veratrum viride* and *Euonymus purpureum*. *Heliopsis laevis*, *Rudbeckia laciniata*, *Commelina virginica*, *Polygonum sagittatum*, *Mentha spicata* and *Vernonia Noceboracensis* are usually together in alluvial bottom lands at the mouths of streams where the soil is wet (*Heliopsis-Rudbeckia-Association*).

2. Forest formations.

Deciduous-forest Formation. Originally the forest covered most of the surface of southeast Pennsylvania. In some places, notably on the Wissahickon Creek within the confines of Fairmount Park and in areas on Crum Creek, the primeval forest still remains 1). A study of such preserves shows the character of the original forest. The dominant and secondary trees grow on precipitous rocks, on declivitous hillsides, on the plateau surfaces left as a remnant of a former peneplain, on the creek bottoms of the region, where the trees reach their largest size, and on the Delaware River plain down to where the forest formation merges with the river marsh plant formation. All the areas occupied by the cultivated-plant formations recognized were covered by the original forest 2). The original forest was a mesophytic one. It probably passed through various vicissitudes dependent upon the topographic changes, so that the xerophytic forest of the hillside was gradually replaced by a mesophytic forest. The tendency has been in the entire region to the culmination of the forest in the mesophytic type. The forest, of great original density, may be looked upon as the northeastern extension of the forest found developed in its highest character in the region drained by the Tennessee River and its tributaries and by streams arising in the southern Alleghany Mountains and flowing eastward into the Atlantic. Arbitrarily, a line drawn from a point where the Ohio joins the Mississippi River, east to the Cumberland Mountains and thence along the Alleghany Mountains to the west branch of the Susquehanna River in Pennsylvania, then to the Blue Ridge and along it to the Schuylkill River, following the hills on the south side of the Great Valley to the Delaware River, represents the northern limit during glacial times of the forest which during the Miocene period extend north into the Arctic regions. The northeastern extension of the forest of glacial times was much poorer in species than the mixed deciduous forest farther south. This was probably due to the killing of the less hardy species by the glacial cold. Only those species remained in the area mentioned that were hardy. These hardy species,

1) Fairmount Park, Philadelphia possesses many fine pieces of woodland, where the original forest conditions may be studied. Oglesby Paul, landscape gardener of the park, has enumerated in a brochure of 52 pages, the principal trees and estimated their numerical abundance. The list comprises as the most abundant trees of the Park the following: *Castanea*, *Liriodendron*, *Fagus*, *Quercus alba*, *Q. tinctoria*, *Q. Prinus*, *Fraxinus americana*, *Acer rubrum* and *Cornus florida* as a secondary species. — See plate XIa.

Harshberger, Survey N. America.
therefore, represent the main constituent species of the present-day forest with the possible introduction of a few additional species that migrated north from the denser forest that clothed the valleys and slopes of the southern Alleghany Mountains.

The dominant trees of the forest that covered and still covers in patches southeastern Pennsylvania parts of Delaware is composed of the following species: tulip-poplar, Liriodendron tulipifera; chestnut, Castanea dentata (= Castanea sativa var americana); black walnut, Juglans nigra; red oak, Quercus rubra; white oak, Q. alba; scarlet oak, Q. coccinea; chestnut oak, Q. Prinus; Spanish oak, Q. falcata (= Q. digitata); beech, Fagus americana (= F. ferruginea); Carya alba (= Hicoria ovata); hackberry, Celtis occidentalis; butternut, Juglans cinerea; sweet gum, Liquidambar styraciflua; persimmon, Diospyros virginiana; white elm, Ulmus americana; white ash, Fraxinus americana; wild red cherry, Prunus pennsylvanica; pignut, Carya porcina (= Hicoria glabra); silver maple, Acer saccharum; red maple, Acer rubrum; buttonwood, Platanus occidentalis; small-fruited hickory, Carya microcarpa (= Hicoria microcarpa) and ironwood, Ostrya virginiana. These trees are found in great variety of soils, but reach their greatest size on the alluvial soils of the creek and river bottoms. Thus the black-walnut, tulip-poplar, white elm, button-wood, red maple and silver maple reach their best development on such soils. The white oak, white ash, chestnut, etc. seem to grow equally well in the drier upland soils. The red cedar, Juniperus virginiana, on the other hand, seems to be confined to barren places and to rocky outcrops, while the trees that grow along the banks of the streams within the region comprise the red maple, Acer rubrum, the hornbeam, Carpinus caroliniana; swamp oak, Quercus palustris; buttonwood, Platanus occidentalis; box-elder, Negundo acoeroides (= Acer negundo); beech, Fagus americana; Sassafras officinale and several birches and willows. — The forest in the neighborhood of Washington, D.C. is essentially similar; the dominant trees are: Quercus alba, Q. Prinus, Q. coccinea, Q. palustris, Q. falcata, Carya tomentosa (= Hicoria alba), Liriodendron tulipifera. Among other common trees here are Castanea, Fagus, Acer rubrum, Platanus occidentalis, Betula nigra (along rivers), Ulmus americana, Nyssa multiflora, Liquidambar styraciflua with admixture in groves or singly of Pinus inops, P. rigida, P. mitis.

The trees form a dense canopy, and shade the forest floor, so that the secondary species, shrubs, sapling trees and herbs, must be tolerant of such dense shade. The dominant trees reached their great size in the primeval forest, for some are left which attest this. Thus are found white oaks six to eight feet in diameter, buttonwood trees six feet across, white pine five feet in diameter, beeches four feet, black walnut trees four to five feet, tulip-poplars six feet, sassafras trees two and a half.

The secondary species, tolerant of the shade, are the dog-wood, Cornus (Cynoxylon) florida; red mulberry, Morus rubra; service berry, Amelanchier canadensis; bladdernut, Staphylea trifolia; Judas-tree, Cercis canadensis; hazel, Corylus americana; witch-hazel, Hamamelis virginiana and striped maple, Acer pennsylvanicum, while as shrubs occur smooth alder, Alnus serrulata (= A. rugosa); spice-bush, Lindera Benzoin; dockmackie, Viburnum acerifolium; arrowwood, Viburnum dentatum; stagbush, Viburnum prunifolium; strawberry bush, Euonymus americanus, wahoo, Euonymus atropurpureus, and pinxter flower, Rhododendron nudiflorum (= Azalea nudiflora);

1) STERRETT, W. D.: Report on Forest Conditions in Delaware. Bulletin 82, Delaware College Agricultural Experiment Station. December 1908, pages 1—58 with map and 10 figures.

Sambucus canadensis, the elder, also occurs in the region and at present is found usually in open places with alluvial soil forming thickets of some denseness. The laurel Kalmia latifolia, high-bush huckleberry, Vaccinium stamineum are found in the drier soils throughout the region. The laurel Kalmia latifolia, high-bush huckleberry, Vaccinium stamineum are found in the drier soils. The smaller trees in this formation at Washington, D. C. are: Cornus florida, Cercis canadensis, Hamamelis virginiana, Sassafras officinalis, Castanea pumila, Juniperus virginiana, while as shrubs are: Cornus sericea, Viburnum acerifolium, V. dentatum, V. nudum, Gaylussacia resinosa, Vaccinium stamineum, V. vaillians, V. corymbosum, Leucothoe racemosa, Andromeda mariana, Kalmia latifolia, Rhododendron (Azalea) nudiflorum, Lindera Benzoin.

The lianes which grow upon the dominant and secondary forest trees are several grape vines, Vitis cordifolia, V. labrusca, V. aestivalis, V. riparia (= V. vulpina); Virginia creeper, Ampelopsis quinquefolia; poison ivy, Rhus radicans and several species of the genus Smilax. The

climbing bittersweet, Celastrus scandens, moonseed, Menispermum canadense, Sieyos angulatus, wild-yam, Dioscorea villosa, and wild balsam apple, Echinoceystis [Mierampelis] lobata are climbing plants found along the course of the streams.

The vines of the neighborhood of Washington, D.C. are Ampelopsis quinquefolia, Rhus toxicodendron. Tecoma radicans, Vitis labrusca. V. aestivalis (see Fig. 26), V. cordifolia, V. riparia.

A peculiar type of this mixed deciduous forest is found on the serpentine rock formations of the region under consideration¹). The botanist can identify the serpentine areas, by the vegetation alone, for the species which

are character-plants, although occurring elsewhere in the region, are here grouped together in such a manner and in such number, as to sharply delimit these areas from the surrounding country. The dominant trees on the serpentine barrens are *Quercus alba*, *Q. stellata*, *Q. marylandica*, *Q. rubra*, *Acer rubrum*, *Liriodendron*, *Nyssa sylvatica*, *Juniperus virginiana*, *Castanea*, *Fagus* and *Prunus serotina*.

The herbaceous plants of the forest floor are found in pure association, or they occur sparingly distributed along with other herbs that form together a mixed vegetation. The habitats of the different herbaceous associations are controlled by photic and edaphic conditions. Thus in the deep shade of the dominant trees, the botanist finds the following plants forming pure associations and each association may be distinguished by the generic name of the plant 1).

April. *Asarum canadense*, *Dicentra cucullaria*, *Erythronium americanum*, *Claytonia virginica*, *Pedicularis canadensis*, *Epigaea repens*, *Thalictrum dioicum*.

May. *Solea concolor*, *Podophyllum peltatum*, *Triosteum perfoliatum*, *Tradescantia virginica*, *Mertensia virginica*, *Caulophyllum thalictroides*, *Hydrophyllum virginicum*.

July. *Gaultheria procumbens*.

The following ferns are also found in pure association in the forest: *Adiantum pedatum*, *Nephrodium* (Aspidium) *sinulosum*, *marginale*, *acrostichoides* and *Phegopteris*.

Along the woodland streams, growing in the damp loamy soil of such situations and controlled by the amount of soil-moisture present are a number of associations characterized by a single plant, as follows:

April. *Floerkea proserpinacoides*.

May. *Polemonium reptans*, *Valerianella chenopodifolia*, *Ornithogalum umbellatum*, *Heracleum lanatum*.

June. *Lysimachia nummularia*.

July. *Impatiens fulva*, *L. pallida*, *Thalictrum polygamum*, *Pilea pumila*.

August. *Epiphegus virginiana*, *Lobelia cardinalis*, *Commelina nudiflora*, *C. virginica*.

September. *Eupatorium purpureum*.

The rocky outcrops in the woods consisting either of ledges or of angular boulders by frost action are covered by several well-characterized associations formed by pure growths of the following species:

Camptosorus rhizophyllus, *Polypodium vulgare*.

April. *Saxifraga virginiana*, *Aquilegia canadensis*.

May. *Heuchera americana*.

Besides these pure association of plants found in the woods of southeast Pennsylvania occur a large number of species, rich in number of individuals, but scattered on the forest floor, separated from each other by spaces filled up with other characteristic woodland species, likewise isolated. These plants,

1) Those marked by an asterisk also occur in the vicinity of Washington, D.C. and in about the same association, according to my observations.
therefore, form a mixed vegetation which covers the ground except where the pure association of single species occur and give character to the herbaceous flora of such woodland areas. The following species may be included in this category. They are arranged in what follows according to the aspects i.e. according to the months in which they appear in flower.

Botrychium virginianum, Asplenium fìlix foemina.

May. Osmorrhiza longistylis, Smilacina racemosa, Viola pubescens, Aphyllon (Thalesia) uniflorum, Oxalis stricta, Oakesia (Uvularia) sessilifolia, Trientalis americana, Polygonatum giganteum, Medeola virginica, Orchis spectabilis, Hypoxis erecta, Tiarella cordifolia, Hydrastis canadensis, Thaspium trifoliatum var. aureum, Aralia nudicaulis, Cyripedium acaule, Allium tricoccum, Arisaema dracontium, Hieracium venosum, Oxalis violacea, Uvularia perfoliata, Smilax herbacea, Geranium maculatum, Luzula campestris, Ranunculus ficaria.

July. Cimicifuga racemosa, Laportea canadensis, Chelone glabra, Panicum dichotomum, Lilium canadense, Monotropa uniflora, Prunella vulgaris, Silene stellata, Phryma leptostachya.

August. Lobelia syphilitica, Solidago bicolor, Aster macrophyllus, Panicum microcarpus.

September. Aster laevis, Solidago caesia, Collinsonia canadensis.

Hemlock Formation. This formation occurs on the sloping hillsides and precipitous banks of streams. The forest of hemlock consists in a few places of a pure growth without the admixture of any other tree species, but usually associated with the hemlock, Tsuga canadensis, the botanist finds the beech, Fagus americana and red maple, Acer rubrum. These trees are tolerant of the dense shade of the hemlocks. Where the forest has not been disturbed, sapling hemlocks, beeches and red maples are present ready to replace the dominant trees when they have succumbed to the wind. On the floor of the forest we find a Lycopodium Association of L. lucidulum; the laurel, Kalmia latifolia, occurs in the drier soils and forms a thicket, and the Mitchella-Association of M. repens carpets the ground with Viola rotundifolia as a character-plant, with which grows Goodyera pubescens, Cinna latifolia, Hieracium paniculatum, and in late summer Aster divaricatus. — In many places, the hemlock, forms an element in the mixed deciduous-forest formation. When such is the case, it is found in isolated patches usually of a few trees near the water-courses on steep hillsides. It forms then an association (Tsuga Facies) and with Lycopodium lucidulum are found three other species,viz., L. annotinum, L. clavatum, L. dendroides which grow near the hemlocks. Two alternative hypotheses may be adduced for this. Either an original hemlock forest has been replaced by a deciduous one, or occasional hemlock trees have been under certain edaphic conditions developed amidst the component species of the deciduous forest.
3. River Bluff Formation.

Wooded Rock Cliff Formation. This formation is typically developed according to the observations of John W. Harshberger 1) at the Delaware Narrows, Bucks County, Pa, where the Delaware River sweeps eastward, so that the palisades (Nockamixon Rocks) of red shale occur on the south shaded bank of the river and although the soil is extremely dry yet such slopes are always more cool than the surrounding country. These cliffs (300 feet high) are seamd by deep ravines down which small streams tumble in wet weather. A sharp talus slope occurs at the base of the precipitous cliffs and a number of rock shelves stand out from the face of the rocks.

The vegetation of these cliffs is of a more northern character than the surrounding vegetation. The talus slopes are covered by such trees as Acer saccharum, Betula lenta, Fagus americana, (comparable to the Maple-Birch-Beech Facies of the Adirondacks, Tilia americana, Tsuga canadensis, Betula nigra, Acer rubrum, Quercus coccinea, Q. alba, Q. rubra, Ulmus americana, U. racemosa (= U. Thomasi), Liriodendron tulipifera, Populus grandidentata, while the secondary trees are Rhododendron maximum, Hydrangea arborescens, Acer pennsylvanicum, Hamamelis virginiana, Taxus canadensis (in dense masses of pure growth on the shingly slate), and the shrubs Physocarpus opulifolius, Rubus odoratus, Viburnum acerifolium, Staphylea trifolia, Sambucus pubens, Celastrus scandens, Amelopsis quinquefolia, Rhus radicans and many herbs as Asarum, Mitella, Sanguinaria, Viola and Aquilegia canadensis, Smilacina, Arisaema, ferns as Adiantum pedatum, Nephrodium, Botrychium, and on the rocks Camptosorus rhizophyllus, Polypodium and Cystopteris bulbifera. Quercus Prinus is the prevailing tree on the sloping top of the cliffs above the precipitous portion in the dry soil, together with Juniperus virginiana (occasionally wind swept), Ostrya virginiana, Carya porcina (= Hicoria glabra) and ovata, Rhus typhina, Morus, Sassafras etc.

The flat shelves on the face of the cliff are occupied by some of the above plants, Ostrya, Juniperus virginiana, with Ulmus, Celtis, Acer saccharum, Prunus virginiana, Juglans cinerea, etc. Underneath the shelving and projecting rocks at the top of the deep ravines, where evaporation of the dripping water by ascending currents of air through the ravine elfts makes the habitat an exceptionally cool one, is found Sedum Rhodoiola in pure association, and on other more sunny slopes Sedum telephium grows. Asplenium ebenum, Polypodium vulgare and Wood sia ilvensis are rock ferns in these ravines together with such herbs as Arabis lyrata and Cerastium oblongifolium, while Marchantia polymorpha clings to the dripping rocks. Such ravines recall the cliffs at Smugglers Notch in the Green Mountains of Vermont previously described (see ante p. 378). The forest of these ravines has a somewhat different composition on the cliff tops and talus slopes. Here grow Fagus, Tsuga, Tilia americana, Betula lutea, Morus rubra, together with Rhododendron maximum (in thickets along the streams), Hydrangea arborescens and Taxus canadensis.

b) Southern Area.

The differences in the character of the forests of the Piedmont Plateau in the southern states are the result of the influence of variations in the quality of the soils, and in the altitude above sea level. The lowlands of the Piedmont Plateau, instead of embracing broad swamps, are confined to narrow borders of sedimentary origin along the streams. The loamy alluvial lands contiguous to the smaller streams have in all parts of the plateau very nearly the same kind of growth viz., Fagus americana, Quercus rubra, Acer rubrum,

Liriodendron tulipifera, while with these are associated many smaller trees: Ostrya virginiana, Magnolia umbrella (= M. tripetala, Cornus florida which sometimes are sufficiently numerous in North Carolina to form a thin underwood. If these soils become silty, Liquidambar styraciflua, Nyssa sylvatica, Quercus lyrata, Q. Michauxii and other trees which are more representative of the forests along the larger streams become conspicuous supplanting first the beech and oak, then the white oak and Liriodendron, and finally entirely taking their place.

Deciduous Forest Formations. The forest on the silt, or mud alluvium of the larger streams, consists of these supplanting trees with Platanus, Celtis and Carya amara (= Hicoria minima). Nyssa, Carya amara and Platanus are uniformly distributed throughout, although no where abundant, or forming a conspicuously large portion of the growth. These trees also enter into the composition of the mountain forests. The other trees, however, are sparingly distributed westward toward the mountains. Eastward Acer saccharum occurs with it in cooler places as the altitude increases. Beneath the taller trees occur Carpinus caroliniana, species of Crataegus and Asimina triloba. All the open banks in full sunlight are lined with Salix nigra and Betula nigra.

Upland Forest Formation. The upland forests of the Piedmont Plateau are composed of broad-leaf species and pine. The body consists of oaks with more or less hickory and in places the short leaf pine Pinus mitis (= P. echinata) is scattered among them. The original forest may be separated into three parallel strips (1) the eastern pine strip; (2) the broad leaf forest strip; (3) the western pine strip. The eastern pine strip may be divided into the forests of the eastern granite areas, of the eastern red sandstone, and of the slates. The forest of the eastern granite areas consists of Quercus obtusiloba (= Q. minor), Q. tinctoria (= Q. velutina), Q. alba, Q. falcata (= Q. digitata), with a considerable admixture of Carya tomentosa (= Hicoria alba), Carya porcina (= Hicoria glabra) and in most places Pinus mitis. Along the hollows and cooler slopes are Quercus alba, Q. tinctoria, Q. rubra, Liriodendron.

The forest of the eastern red sandstone strip consists of an upper dominant story of Pinus mitis with an underwood of Quercus obtusiloba, Q. falcata, Q. alba, Hicoria alba, and Quercus marylandica (= Q. nigra).

The forest of the slate soils where better drained resembles a two-storied high forest. The upper story consists of a rather open growth of Pinus mitis and the lower story of small Quercus obtusiloba, Q. marylandica, with more or less Quercus falcata, Q. alba, Carya tomentosa. The trees are often shrubby. As the soil becomes poorly drained the pine decreases until on the “willow oak (Quercus phellos) flats” the growth becomes restricted to Quercus obtusiloba, Q. marylandica as a lower story slightly overtopped by Quercus phellos.

The deciduous forests of the Piedmont Plateau were originally compact consisting of oaks and hickories with pine only on rocky or sandy soils along the crests of hills. On the red loams the trees are Quercus tinctoria, Q. alba, Carya tomentosa with a small intermixture of Spanish oak Quercus falcata and
along the crest of ridges Quercus obtusiloba, but on the lower hillsides and steep north slopes is found Lithiodendron, Quercus rubra, Carpy alba (= Hicoria ovata), and Fraxinus americana also occurs. The forest of the loose gray loams is composed of Quercus alba, Q. falcata, Q. obtusiloba, Q. tinctoria, Carpy tomentosa (= Hicoria alba) and Quercus coccinea in abundance in the order named, and forming over three-fourths of the growth. As undergrowth we find Cornus florida, sour wood Oxydendrum arboreum and species of Crataegus 1), Rhamnus and Viburnum.

Lying to the west of the compact red and gray loams are finegrained and mostly sandy loams, usually red or reddish in color with a thin surface soil extending to the base of the Blue Ridge and its oultlying spurs, constituting the western pine land. The trees of the forest on these soils stand in relative abundance about in the following order: Pinus mitis, Quercus coccinea, Q. tinctoria, Q. alba, Oxydendrum arboreum, Q. Prinus, Q. obtusiloba, Q. falcata and Carpy tomentosa (= Hicoria alba). These trees form considerably over three-fourths of the growth. Less abundant and forming the larger portion of the remainder of the growth are Cornus florida, Carpy porcina (= Hicoria glabra), Castanea americana, Quercus marylandica, Pinus inops, Nyssa sylvatica, Acer rubrum and Corylus rostrata, Hamamelis.

Nothing has been published and the writer has no observations of his own to offer on the herbaceous plant associations of the Piedmont Plateau in North Carolina, but the flora of this region is quite similar in general character to that of the whole district lying at the same elevation from New England to Alabama. A comparison of the flora of middle Georgia with that of Southern New England shows that at least half of the species of each region are common to both. A brief consideration of the plant formations of middle Georgia is here represented 2).

Of greatest interest perhaps are those species which inhabit the rich shady primeval forests on the north sides of the hills: Botrychium virginianum, Adiantum pedatum, Asplenium eburneum, Polygustichum acrostichoides, Poa brevifolia, Carex laxiflora, Tradescantia montana, Uvularia perfoliata, U. puberula, Smilacina racemosa, Polygonatum biflorum, Medeola virginica, Dioscorea villosa, Silene stellata, Cinquefuga racemosa, Xanthorrhiza apiiiolia, Hepatica, Anemone thalictroides, Sanguinaria, Dentaria laciniata, Heuchera americana, Geranium maculatum, Viola palmata, V. hastata, Aralia (Panax) quinquefolia, Pedicularis canadensis, Mitchellella repens, Solidago caesia.

In drier more open woods, including those on the south sides of hills and the second growth oak woods which are frequent on the broad summits of the ridges, the forest consists of Juglanus nigra, Caryas, Quercus, 6 spec., Prinus serotina and Aesculus flava; shrubs or trees beneath the dominant ones: Castanea pumila, Asimina triflora, Cercis, Rhus, Euonymus, Ceanothus, Vaccinium

2) HARPER, ROLAND M.: Notes on the Flora of middle Georgia. Bulletin Torrey Botanical Club XXVII: 320—341 June 1903. See also, Some coastal plain Plants in the Piedmont Region of Georgia. Bulletin Torrey Botanical Club XXXVI: 583—593 where it is suggested that the plants common to the coastal plain and the Piedmont must have been more widely distributed in the highlands than they are now having pushed out from a climax region into the coastal plain occupied by pioneer formations. Cf. this book, pages 201—203; 212—215.
stamineum, V. corymbosum, and such lianes as Vitis, Ampelopsis, Gelsemium sempervirens and Smilax rotundifolia. — The herbaceous plants of these woods are Panicum commutatum, Stipa avenacea, Melica mutia, Uniola latifolia, Danthonia sericea, Carex pennsylvanica, Hypoxis creeta, Silene virginica, Aueronea virginiana, Ranunculus fasicularis, Lespedeza hirta, Linum virginianum, Jatropha stimulosa, Viola pedata, V. villosa, Sanieula cannadensis, S. marylandica, Chimaphila maculata, Gentiana villosa, Aselepias variegata, Hedeoma pulegioides, Calamintha (Clinopodium) caroliniana, Salvia urticefolia, Seutellaria integrifolia, S. pilosa, Gerardia tenifolia, Elephantopus carolinianus, Solidago brachyphylla, S. petiolaris, S. erecta, Aster patens, Chrysogonum virginianum, Coreopsis major, Hieracium venosum.

Lowland Forest Formation. The river banks are occupied by certain trees and shrubs which flourish best there: Carpinus caroliniana, Ostrya virginiana, Betula nigra, Fagus americana, Quercus aquatica, Ulmus americana, Morus, Liriodendron, Platanus, Salix nigra, Asimina triloba, Acer rubrum, Nigundo, Tilia pubescens, Fraxinus; as shrubs, Alnus serrulata, Calycanthus, Philadelphus, Amelanchier, Pytelea, Rhododendron (Azalea) nudiflorum, Kalmia, Leucothoë Catescei, Vaccinium arboreum, Sympecos tinctoria, Styriax americana, Chionanthus, Cephalanthus, Arundinaria tecta.

Along the rivers in deposits of dry sand certain psammophilous species form associations in Georgia, viz., Pteris aquilina, Yucca filamentosa, Lupinus perennis, Opuntia vulgaris, Vaccinium arboreum, Breweria humistrata, Monarda punctata, Chrysopsis graminifolia.

The Piedmont flora reaches its southern limit in the region of the Tallapoosa and Coosa rivers in eastern Alabama. Here these plants mingle with many from the Gulf coastal plain and with a number of local species sparsely scattered throughout the south, such as Dryopteris floridana, Ophioglossum erotalophoroides, Lycopodium alopecuroides. The following plants, decided with a northern range of distribution, seem to find these highlands their southern limit: Uvularia perfoliata, U. sessilifolia, Smilacina racemosa, Trillium stylorum, Polygonatum biflorum, Smilax echirrata, Habenaria laeera, Asarum virginicum, Asimina triloba, Hydrangea arborescens, Philadelphus grandiflorus, Chimaphila umbellata, Rhododendron (Azalea) viseosum var. glauca, Hieracium venosum, etc.

B. Appalachian District.

This district is coincident with the Appalachian Mountain ranges which extend from southern New York into the state of Georgia. On the northwest lies the great Alleghany Plateau, and on the southeast the Piedmont Plateau. These mountain ranges are composed mainly of ridges, whose longitudinal direction is from northeast to southwest. Between these ridges valleys are found. This system of mountains is naturally divided into two parts, the northern Appalachian and the southern Appalachian ranges.

The flora of these mountains is essentially composed of a deciduous forest of broad-leaf trees which surrounds the island-like areas of coniferous vegetation on the higher mountain summits, noticeably in North Carolina and Tennessee. The broad-leaf species which in early days covered the valleylands ascended the mountain slopes, dominated the crests and summits of the lower mountains, filled all the intervening country between the ranges and only gave place to the coniferous forest of northern range on the higher mountain
summits and table-lands. Some plant geographers, among them Merrilam, would place the higher mountain areas with the great northern coniferous forest, because they consider the forests of the highest mountains to be an extension southward of the northern forest. In all likelihood, as previously described (pages 209—212), the trees of the northern forest, north of the great terminal moraine, have been derived from farther south and in all probability the coniferous forest formation and associations came from the higher Appalachian ranges in the middle and southern states. The writer, therefore, on historic grounds considers it best to include these isolated mountain forests surrounded on every side by a sea of broad-leaf trees, and removed hundred of miles from the pure coniferous forests of the north with the forest formations and associations of the Appalachian Mountain District of our classification. This it seems to him is the natural method of treatment, first, because these forests in the minds of the laity are associated with the country where they are found, and second, because the deciduous trees of the lower forests mingle with and modify the coniferous formations and associations, producing tension lines which in peculiar manner modifies and alter the facies of the vegetation.

a) Northern Mountain Area.

The Appalachian mountain ranges enter southeastern New York terminating in the Catskill Mountains and Shawangunk Mountains. The streams of this area heading in the Alleghany Plateau on the west run southeastward into the Atlantic Ocean and cut through the ranges by great gorges, that are popularly called water gaps; but south of New River the Appalachian ranges are drained into the Gulf. New River (Great Kanawha) and the James River represent the southern boundary of the northern mountain phyto-geographic area.

1. Territorial Remarks on the District.

Exposure and situation have much influence on the distribution of plants in these northern Appalachians. Thus on Spruce Creek a tributary of the Juniata in Pennsylvania where this stream has produced a talus by its erosive action grow Sorbus americana, Betula papyrifera, Ribes prostratum, Heuchera pubescens, and Linnaea borealis. In contrast to this association, we find scarce two hundred yards away a narrow intervale bordering the stream where on the alluvial bottom grows the southern papaw, Asimina triloba. Aristolochia sipho also occurs climbing up Juniperus virginiana in this bottom 1).

The original condition of the flora of the Catskills has been much disturbed by the removal of the marketable trees by lumbermen and by the settlement of the country. The list of introduced plants is a large one and among them are many noxious weeds. Originally the woods were damp owing

to the numerous mountain streams, but with the removal of the timber many
hillsides have been thoroughly dried and support, therefore, an entirely dif-
ferent set of plants 1). There are practically only seven plant formations ac-
cording to the observations of the writer displayed in the Catskill mountains 2). These formations may be enumerated as follows: deciduous forest formation, coniferous forest formations (three in number) lake plant formation, marsh plant
formation and rocky ledge plant formation.

The flora of the Kittatinny or Shawangunk Mountains of northwestern New Jersey is peculiar. This mountain chain forms a wall of almost con-
stant altitude, averaging from 1,200 feet in height, along the eastern side of
the Delaware River from Port Jervis to the Delaware Water Gap. Its summits
and western slopes are composed of a coarse or fine, very hard silicious con-
glomerate or sandstone, with little soil but that derived from the limited dis-
integration of these rocks, and it is therefore highly silicious. While the
mountain sides are extensively glaciated there is very little glacial drift on the
ridge.

On these mountains exist a number of plants which are also found in great numbers in sandy
soil along the Atlantic coast 3). Among the species which are thus noteworthy, as discovered by
N. L. Britton, are: Juncus Greenei, Solidago puberula, Orontium aquaticum, Tephrosia virginiana,
Lespedeza hirta, Lupinus perennis, Quercus ilicifolia, Corema Conradii. At Culver's Gap were
found by Britton: Polygala polygama, Gerardia pedicularis, Lechea racemulosa, all abundant
in sandy soil along the coast, and Frunus pumila. At Sunfish Pond, northwest of the Water Gap,
occur Juncus militaris, Lycopodium inundatum, Viburnum nudum. While all along the mountains
grow Aster linariifolia, Quercus ilicifolia, Gaylussacia resinosa, G. frondosa, Vaccinium vacillans,
Epigaea repens, Gaultheria procumbens, Lyonia (Chamaedaphne) calyculata, Azalea (Rhododendron
viscosa. Another peculiarity is the substitution of Pinus rigida on the mountains for Pinus
Strobus of the surrounding country.

The ridges of the Green Pond system, known at Greenwood Lake as Bearfort and Bellvale
mountains, and in New York as the Skunnemunk, have a somewhat similar summit flora, con-
sisting of Quercus ilicifolia, Solidago puberula, Tephrosia virginiana, Lespedeza hirta, Arctosta-
phylos uva-ursi, Aster linariifolia, various huckleberries, blueberries and other sand plants.

The flora of the mountainous parts of Pennsylvania is divided by the
Susquehanna River into two parts. The elevated mountain region in the
northeast abounds in ponds and lakes, sphagnum bogs, forests and large open
tracts almost destitute of trees. The dominant trees found for example on
the Pocono Plateau are Pinus strobus, Picea nigra (= P. mariana), Abies bal-
samea, Betula lutea, B. papyrifera. The original vegetation of this plateau

1) The important papers on the Catskill flora according to Dr. John H. Barnhart of the New
1874; Mearns, E. A.: A List of the trees and shrubs collected (in the Catskills) Proceedings U.
S. National Museum XXI: 343, 1898; Britton, E. G.: Mosses of the Catskills. Torreya I: 84,
1901.

2) Harshberger, John W.: The plant Formations of the Catskills. Plant World VIII:

3) Harshberger, John W.: The comparative Age of the different floristic Elements of eastern
consisted, as far as I have been able to determine, of four elements, viz., a forest of pitch pine, *Pinus rigida*, which covered the looser morainic material of the great terminal moraine in the eastern and southern parts of the plateau; the broad-leaved deciduous forest with its oaks and associated species on the eastern slopes and edges of the tableland; the chestnut and black locust forest which occupied Laurel Ridge along the western rim of the plateau, and a forest of white pine with a thicket of *Rhododendron maximum*, beneath, mixed in many places with the black spruce, the red maple and other plants characteristic of the Catskill Mountains and farther north, grading over to a hemlock forest in the region of the Tobyhanna. The open sphagnum bogs culminate in the presence of the larch, *Larix americana* with which were associated *Kalmia glauca, Ledum latifolium, Rhododendron Rhodora* and other northern plants. With the destruction of the white pine, hemlock and pitch pine forests, the vegetation of this tableland has undergone an entire change. The succession of the species has not been worked out in detail, but what has been observed is instructive. The botanist is impressed by the general appearance of the landscape. The flora over the eastern half of the plateau in aspect resembles that of the pine barren regions of southern New Jersey, from which the original pitch pine and Jersey pine have been cut. A study of the species shows that this appearance is due to the close similarity of the flora in the plant species which constitute the two regions. We have an instructive example of mass invasion of such plants as *Quercus ilicifolia, Pinus rigida, Gaylussacia resinosa, Vaccinium vacillans, Epigaea repens, Gaultheria procumbens, Rhododendron viscosum, Kalmia angustifolia, Lilium philadelphicum, Amianthum muscaetoxicum*, etc., from the morainic hills westward into the region occupied by the white pines, while *Orontium aquaticum*, now thoroughly established, may have been introduced by the Indians. We naturally inquire from what locality the pitch pine formation has proceeded, and it seems to me we are forced to conclude that this association of species has been derived, not from the barrens of New Jersey, but from the nearby mountains northwest of the Delaware Water Gap which, as previously mentioned, support such a flora (See ante page 221).

The entire mountainous country in western Maryland between Savage Mountain on the west and Sideling Hill on the east was once a continuous forest. The prevailing growth is deciduous, but this is conspicuously mingled with patches, and often large areas of conifers which occupy small detached hills. In other cases similar hills bear a growth chiefly of conifers on their north slopes and a deciduous forest on their south slopes. In ascending for example one side of a mountain *Fagus americana, Tilia americana* may appear at the base of the mountain, while above in a second belt occur *Quercus Prinus, Pinus pungens, Prunus pennsylvanica*. The predominant trees of the country, *Q. rubra, Castanea americana, Quercus alba*, occur on all low hills and middle slopes and benches of the high mountains. *Quercus Prinus* appears on the upper, rocky gravelly slopes and summits of the mountains and hills. *Castanea
is confined chiefly to poor, dry gravelly, southern, eastern and western slopes. *Quercus rubra* is associated with the above trees).

2. Broad leafed and Coniferous Forest Formations.

Deciduous Forest Formation. The valleys and mountains except the summits of the highest Catskill Mountains are covered with a deciduous forest which ascends to about 3,500 feet. It is a mixed one consisting of such dominant trees as *Fagus americana*, *Castanea americana*, *Quercus rubra*, *Juglans cinerea* *J.* *nigra* (sparingly), *Betula lutea*, *B. lenta*, *B. populifolia*, *B. papyrifera* (uncommon), *Acer saccharum*, *Populus tremuloides*, *P. grandidentata*, *Ulmus* etc., while near the streams in this forest are found *Platanus occidentalis*, *Carpinus caroliniana* and such shrubs as *Alnus serrulata*, *Hamamelis*, *Sambucus* and *Amelanchier canadensis*. The absence of *Liriodendron tulipifera*, many of the oaks, hickories, magnolias and other deciduous trees is noteworthy. As the botanist ascends the mountains and when an elevation of 2,880 feet is reached, the constitution of this type becomes more uniform by the disappearance of such trees as *Castanea*, *Quercus rubra*, *Tilia*, *Juglans cinerea*, *Ulmus*.

The herbaceous plants, or partially woody plants of the forest floor that exist in the shade of the broad-leaved forest trees are, according to my observations: *Hepatica triloba*, *H. acutiloba*, *Uvularia* (Oakesiella* sessilifolia*, *Solidago caesia*, *Sanguinaria canadensis*, *Geranium Robertianum*, *Eupatorium ageratoides*, *Viola palmata*, *Anemone nemorosa*, *Smilacina racemosa*, *Streptopus roseus*, *S. amplexifolius*, *Asarum canadense*, *Maianthemum canadense* (ascending to considerable altitudes), *Polygonatum biforum*, *Erythronium americanum*, *Medeola virginica*, *Epiphegus virginiana* (on beach roots), *Monotropa uniflora*, *Corallorhiza odontorhiza*, *Actaea alba*, *Caulophyllum thalictroides*, *Dicentra canadensis*, *D. cucullaria*, *Viola pubescens*, *V. canina*, *Tiarella cordifolia*, *Mitella diphyllea*, *Aralia nudicaulis*, *A. hispida*, *A. triloba*, *A. quinquefolia*, *Aster cordifolius*, *Mitchella repens* (dry woods), *Trillium erectum*, *T. erythrocarpum* (= *T. undulatum*), *Aster acuminatus*, *Arisaema triphyllum* associated with many ferns (*Polystichum* and *Phegopteris*, *Cystopteris*, *Adiantum pedatum*, *Asplenium*, *Dennstaedtia punctilobula*, *Lycopodium* (4 species) and club mosses)

*Farther to the south in Pennsylvania the slopes and valleys of these mountains are clothed with deciduous forests, where *Liriodendron tulipifera*, *Tilia americana*, *Acer saccharum*, *Robinia pseudacacia* occur with *Quercus alba*, *Q. Prinus*, *Q. rubra*, *Q. coccinea*, *Q. tinctoria*, *Q. bicolor*, *Castanea*, *Fagus*, *Jug- lans*, *Hicoria* (5 spec.), *Platanus*, *Carpinus*, *Fraxinus americana*, under different combinations and associations form a forest of great diversity of light and shadow. *Quercus Prinus*, *Robinia pseudacacia*, *Castanea americana*, all may be expected to grow in association along those mountain slopes where the Medina and Oneida sandstones appear, neither altitude nor the rocks seem to prevent their growth. *Carya alba* (= *Hicoria ovata*) and *C. porcina* (= *Hicoria glabra*) are trees of lower ground. The former seldom leaves the alluvial grounds;*
the latter though often found on higher levels seldom reaches the mountain tops. *Fagus crenata* grows along streams even high up on the mountain side, but the black walnut *F. nigra* is seldom found on the rocks of the higher steeper slopes 1). *Gymnocladus canadensis* and *Rhamnus lanceolatus* occur in the limestone Cumberland Valley near the Potomac River.

Considered in general three kinds of forest types occur in Maryland, viz., ridge forests, slope forests and swamp forests 2). The ridge forest occupies the benches and broken rocky crests and is essentially distinguished by the predominance of *Castanea*. The slope forest contains the largest number of species. On the steep slopes above the Youghiogheny River, it is often pure growths of *Tsuga canadensis*, in the richer coves almost pure *Quercus alba*. Between these two extremes there are slopes upon which *Tsuga* and the hardwoods mingle while on other slopes *Castanea* predominates. The association of species is as below mentioned in the order of their importance.

<table>
<thead>
<tr>
<th>Dominant.</th>
<th>Secondary.</th>
</tr>
</thead>
</table>

The swamp forest has fewer species than the others *Picea nigra*, *P. rubra* with *Pinus Strobus* are the principal trees, and a varying amount of hemlock. The areas occupied by this type surround and extend into the swamps and sedge-covered tracts along the streams known as glades or mountain meadows. Where *Pinus Strobus* is predominant occur in the following order *Tsuga*, *Acer rubrum*, *Betula lutea*, *Castanea americana*, *Quercus alba*, *Q. rubra*, *Tilia americana*, etc. Where *Picea nigra* (= *P. mariana*) is dominant, *Tsuga*, *Betula lutea*, *Acer rubrum*, *Fagus americana*, *Acer saccharum*, *Pinus Strobus*.

The shrubby undergrowth consists of Sorbus americana, Rhus hirta, R. copallina, Aralia spinosa and Kalmia latifolia on the drier soils; along streams Asimina triloba, Hamamelis virginiana, Prunus coronaria, Amelanchier canadensis, Crataegus occinoa, Cereis canadensis, Cornus alternifolia. Acer pennsylvanicum and spicatum are found on the steep river slopes and Rhododendron maximum and Viburnum lentago in the swamps.

The herbaceous plants of such forests as they occur in West Virginia are mentioned below: Trautvetteria palmata, occurs along deeply shaded mountain rills. Aconitum uncinatum grows along banks of rivers, while Actaea alba and A. rubra with Cimicifuga racemosa are on the higher mountains. Dicentra eximia is also at high elevations. Lycopodium lucidulum, L. annotinum, L. dendroides, L. clavatum and L. complanatum are all found in the forests of Picea nigra along the mountains at 2,500—4,800 feet in altitude with Abies balsamea and Pinus Strobus.

Coniferous Forest Formation. These exist in the Catskill Mountains in three types determined by the dominant tree of each type. They are the Tsuga-facies, Strobus-facies and Abies balsamea-facies.

Tsuga Facies. Formerly the hemlock, Tsuga canadensis, grew in considerable abundance in the Catskill Mountains. It formed pure growths along the steep slopes of mountain streams, or on the northern shaded shoulders of ridges descending into the principal valleys. It was much sought as a bark and timber producing tree and much of the best hemlock has been removed long since from the Catskill forest. One isolated grove in Big Indian Valley was studied by the writer, and it may be taken as a type of the original hemlock formation. Tsuga canadensis is the dominant tree associated with Fagus americana, Acer rubrum, A. saccharum and Betula lutea, which are sparingly present in this type of forest. On the ground the botanist finds Mitchella repens, Viola rotundifolia, Lycopodium lucidulum, Chimaphila umbellata, etc. while Kalmia latifolia forms the shrubby undergrowth.

Pinus Strobus Facies. This at present is found in a few localities and it represents largely a second growth in the wider valleys not at any considerable elevation. As a formation, it occurs surrounded by the deciduous forest on the sunny lower slopes of mountains, exposed to the noonday sun. The white pine is the dominant tree in pure growth, while beneath the pines one finds much the same association of species as in the hemlock formation, such as, Gaultheria procumbens, Chimaphila umbellata and Pirola rotundifolia.

Abies balsamea Facies. Above 3,200—3,500 feet on the higher mountains, such as, Cornell, Wittenberg, Slide mountains the balsams, forms an almost pure growth, associated with Picea nigra, Sorbus americana, Betula lutea, Prunus pennsylvanicum and Acer pennsylvanicum, while the undergrowth of shrubs consists of Viburnum lantanoides, Ribes prostratum, Sambucus racemosa, Rubus odoratus (at lower elevations).

The herbs of this forest formation are Dennstaedtia punctilobula, Oxalis acerosella, Circaea alpina, Viola blanda, Clintonia borealis, Mitchella repens, Cornus canadensis, Coptis trifolia, Corallorhiza multiflora, Lycopodium lucidulum and on the mossy windfalls Cladonia rangiferina with Chiogoness hispida. On the tops of the largest boulders occur in dense mats Polypondium vulgaris and on their sides species of the lichen Umbilicaria. Vaccinium pennsylvanicum found in this formation arising from a mossy bed beneath the balsams is a shrub from a foot to two feet high and at the lower elevations in this formation are found Rhododendron (Azalea) viscosum and R. nudi-
florum. On Slide Mountain at an elevation of 3,500 feet on cliffs and ledges among the balsams Abies balsamea were collected, such mosses as Raphidostegium Jamesii, R. laxepatulum, Plagiothecium striatellum (= Hypnum Muhlenbeckii), P. Muellerianum, Hylocomium umbratum, H. pyrenalicum (= Hypnum Oakesii), Dicranum fuscescens and D. longifolium.

This balsam facies, according to my observations, covers the highest mountain peaks in the Catskills viz., Wittenberg (3,824 feet), Cornell (3,920 feet), Table Mountain (3,875 feet) and Slide Mountain (the highest dome, 4,200 feet). It extends down the mountain slopes in tongues into the deciduous forest below and at the lower elevations it breaks up into isolated patches easily delimiting by the dark green color of such patches in a lighter green background. Its constitution is very similar to the topmost plant formations of the Adirondacks, and the mountains in Virginia, North Carolina and Tennessee.

In the mountainous parts of Pennsylvania we find an other arrangement of the Coniferous Forest Formation as follows.1

Pinus Strobos Facies. The dominant tree Pinus Strobos associated with Picea nigra (= P. mariana) formed on the higher tablelands of the northern Appalachian area an almost pure forest under which grew Sorbus americana, Acer pennsylvanicum, Ribes lacustre, R. prostratum and Rhododendron maximum. A magnificent growth of white pine once covered the slopes of the mountains and the sides of the ravines, overshadowing and enclosing the smaller streams, and attaining its best development about their headwaters. In the deep ravines it was usually associated with the hemlock Tsuga canadensis, Betula lutea, Castanea americana, Acer rubrum with an occasional Fraxinus americana and rarely Liriodendron tulipifera. It spread completely over many of the mountains growing in mixture with hemlock or making pure stands. At the top of the slopes, and upon the summits of the mountains on poor soil, Pinus rigida usually takes its place. The white pine in western Maryland occurs almost entirely on northern and eastern slopes, ascending to the summits of the highest mountains. It is especially abundant along the rocky north slopes of streams, often forming dense narrow belts of pure growth down to the water’s edge.

Tsuga Facies (see plate XIb at p. 465). The hemlock is an element of the mountain flora. As a tree, it prefers the rocky sides of mountain gorges, or a rocky hillside overlooking a stream. Occasionally it appears in a deep forest on flat ground by a stream. It is very scarce along the southern border of the state, except in the mountains proper. It is frequently associated with the white pine and the association of species is much like that in the white pine forest only a few plants become more prominent among them such herbs on the ground as Viola rotundifolia, Mitchella repens, Goodyera pubescens, G. repens, Spiranthes gracilis, Cypripedium acaule.

Pinus rigida Facies. One other formation probably exists, a displayed on the ledges at Kaaterskill overlooking the Hudson Valley, namely, that in which the pitch pine, Pinus rigida is the principal tree. As a tree this species occupies the higher mountains in Pennsylvania where it exists in barren soil and under xerophytic conditions. A number of ericaceous plants forms a part of this association, as well, as the barren places, *viz.* Vaccinium canadense, *V. pennsylvanicum*, *V. vacillans*, *V. migram*, *V. stamineum*, with such herbs as Solidago odora, *S. puberula*, Kalmia angustifolia, Habenaria blephariglottis, Lygodium palmatum, representative pine barren elements.

Other pines form an important element in the forest cover of very exposed, bare, rocky, southern slopes in western Maryland. Pinus virginiana (= *P. inops*) form a dense cover in the poorest shaly soils on the lower southern slopes of high ridges, or more frequently on the south side of low hills (Pinus virginiana Facies). At higher elevations comprising the middle benches and summits of mountains Pinus rigida and Pinus pungens occupy sterile rocky situations on southern, southeastern and southwestern exposures. Scattered individuals also occur mingled with hardwoods on the low shaly hill tops adjacent to the mountains. Pinus mitis is present in exceptional instances.

The Rocky Ledge Formation is found on the rocky ledges and bluffs which occur throughout the Catskill Mountains. The plants which characterize such ledges are mainly ferns\(^1\) and a few herbs which together may be enumerated here, as: Camptosorus rhizophyllus, Pellaea gracilis, Woodsia ilvensis, Saxifraga virginiana, Arabis lyrata, Polypodium vulgare, Asplenium trichomanes, Aquilegia canadensis, Heuchera americana, Polygonum cilinode, Campanula rotundifolia various species of lichens as of the genus Umbilicaria and blue green algae, Nostoe sp.

3. Pond- and Lake plant Formations.

The lake plant and the marsh plant formations are sparingly represented in the Catskills. One natural lake, or mountain tarn, was noted as the source of Stony Clove Creek already partially encroached upon by vegetation to produce a marsh. In the absence of a detailed study, these formations are merely mentioned to complete our classification of the principal formations in the Catskill Mountains.

In West Virginia above the great terminal moraine exist a considerable number of ponds and lakes which represent water filled kettle holes or streams damned by glacial material. In these ponds *Nymphaea odorata*, *Nuphar advenum*, *N. Kalmianum*, species of *Potamogeton* represent the floating aquatic vegetation. *Calla palustris*, *Dulichium spathaceum*, *Sarracenia purpurea*, *Drosera rotundifolia* and *D. intermedia* sometimes form floating masses detached from the edge of the pond. The open water is surrounded by a fringe of sedges (*Carex* etc.) and *Sarracenia*, and these plants in turn by *Lyonia* (*Chamaedaphne*) calyculata, into which *Larix americana* encroaches with occasional specimens of pine *Pinus rigida*.

Bog Formation. All of the sphagnum bogs in the moraine covered territory in the mountains represent ponds and lakes that have been converted into bogs by the slow encroachment of vegetation. The basis of the bog is sphagnum. Near the center where the sphagnum mass has not been compacted a quaking bog exists with the peaty material sometimes as I have determined by actual measurement 12—15 feet deep'). The pure sphagnum stretches are usually occupied by Sarracenia purpurea, Scheuchzeria palustris, Vaccinium macrocarpum, Kalmia glauca form an association to be replaced in other situations by an almost pure growth of L. (Chamaedaphne) calyculata or associated with Kalmia angustifolia, Vaccinium corymbosum, Ledum latifolium surrounded by sedges Dulichium spathaceum, Carex bulbata, Eriophorum vaginatum and others. Larix americana encroaches also on such open bogs.

The edge of such bogs is characterized by a fringe of plants: Nemopanthes fascicularis, Kalmia glauca, Lyonia calyculata, Vaccinium corymbosum, Rhododendron Rhodora with Lysimachia striata, Azalea viscosa. The smaller kettle hole bogs have been long converted into almost solid earth. Here occur in association Acer rubrum, Nyssa sylvatica, Fleea nigra, Ilex verticillata, Rhododendron maximum, Viburnum nudum, Nemopanthes fascicularis, Sassafras officinale, Betula populifolia, Prunus pennsylvanica, Rubus trifolii, Kalmia angustifolia, Vaccinium corymbosum and nigrum, while such ferns as Osmunda cinnamomea, Nephrodium noveboracense, Dryopteris, Thelypteris are denizens of rich bogs with such herbs as Dalibarda repens, Cornus canadensis, Habenaria blephariglottis, Gentiana linearis, Aralia hispida, etc.

In central Pennsylvania high up in a horse-shoe of the mountains, is a peat bog which has not owed its origin to glacial action. It is in a region where bogs and lakes are uncommon or almost unknown'). The center is a quaking bog of sphagnum and sedges: Carex trisperma, C. utriculata and the peat is here over ten feet deep. Sarracenia purpurea, Menyanthes trifoliata, Coptis trifolia, Calopogon pulchellus, Nemopanthes, Vaccinium macrocarpum, Chamaedaphne calyculata, Alnus incana, Clintonia borealis occur in this bog.

b) Southern Mountain Area.

This area occupies the southern Appalachian Mountains south of New River and extending to the northern confines of Alabama.

1. The Forest- and Cliff-Formations of the southern Alleghanies.

Coniferous Forest Formation of the Lower Hills. The area in which Pinus mitis (= P. echinata), Pinus rigida, Pinus inops (= P. virginiana) are the dominant trees embraces the basin of the French Broad River, the river hills of the Swannanoa and the lower hills in several counties in North Carolina, lying below an elevation of 2800 feet (850 m) above sea level. With these pines are

associated *Quercus alba*, *Q. cocinea*, *Q. prinus*, *Castanea dentata*. The ridges and low hills are covered near the Peaks of Otter, Virginia, by *Pinus inops*, *Castanea pumila*, *Quercus marylandica* (= *Q. nigra*), *Oxydendrum arboreum*, *Tephrosia virginiana*, *Spiraea Aruncus* (= *Aruncus silvester*), *Silene virginica*, *Oenothera glanca*, *Galax aphylla*.

The woodland in which *Pinus Strobus* is the dominant coniferous tree is not extensive, but lies in isolated small bodies along the crest, and southern and eastern slopes of the Blue Ridge, or on the low hills on the west. Extensive forests containing this pine occur on the south fork of New River, in the upper valley of the Linville River, in the valley of the French Broad River. This tree is associated with *Quercus alba*, *Q. tinctoria* (= *Q. velutina*), *Q. rubra*, *Q. cocinea*, *Q. Prinus*, *Castanea dentata*, when growing along the crests or flanks of rolling hills, on course, often porous, gravelly loamy soils.

Deciduous Forest Formation. The forests of the lower mountains lie between 1500 and 3000 feet (460—915 m) elevation. They occupy the eastern and southern slopes of the Blue Ridge and its outlying spurs and to the westward of the Blue Ridge, they occupy the hill and lower mountain slopes up to about 3000 feet. The same species of oak, named as companions of *P. Strobus* and hickories (*Carya tomentosa* = *Hicoria alba*, *C. amara* = *H. minima* and *C. alba* = *H. ovata*), *Castanea dentata*, *Cornus florida*, are the chief broad-leaf trees. These form a story of varying density but never constituting over one-half of the trees. The area in which *Pinus pungens* and *P. rigida* are the important trees embraces the eastern and southern slopes of the Blue Ridge with the outlying spurs from Georgia to Virginia, associated with *Pinus mitis*, *Quercus cocinea*, *Q. Prinus* and *Castanea dentata*. There is no underwood. *Tsuga caroliniana* is confined to the eastern slope of the Blue Ridge, while *Fagulus nigra* occupies the deep narrow hollows which indent the eastern slopes and with it are associated *Robinia pseudacacia*, *Liriodendron tulipifera* and *Quercus alba*.

The forests of the higher mountains embrace the woodland lying at an elevation above that of the forests of the lower hills and below 5000 feet. The lower limit of their distribution is about 3000 feet. The forests of the high mountains may be divided into (1) those lying on the crests, and on the slopes facing the south, and (2) those of the north slopes and hollows, and along the bottom lands. The soils of south hill-sides are drier and are thinner than those on slopes with a northerly aspect, and the amount of light and heat is greater than is secured on hillsides with equal, inclinations to the north and the trees are consequently of the light demanding kinds 1). The trees occurring on the slopes facing the north and in the hollows are: *Tsuga canadensis*, *Fagus americana*, *Castanea dentata*, *Quercus rubra*, *Q. alba*, *Rhododendron maximum*, *Liriodendron tulipifera*, *Fraxinus americana*, *Magnio-

lia acuminata, Aesculus flava. The characteristic trees which are to be found on the northern slopes and hollows are: Tsuga canadensis, Rhododendron maximum, Betula lenta, B. lutea. On the southern slopes and along the gravelly crests of the hills the growth is less varied being largely composed of Castanea dentata, Quercus alba, Q. rubra, Q. tinctoria (= Q. velutina) and Q. Prinus. The forest on the southern slope is less dense than on northern and the trees are smaller.

We will consider this formation as it occurs in different parts of the southern Appalachian Mountains.

The gorge at the Natural Bridge of Virginia is that of Cedar Creek 1). In general, the sunlight has full influence on the vegetation of the north bank, while the south bank is so steep that the sunlight, if it reaches the soil at all, does so at an angle, and, consequently, its full effect is lost on the south and shaded side. The dominant forest trees of the south side of Cedar Creek consist of tulip poplar, Liriodendron tulipifera; sugar maple, Acer saccharum; hemlock, Tsuga canadensis; walnut, Juglans nigra; Hicoria sp.; the beech, Fagus americana, scarlet oak, Quercus coccinea; red elm, Ulmus fulva; ash, Fraxinus sp.; chestnut oak, Quercus Prinus; arbor vitae, Thuja occidentalis; red oak, Quercus rubra; linden, Tilia americana. As secondary trees, somewhat tolerant of the shade, are found red mulberry, Morus rubra; witch hazel, Hamamelis virginiana; Judas tree, Cercis canadensis; sassafras, Sassafras officinale. Forming a third and lower stratum of vegetation, the writer noted the dockmackie, Viburnum acerifolium, Viburnum pubescens, and Sassafras. Near the bridge and extending up stream on the south side for a distance of a hundred yards is a tumbled mass of limestone rocks, which the writer believes may be looked upon as part of the fallen-in roof of the cavern which geologists tell us existed here. Among these rocks, which are moss grown and lichen-covered, the following herbs live in the shade of the dominant forest trees: yellow puceon, Hydrastis canadensis; wood nettle, Laportea canadensis; wild ginger, Asarum virginicum; Indian turnip, Arisaema triphyllum; walking fern, Camptosorus rhizophyllus; Christmas fern, Polystichum (Aspidium) acrostichoides; may apple, Podophyllum peltatum (not abundant); blood root, Sanguinaria canadensis; Viola scabriuscula; Viola canadensis, and Euphorbia commutata. Two funguses grow on the rotten logs here, viz., Peziza coccinea and Coprinus comatus. The summit of the south hill along the flatter levels above supports the white pine, Pinus Strobus, which is scattered throughout the deciduous forest on this side of the canyon. The sycamore, Platanus occidentalis; the white pine, Pinus Strobus; the butternut, Juglans cinerea; the water beech, Carpinus caroliniana are trees found along and on both sides of the stream.

The dominant trees of the north or sunny bank are the swamp white oak, Quercus bicolor (= Q. platanoides); the tulip poplar, Liriodendron tulipifera; the hemlock, Tsuga canadensis; the sugar maple, Acer saccharum; the black walnut, Juglans nigra; the beech, Fagus americana (= F. ferruginea); the hackberry, Celtis occidentalis; the chestnut oak, Quercus Prinus, and the arbor vitae, Thuja occidentalis (nearly three feet in diameter).

The trees of the slopes of White Top Mountain are Acer saccharum (in groves), Acer rubrum, Juglans nigra, Castanea dentata, Liriodendron tulipifera, Quercus Prinus, Q. alba, Q. rubra, Fraxinus americana, Tilia heterophylla, T. americana, Fagus americana, Magnolia Fraseri, M. acuminata with Clethra acuminata, Oxydendrum arboreum, Rhododendron calandulaceum, on boulders Rubus Millspaughii. In the deep woods on the slopes of White

Top Mountain occur: *Listera convallarioides, Habenaria orbiculata, H. psycodes, Diphylleia cymosa* (in great masses), *Troutacieria palmata*).

Along the valley of the Swannanoa River grow magnificent oaks *Quercus falcata* (= *Q. digitata*), *Q. imbricaria* with *Leucothoe Catesbaei, Aconitum uncinatum*, etc. The valley of the North Fork of the Swannanoa River is occupied by an arboreal vegetation, composed of *Castanea dentata, Liriodendron, Fagus, Quercus alba, Q. rubra, Magnolia acuminata, Juglans cinerea, Quercus coccinea, Q. phellos, Acer saccharum, Betula lenta* (*Castanea-Acer-Quercus Facies*). *Rhododendron maximum* forms a dense jungle along the borders of streams (*Rhododendron Association*).

These dominant trees are found somewhat back from the streams, while near the streams, with their roots in the water, or where the lower parts of their trunks may be submerged during heavy rains, grow *Platanus occidentalis, Tsuga canadensis, Betula lenta* (*Tsuga Facies*). This facies constitutes the hemlock bottom type of the foresters which covers the broad, nearly level bottom lands of the main valleys, on the deep, fresh loamy clay and clay loam soils, and follows the narrow valleys of the smaller streams up the slopes of the mountains. It extends over the northwest slope of Grandfather Mountain nearly to the top.

Tsuga canadensis is the dominant tree and with it are admixed *Betula lutea, Fagus americana, Acer rubrum* and *Castanea dentata* (= *C. americana*) with an undergrowth almost exclusively of *Rhododendron maximum*. [Hemlock Formation] At the Natural Bridge of Virginia in the alluvial soil of the gorge is found a pure hemlock forest. Beneath the dense shade of the hemlock tree, which is here dominant, the botanist finds on the ground *Mitchella repens*, the partridge berry, which here, as elsewhere, is tolerant of the dense shade cast by the crown of the hemlock trees. Occasionally associated with the hemlocks, as secondary species, because they are tolerant of shade, the forester finds the beech, *Fagus americana*, the dockmackie, *Viburnum acerifolium*, and the witch hazel, *Hamamelis virginiana*.

Elsewhere, as at Iron Mountain (3000 feet, 915 m) among the hemlocks, *Tsuga canadensis*, are small groves *Pinus Strobus* (*Strobus Facies*) and thickets of *Rhododendron catawbiense* (found at a much higher elevation in North Carolina), *Acer spicatum, A. pennsylvanicum, Rubus odoratus* and in gloomy ravines *Kalmia latifolia* and *Rhododendron maximum*. Here in the deep shade grow *Asarum canadense, Asarum virginicum, Polygala pauciflora, Waldsteinia fragarioides*.

The shrubs of the forest elsewhere in southwest Virginia are *Cercis canadensis, Cornus florida, C. alternifolia, Staphylea trifolia, Physocarpus opulifolius, Robinia hispida, Berberis canadensis* all of which flower in May, while in the dense woods are found *Drepa palustris, Lindera Benzoin, Cornus sericea, Rhododendron calendulaceum* (= *Azalea lutea*), *Halesia tetraptera, Smilax hispida* overgrows shrubs in the woods while *Dioscorea villosa* and *Smilax herbacea* grow in close association. *Iris cristata* inhabits wooded hillsides forming great masses with *Jeffersonia diphylla* in the deepest, shadiest ravines.

The woods on the southeast slopes of Iron Mountain are characterized by *Actaea alba, Caulophyllum thalictroides, Diphylleia cymosa, Zizia Rebbii*, *Thaspium barbinode, Menziesia globularis, Vaccinium corymbosum var. pallidum, Aristolochia siphos*. Other woodland herbs are

Viola eucullata, Houstonia serpyllifolia, Phlox reptans, Podophyllum peltatum, Polygonatum giganteum, Uvularia perfoliata, U. sessilifolia, Orchis spectabilis, Cypripedium parviflorum, C. acaule, Liparis lilifolia, Aplectrum hiemale, Silene virginica, Trautvetteria palmata (= T. carollinensis), Thalictrum clavatum, Zanthochiza apifolia, Hydrastis canadensis, Dicentra eucallaria, Claytonia virginica, Geranium maculatum, Impatiens pallida, I. fulva, Galax aphylla, Obolaria virginica.

Surrounding Salt Pond, near Salt Pond Mountain, are thickets of Rhododendron maximum and Kalmia latifolia, while back in the woods on the ground are Viola pubescens, V. striata, V. rotundifolia, V. sagittata, V. canadensis, and in swampy places Tradescantia virginica, Parnassia asarifolia, Trautvetteria palmata, Veratrum viride. The damp borders of the rivers are characterized by Cladrastis lutea (= C. lutea) and by such herbs as Phacelia Purshii, Viola striata, V. rostrata, Solena concolor, Dianthera latifolia, Habenaria bracteata, Carex stenolepis (= C. Frankii).

Such rare plants as Boykinia aenitifolia, Asplenium montanum grow in the woods on the slopes of White Top Mountain. The gorge of Doe River in east Tennessee is noted for a number of rare plants: Adlumia cirrhosa, Dicentra eximia, Campanula divaricata. (on shelf-like ledges) with Corydalis glauca, Cystopteris fragilis, Nephrodium (Aspidium) marginale, Aralia spinosa.

Rock Cliff Formation. The clefts of the rocky ridges in southwestern Virginia are tenanted by Hepatica acutiloba, Polypodium incanum, Pellaea atropurpurea, Asplenium parvulum, A. rufa-muraria, while the cliffs are occupied by Cystopteris bulbifera and Camptosorus rhizophyllus. Bald Knob in Virginia is the end of a long rocky ridge and is one vast flower garden because here occur: Saxifraga lecanthemifolia, Asplenium montanum, Heuchera villosa, Cavallaria majalis, Anemone trifolia, A. nemorosa (= A. quinquefolia), Clintonia umbellata, C. borealis, Sedum ternatum (great mats on rocks), Trillium grandiflorum, Chamaelirium luteum, Gillenia trifoliata overshadowed by such shrubs as Rhododendron calendulaceum, R. nudiflorum, Ribes cynosbati, R. rotundifolium, Ilex monticola.

The limestone cliffs along New River are tenanted by Pachystima Canbyi, Berberis canadensis, Rhus canadensis, Camptosorus rhizophyllus, Asplenium rufa-muraria, A. parvulum, A. trichomanes, Arabis lyrata, Draba ramosissima, Clematis (Viorna) viorna, Arenaria Michauxii, Pellaea atropurpurea. The ledges of exposed sandstone in southeast Kentucky support Corydalis glauca (= Capnoides sempervirens), Lechea racemulosa, Galphallium Helleri, Eupatorium pubescens, Agrostis intermedia, Panicum commutatum var. latifolium while in the shaded situations grow Heuchera Rugelii, Goodyera pubescens, Liparis lilifolia, Asplenium montanum and on the bluffs of deep gorges Rubus odoratus, Sturaria pentagyna, Scutellaria saxatilis, Aster pannthoides. The surface of dry slate exposure along streams is occupied by Phyllanthus carolinensis, Aster dumosus. On the ledges of White Top Mountain are Dicentra eximia and Arabis lyrata, Rhododendron calendulaceum (= Azalea lutea), Amianthum muscaetoxicum. On dry cliffs along the French Broad River are Pentstemon Smallii, Philadelphus hirsutus.

The highest cliffs of the Chilhowee range in east Tennessee at an elevation of about 2500 feet along vertical cliffs of Potsdam sandstone are characterized by thickets of Chionanthus virginica, Cheilanthes tomentosa (in the crevices), Ch. vestita, and some larger species of Asplenium, Polypodium Phegopteris and Aspidium abound 1).

On the limestone ledges of Lookout Mountain are *Gatesia lactevirens*, *Callicarpa americana*, *Triosteum perfoliatum*, *Silphium brachiatum*. — On the exposed cliffs forming the escarpment of Cheehawhaw Mountain, *Lonicera flava* trails over the rocks associated with *Rubus canadensis*, *Smilax rotundifolia*, *Vitis bicolor*, *Prunus injucunda*, *Robinia hispida*, *Rosa humilis*, with *Cheilanthes tomentosa*, *Nephrodium marginale*, while *Stenophyllum capillaris* and *Talinum teretifolium* cover the flat expanses of the rocks bare of any other vegetation. *Silene stellata*, *Anchizia dichotoma* prefer the shaded rocky shelves 1).

Many ferns peculiar to the Cumberland mountain plateau (Sand mountain, etc.) take root in the chinks of the bare rocks. Such are *Cheilanthes tomentosa*, *Ch. vestita*, *Ch. alabamensis*. *Pellaea atropurpurea*, *Asplenium montanum*, *A. ruta-muraria*, *A. pinnatifidum* associated with *Silene rotundifolia*, *S. caroliniana (= S. pennsylvanica*), *Saxifraga virginica*, *Arenaria stricta*, *Senecio obovatus*. Under shelving rocks in the so called *rock houses* in the Cumberland mountain plateau area of Alabama, the gloomy recesses are occupied by a rare little fern *Trichomanes Petersii*, while *T. radicans* is a frequent inhabitant of such situation as also *Asplenium Trichomanes*, a liverwort (*Dumortiera*), *Agrostis perennans* and *Heuchera Rugelli*.

2. The Forests at higher elevations.

The dominant forest trees belonging to the Castanea-Quercus-Acer Facies found on the slopes of Grandfather Mountain from an elevation of 3800 to 4500 feet (1150—1370 m) are *Castanea*, *Quercus cocinea*, *Q. phellos*, *Q. bicolor*, *Q. alba*, *Fagus*, *Betula lutea*, *Magnolia acuminata*, *Liriodendron*, *Robinia*, *Acer rubrum*, *Nyssa* etc., while as secondary species, usually found beneath the dominant ones, can be mentioned *Prunus pennsylvanica*, *Rhododendron maximum*, *Hamamelis* and *Kalmia latifolia*. On this mountain the woody plants of less obvious importance, which may be considered to form a still lower story, are *Andromeda floribunda*, *Sassafras* and *Robinia hispida*, the last forming an almost pure growth (*Robinia hispida Association*). This facies constitutes the chestnut slope type of the foresters2) and occupies the southeast, south, southwest and west exposures and the tops of the lower mountains. It extends on Grandfather and Grandmother to 4600 feet elevation. The chestnut tree (*Castanea*) forms 45 per cent of the stand.

The herbaceous plants between the trees are *Galax aphylla*, *Medeola virginiana*, *Diodia virginiana*, *Silene virginica*, *Pedicularis canadensis*, *Asclepias exaltata*, *Lysimachia quadrifolia*, *Osmunda cinnamomea*, *Nephrodium (Dryopteris) marginale*, *Pteris aquilina*, *Uvularia puberula*, *Prunella vulgaris*, *Podophyllum peltatum*, *Ceanothus americanus*, *Monarda didyma*, *Chrysanthemum leucanthemum*, *Cerastium viscousum*, *Trifolium repens*, and near cultivation *Nepeta glechoma* (= *Glechoma hederacea*).

Acer saccharum Facies. This occurs typically on the northwestern slope of Grandfather Mountain, on the watersheds of the Linville and Watauga rivers and on the Elk Creek watershed. It constitutes the sugar maple slope type of forest in which *Fagus americana*, *Acer*

1) MOHR, CHARLES: Plant Life of Alabama, 61—63.
The forest on the northern slopes of Roan Mountain is similar to those on the Swannanoa River and Grandfather Mountain. It comprises the Mixed deciduous formation with the Castanea-Quercus-Acer Facies, as well characterized as at the places described above 1), consisting of immense trees of Castanea, Liriodendron, Acer, Tilia, Aesculus flava, Fagus, while distributed through these woods at different elevations are Adiantum pedatum, Asplenium thelypteroides, Nephrodium spinulosum var. intermedium, N. novo-boracense, N. Goldieanum, N. (Phegopteris) hexagonopterum, Botrychium virginianum.

Reaching an elevation of 4500 feet (1370 m) on the Black Mountain range, Picea nigra (= P. mariana) is found sparingly in the forest, as outposts of the main coniferous forest above. Associated in such places, the botanist finds as indication of a rise in altitude Diphylleia cymosa, Veratrum viride, Rhododendron calendulaceum, Thalictrum clavatum, and an abundance of Houstonia serpyllifolia. As he approaches "Half Way" (5200 feet, 1585 m) the forest of deciduous trees become more open by the lowering of the crown of the dominant trees (Aesculus-Acer-Betula Facies) an index of altitude.

A somewhat different assemblage of species is found on Grandfather Mountain at an elevation above 4500 feet (1370 m). The dominant trees are Quercus rubra, Picea nigra, Acer saccharum, Prunus pennsylvanicum on the drier soils, and Tsuga canadensis ascending along the water courses to about 4700 feet (1430 m). The secondary species are Acer pennsylvanicum, Sorbus americana, Viburnum lantanoides and Acer spicatum. Occurring as undershrubs are Rhododendron calendulaceum and Ribes rotundifolium.

On Roan Mountain the first indication of a rise in altitude is furnished by Acer spicatum, and then by Acer pennsylvanicum, which does not descend quite as low as the mountain maple. Viburnum lantanoides occurs in great abundance when at an altitude of 4500 feet (1370 m) is reached. Houstonia serpyllifolia carpets the ground in many places, while in damp places Diphylleia cymosa forms masses beneath the shade of the dominant forest trees, and in rivulets is found Saxifraga erosa.

The herbaceous plants of the forest floor at this elevation are Caulophyllum thalictroides, Actaea alba, Cimicifuga racemosa, Tiarella cordifolia, Sanguinaria canadensis, Podophyllum peltatum, Circeae alpina, Solidago caesia, Eupatorium ageratoides, Gentiana quinqueflora, Rudbeckia laciniata, R. triflora var. rupestris, Habenaria (Blephariglottis) peramoena, Caelia atriplicifolia, Habenaria (Lysias) orbiculata, Chelone Lyonii, and Polystichum acrostichoides. A few struggling

black spruce trees descend the mountain side and mingle with ictula lutea and B. lenta. Fagus americana, which becomes dwarfed at the edge of the coniferous belt, is associated with birches in this tension belt Betula-Fagus Facies).

Aesculus flava, which occurs at the upper edge of the tension belt, ascends the mountain into Carver's Gap, where it forms an almost pure stand of gnarled trees (Aesculus Facies).

The Balsam Mountains are more heavily timbered than other cross ranges. On both northern and southern slopes there are deep, cool hollows, or coves with fertile soil producing vigorous growth. The woods consist of hardwood trees associated with hemlock and spruce. On the northern slopes such trees as Tilia americana, Aesculus flava, Liriodendron dominate while the proportion of oaks and Castanea dentata is smaller. Tsuga canadensis is associated with these in the deep hollows, while Picea nigra crowns the summits of the northern slopes. On the southern slopes oaks and chestnut form the larger proportion of the timber and there are less of the lighter woods and hemlock and almost no spruce 1).

The summit of Big Frog Mountain is covered by Castanea, Quercus rubra, Betula lutea, Sorbus americana, Prunus pennsylvanica and virginiana; as shrubs occur Ribes, Vaccinium, Rhododendron arborescens, Stuartia, Ilex, Salix humilis, Rubus odoratus and on the ground Gaultheria procumbens.

The forests of the Great Smoky Mountains are chiefly of hardwoods with a large amount of coniferous growth on the higher summits and in the deep, cool hollows. On the drier slopes, and especially on the south slopes, oaks and chestnut form the predominant growth with some Pinus rigida and Pinus mitis on the ridges. The forest in the hollows consists of Tilia heterophylla and Aesculus flava, associated with species of oak and chestnut.

3. Forests and Subalpine Formations of the Southern End of the Appalachians.

The Cumberland Mountains stretch from Tennessee to northern Alabama. The flora corresponds in general with that of the higher mountains of the adjoining states which enter Alabama at an altitude not exceeding 2000 feet. In the Lookout mountain territory the large preponderancy of deciduous leaved trees, the almost entire absence of magnolias and coniferous trees in general, particularly of pines of a decided southern range is noteworthy 2).

Lookout Mountain near Chattanooga may be taken as the type. The summit and slopes was originally covered with a forest consisting of Quercus Prinus, Q. rubra, Q. alba, Q. obtusiloba, Q. nigra, Betula lutea, Gleditschica triacanthos, Robinia pseudacacia, Carya microcarpa (= Hocoria odorata), Pinus taeda, P. mitis, P. inops (= P. virginiana) reaches its best development on

rocky benches and declivities with a scanty soil. The shrubs are Robinia hispida, Diervilla rivularis, Ilex mollis, Stauria pentagyna, Hydrangea radiata, and Bucklea distichophylla (but very rare) Nemopanthes canadensis and Dirca palustris in swamps. Under the umbrageous cover of the high forest on the upper flanks of this mountain, in deep soil, rich in humus are Ligusticum canadense, Angelica hirsuta, Thaspium pinnatifidum, T. barbinode, Pimpinella integerrima, Zizia serrata, Polygonatum commutatum, Oxalis recurva, Trillium stylosum (of the southern Appalachian ranges), Polygonatum giganteum, Anemone nemorosa (A. quinquefolia), Stellaria pubera, Galium latifolium, Asclepias quadrifolia, Trillium erythocarpum, Disporum lanuginosum, Uvularia grandiflora, U. perfoliata and Cypripedium acaule found in more open boggy places.

On the brow of Lookout Mountain, and particularly along the banks of Little River, there occurs a strong mingling of types that are at home in the Alleghanian area of the adjoining states and of North Carolina with plants of the lower ranges giving rise to a varied flora. Here occurs together with Viburnum, Diervilla, Vaccinium at 2000 feet elevation Rhododendron catawbiense. Ferns line the banks of Little River the rich soil shaded by rocks: Asplenium Bradleyi, A. parvulum, A. trichomanes, Athyrium filix-fenmana, Dennstaedtia punctilobula, Asplenium montanum, A. pinnatifidum, Nephrodiurn marginale, and elsewhere in the Cumberland Mountains, which excel the Alleghanies in a greater variety of ferns, are Lygodium palmatum, Scolopendrium, Trichomanes, Asplenium viride, Adiantum capillus-veneris. — Sarra- cenia Catesbaei), occurring from Alabama west to eastern Texas in the coastal belt, Isoetes Engelmanni var. valida are paludial plants founds on the banks of Little River near De Soto Falls. Carex virescens, Tiarella cordifolia, Asclepias quadrifolia, Asarum macranthum inhabit the rocky dells and more or less open copes while Arenaria brevifolia forms an association with Sedum ternatum, Talinum teretifolium growing out from the crevices of rocks covered with cushions of mosses (Grimmia, Hidwagia). — On rocky flats of the tableland, where neither shrub nor tree is able to gain a foothold, this latter as- sociation with Opuntia Rafinesquii fill every hollow and crevice. Wherever a rich deep soil covers the heights in the metamorphic region of Alabama, the slopes of the mountains and the lower hills, deciduous trees pre- dominate, though rarely the short-leaf pine Pinus mitis (= P. echinata) makes its appearance. Notable is the scarcity of Liriodendron, Magnolia acuminata, Carya alba (= Hicoria tomentosa) etc.

The highest summits are frequently watered by springs, giving rise to grassy swales and lively brooklets. Here prevail, in the damp soil: Solidago odora var. inodora, S. arguta, Angelica villosa, Osmunda cinnamomea, Scleria caroliniana, Habenaria ciliaris, while the banks of these brooks are shaded by Kalmia latifolia, Ilex opaca, Rhododendron arborescent, R. nudiflorum, Calycanthus floridus, Ilex monticola, Amelanchier canadensis, Hydrangea arborescent var. cordata, Azalea viscosa var. glauca, Zanthorrhiza apiifolia and Betula lutea here at its southern limit reduced to a small shrub.

The following plants of northern range find on the metamorphic highlands of Alabama their southern limit, viz.,

1) Mohr, Charles: Plant Life of Alabama 77—79.
Barren Forest Formation. On the extremely rugged area which forms the watershed between the Coosa and Tallapoosa rivers, the steep hills of siliceous cherts and obdurate sandstone which reach scarcely an elevation of 1000 or 1200 feet, support an inferior growth of *Quercus Primus*, *Q. marylandica*, *Q. tinctoria (= Q. velutina)*, *Q. falcata (= Q. digitata)*, *Q. obtusiloba (= Q. minor)*, *Carya porcina (= Hicoria glabra)* and *Pinus palustris*, scantily interspersed between the trees and stunted specimens of *Sassafras*, *Rhus copallina* and *glabra*.

The flats of the Coosa Valley are covered with a low forest of dwarfed trees of *Quercus marylandica* and *obtusiloba*, scarcely over 20 feet high with equally stunted *Pinus taeda* and with a few specimens of *Pinus mitis* and *P. inops* scattered among them, while the association of *Crataegus crus-galli*, *C. spathulata*, *C. apiifolia* with the trees form an impenetrable thicket in which also grows *Nyssa multiflora* supporting *Smilax bona-nox* and *laurifolia*.

The extreme southern spurs of the western Alleghany ranges including the Cumberland Mountains and all of the strata of the lower coal measures and underlying subcarboniferous rocks were in Alabama originally covered by an uninterrupted forest of a varied growth of hardwood trees and conifers. On the bread expanse of the tablelands above 900 or 1000 feet *Quercus Primus* largely prevails or associated with other species of oak; also with *Castaena*, *Carya tomentosa (= Hicoria alba)* and *C. porcina (= H. glabra)*, *Nyssa sylvatica* and the smaller *Oxydendrum arboreum*.

The tableland of Sand Mountain is covered by an almost unbroken forest rather open in character and it presents a varied growth of deciduous trees interspersed with *Pinus mitis* and *P. taeda*. The largest part of the area is occupied by a forest consisting of oaks, chestnut and hickory with *Liriodendron*. *Pinus mitis* is found more or less frequently scattered among the hardwood trees, wherever a sandy or drier soil prevails. *Pinus taeda* prefers a damp or wet soil. With the improvement of the soil *Quercus alba*, *Q. Primus*, *Q. obtusiloba* became more prominent in the forest growth).
Where the sandstone gives way to clayey soils, erosion is active and deep valleys are formed in the Sand mountain plateau in Alabama. The following trees are found in such secluded valleys, viz., Quercus Michauxii, Fagus americana, Ulmus americana, Juglans cinerea, Tilia americana, T. heterophylla, Magnolia umbrella (= M. tripetala), M. acuminata, M. macrophylla. Rocky defiles or gorges are shaded by Tsuga, Betula lenta, Ilex, Vaccinium virgatum associated with Rhododendron catawbiense, Oxydendrum arboreum, Hydrangea quercifolia, arborescens, radiata and cinerea, Ribes and Halesia. At the base of the mountain on the limestone formation is found the rare Neviusia alabamensis associated with Staphylea trifolia, Tilia heterophylla, Aristolochia tomentosa, Calycocarpum Lyonii, Menispermum canadense, Solea concolor and Urtica chamaedryoides.

Coniferous Forest Formation. The coniferous forest appears on the slopes of the Black Mountain Range at about 5200 feet (1585 m). The dominant tree of this formation is *Picea nigra* (= *P. mariana*) associated with *Abies Fraseri*. Intermingled with these two coniferous trees, but nowhere making a pure growth, are *Acer spicatum*, *Betula lutea*, *Aesculus flava*, *Sorbus americana*, and *Crataegus* sp. (*Sorbus-Acer Facies*). The trees are large and rugged, and clothed even to the topmost branches with dense coats of moss. Mosses and lichens cover the ground as with a dense mat a foot or more thick. The trunks of fallen trees are buried from sight by a living mound of green, set with flowers and ferns.

The mosses and lichens collected by the writer, which form the *Polytrichum-Hypnum Association* on Potato Top and Clingmans Dome comprise the following: *Polytrichum gracile,* *Sesamophyllum delicatulum,* *Hypnum fertile,* *Hylocomium proliferum,* *Bazzania trilobata,* *Hylocomium triquetrum,* *Dieranum fusescens,* *Hypnum reptile,* *Polytrichum ohiense,* and *Stereoceaulon coralloides.* Associated with these mosses are herbaceous plants and ferns, viz., *Oxalis,* *acetosella,* *Viola blanda,* *Lycopodium lucidulum,* and *Nepthodium* (*Aspidium*) *spinulosum* var. *intermedium.* *Houstonia serpyllifolia* is also abundant. The rocks support in sunny places a *Sedum-Carex Association* of *Sedum telephloides,* *Carex rosea* var. *radiata,* *Saxifraga leucanthemifolia* (= *S. Michauxii*) and *Krigia montana*.

The green heliobore is found wherever the timber is more open and in extensive patches many square feet in area (*Veratrum Association*). The same association of species extends to the tops of the several mountains composing the Black Mountain Range. The plants of the *Sorbus-Acer Facies* are met with in this forest belt with occasional bushes of *Vaccinium erythrocarpum* and *Menziesia globularis.* Many seedling spruces are providing a natural regeneration of the forest. As a secondary but important element of this belt at high elevations, is the *Rhododendron catawbiense Association,* beneath which as herbaceous associates are found *Viola blanda,* *Trillium erectum,* and *Clintonia borealis.* The natural meadows on this range of mountains, surrounded by the forest of balsam and black spruce trees, are composed of a *Carex-Poa Association,* viz.: *Carex intumescens,* *C. scoparia,* *C. brunnescens* var. *gracilior,* *C. tenuis,* with *Poa pratensis,* *P. alsodes,* *Agrostis alba,* and *Juncus effusus.* (*Carex-Poa Association*).
The coniferous forest extends to the summit of Mount Mitchell 6711 feet (2045 m) without any indication of subalpine or alpine conditions. Wind-tossed specimens of Picea nigra and Abies Fraseri (Picea-Abies-Pinus Facies), are seen, intermixed with Betula lutea and Prunus pennsylvanica. Huge rocks and bowlders project from the rounded dome. Menziesia globularis, Ribes prostratum, Sorbus americana are common. Rhododendron catawbiense grows within a few feet of the Mitchell monument. The herbaceous plants of the summit are Streptopus roseus, Scirpus caespitosus, Carex brunescens, Houstonia serpyllifolia, Rumex acetosella, Trifolium repens, Athyrium filix-foemina, Saxifraga Michauxii in the crevices of the rocks, and Clintonia borealis. None of these herbs are true alpines.

Mosses are found on the trunks of trees and on the rocks, the following being noted 1): Ulot a crispa, Bryum nutans, Sematophyllum delicatulum, Hylocomium proliferum, Polytrichum gracile, Hypnum Schreberi (Polytrichum-Hypnum Association).

The coniferous forest on Grandfather Mountain consists essentially of the same arborescent species, viz., black spruce and balsam. Associated with these are Viburnum lantanoides, Vaccinium stamineum, Acer spicatum, and Rhododendron catawbiense. Polypodium vulgare grows in masses, associated with Galax aphylla, Oxalis acetosella, Thalictrum clavatum, Maianthemum canadense and Clintonia borealis.

The forest of cone bearers on the higher elevations of Roan Mountain consists of Picea nigra and Abies Fraseri as the dominant trees. Intermixed with these, but never forming pure growths, occur Aesculus flava, Sorbus americana, Fagus americana in a dwarfed form, and as a third lower story, Ribes rotundifolium, Cornus alternifolia, and Alnus viridis.

An untouched virgin forest on the argillaceous slates of Big Frog Mountain was found to consist of Pinus Strobus, P. mitis and in low and sandy spots Pinus inops, while at the foot of ridges or vertical precipices where deep beds of mold accumulate grows Tsuga canadensis and beneath in the mossy cushions, Houstonia, Circuca alpina, Viola canadensis and pubescens, Mitella diphylia, Oxalis acetosella.

Lower Coniferous Forests. The eastern spurs of the Alleghanies enter the state of Alabama at its eastern boundary and are composed of metamorphic crystalline rocks skirted by the oldest sedimentary strata. Forests of long-leaf pine Pinus palustris characterize this mountain region, covering the arid rocky ridges to an elevation of 2000 feet. These pine forests are open and almost entirely bare of undergrowth. At its vertical limit the pine is suddenly replaced by oak, chestnut and Carya porcina (= Hicoria glabra).

The following herbs are found here: Tephrosia virginiana, T. spicata, Lespedeza hirta, L. repens, Eupatorium album, E. aromaticum, Solidago odor a, Seriocarpus tortifolius, Gaylussacia

1) The identification of the mosses I owe to Mrs. ELIZABETH G. BRITTON, of the New York Botanical Garden.
dunosa, Vaccinium stamineum. The pine-clad slopes of Cheehawhaw Mountains, the Blue Mountains are covered sparingly on the steep declines with coarse grasses Andropogon furcatius, A. scoparius, Erianthus alopecuroides, Lespedeza nuttallii, L. frutescens, L. virginica, L. hirta, L. capitata, Amorpha virgata, Phaseolus perennis (= P. polystachyus), Cassia chamaecrista, Eupatorium album, E. aromaticum, Sericocarpus asteroides, Chrysopsis graminifolia, C. mariana, Aster patens, A. laevis.

The extension of the Cumberland mountain table land into Alabama is characterized by Pinus mitis and P. taeda, wherever Quercus Primus is absent. These trees reach marketable size (2 feet diameter, 110—120 feet tall). The scrub pine Pinus inops (= P. virginiana) is found on the poorest soils at an elevation of 1200 feet, but is not frequent. In this rather open forest grow Vaccinium vacillans and stamineum, Rhododendron nudiflorum, Stuartia pentagyna, Ilex monticola, and its var. mollis, Hydrangea quercifolia, while along the rocky edges of the smaller streams grow Vaccinium tenellum, Kalmia latifolia, Rhododendron arborescens, Stuartia virginica and Pirus angustifolia 1).

Pine Barren Formations as interjected hill-elements. Interjected into the plant formations and associations of the southern Appalachian Mountain area, as described above, the phytogeographer finds especially along the French Broad River, in east Tennessee and western North Carolina a strong pine barren element in the flora 2). In these isolated pine barren areas which cover sandy river bottoms and the dry, sunny lower slopes of the hills are found plants typical of the coastal plain. One such colony is found on the French Broad River below Paint Rock, North Carolina. Where the bluffs recede from the river are sandy tracts covered with a growth of Pinus rigida and P. inops (= P. virginiana). Not a few of the characteristic pine-barren plants inhabits these small areas such as: Silphium compositum, Helianthus atrorubens, Andropogon argyraeus, Sporobolus asper, Erianthus alopecuroides, Danthonia sericea, Triodia Chapmani, etc. Back from the river, on the lower hills where oaks and chestnuts struggle with the invading pines are Spiranthes simplex, Bucchhera americana, Lilium carolinianum, Eupatorium album.

Another noteworthy colony of this character occurs at a mean elevation of about 1000 feet in the canyon-like valley of the Hiwassee River in extreme southeastern Tennessee. Here grow most of the above named grasses with Andropogon Elliottii, Paspalum purpurascens, Panicum gibbum, P. viscidum, Erianthus contortus, E. brevibrabris, Uniola longifolia; Baptisia alba, Aralia spinosa and many others.

Dwarf Tree—Shrub Formation. The summits of King's and Crowder's Mountains are small and very rugged; that of Crowder's is somewhat larger and less rugged than that of King's Mountain. On ascending the slopes of either

mountain two striking features arrest the eye. They are the prevalence of a very local species which has taken the name of one of the mountains, namely, Liatris (Lacinaria) regimontis, and of the relatively rare fern, Asplenium Bradleyi. The main peculiarity in connection with this fern there, is that it does not confine itself to its favorite habitat, namely, overhanging cliffs; but it is, very common on cliffs, on ledges, on and about boulders and in loose soil. The vegetation of the summits is almost exclusively of woody plants, and the shrubby condition of normally large forest trees presents an extraordinary and interesting aspect. The chestnut tree, Castanea dentata ranges from three to six feet in height, nevertheless these plants produce an abundance of fruit. Sassafras officinale, Pinus inops, Quercus Primus, Diospyros virginiana and Oxydendrum arboreum all appear in the same form and stature. The common sour gum, Nyssa sylvatica, in like condition, exists on King's Mountain, and a single shrub of Ilex opaca was found on the uppermost cliffs of Crowder's Mountain.

The normally shrubby plants appear more natural. Vaccinium stamineum, Vaccinium vaillians and Quercus ilicifolia (= Q. nana) are common to both peaks, while Kalmia latifolia, Rhododendron catawbiense, Gaylussacia frondosa, Gaylussacia resinosa and Vaccinium arboreum are species apparently confined to the top of King's Mountain. Only two perennials or shrubby herbs, namely Galax aphylla and Paronychia argyrocoma, exist on the summit of King's Mountain, while the summit of Crowder's Mountain is destitute of herbaceous vegetation with the exception of a fern and a few sterile plants of some sedge ¹.

The Dwarf Tree—Shrub Formation exists at the top of Grandfather Mountain and is absent from the coves and ranges of Mount Mitchell and Roan Mountain. The summit of the west peak of Grandfather Mountain for a limited area is bare and presents an alpine aspect, being clothed with lichens, mosses, and dense cushions of Leiothlyllum baxifolium (Dendrium Association). Several of the plant remind the botanist of the New Jersey pine barrens, viz., Gaultheria procumbens, Xerophyllum asphodeloides, Ptcris aquilina, Kalmia latifolia.

Zygadenus leimanthoides, Geum radiatum, Paronychia argyrocoma, Uvularia puberula, Clintonia borealis, Carex aestivalis, Amianthium muscaetoxicum, and Solidago spithamea are found in exposed places (thus under edaphic conditions) (Geum-Paronychia Association). Abies Fraseri, Picea nigra, Clethra acuminata, Sorbus americana, Leucothoë recurva, Vaccinium pallidum, Vaccinium erythrocarpum accompany the herbs to the mountain summit, so that this summit may be said not to be entirely treeless, otherwise the plants on it would be classed as an association of the Sub-alpine Treeless Formation.

Subalpine Treeless Formation. This formation is encountered typically on Roan Mountain and on other mountain summits in the southern Appalachians that are grassy balds. The "balds" are in the main grassy meadows, but the rounded domes show extensive areas covered by the Rhododendron catawbiense Association, either pure, or associated with Alnus viridis

(Alnus Association). The alder covers an adjoining dome of the Roan mountain range, the Elk horn, with a pure and impenetrable growth three to four feet high. The extent of the rhododendron thickets, for which the mountain is famous, cannot be easily estimated. The bushes may be either rounded, like a hay stack, or they may be spreading at the top 1).

The summit of Roan Mountain is in the form of a saddle several miles long, being formed of two elevations of about equal height, the culminating peak being 6313 feet (1924 m) in altitude. The component vegetation of the grassy meadows, or "balds," consists of Danthonia compressa (the most abundant grass in dense tufts), Trifolium repens, Rumex acetosella, Potentilla canadensis, Poa compressa, Veronica officinalis, Houstonia scyphillifolia, Carex temuis, Deschampsia flexuosa, Luzula campestris and Phleum pratense (Carex-Poa Association) with the following grasses noted by Lamson-Schirner: Agrostis perennans, A. seabra (= A. biemalis), A. alba, Cinna pendula (= C. latifolia), Brachyelytrum aristatum (= B. erectum), Calamagrostis canadensis, Eutonias pennsylvanica, Glyceria elongata, Poa annua, Poa pratensis, Poa al sodes, Bromus ciliatus, Elymus striatus, Asperilla hystrix, Danthonia spicata, Trisetum subspicatum var. molle 2). Polytrichum commune forms patches, especially about old stumps.

The raised cushions of soil found here are covered by various mosses with Leiophyllum (Dendrium) buxifolium 3) (Dendrium Association). In or along the dry stony-wash-ways, one finds Saxifraga lecanthemifolia, Potentilla tridentata, and Houstonia purpurea.

The immediate summit of Roan Mountain is characterized by the presence of Geum radiatum, Lycopodium selago, Menziesia pilosa, Houstonia purpurea, Lycopodium lucidulum, Ribes rotundifolium, Leiophyllum. Alnus viridis clings to the northern slopes, here forming a pure growth on the steeper inclines (Alnus Association), with Sorbus americana below it, but associated with Rhododendron catawbiense on the upper slopes of the dome.

Among the rocks and on the edges of the precipices are found Paronychia argyrocoma, Heuchera villosa, Sedum rhodiola, S. telephioides, Angelica Curtisii, Campanula divaricata (= C. flexuosa), Carex aestivalis, C. debilis, C. juncea and under the overhanging cliffs the delicate little Saxifraga Careyana.

Crossing Carvers Gap, where Aesculus flava grows (Aesculus Facies), a rocky outcrop is found on the slope of Little Roan Mountain where the writer collected Rhododendron calandulaeum, Oenothera (Knieffia) fruticosa, Geum geniculatum, Arisema quinatum and Hypericum gra veolens (Knieffia-Hypericum Association). Here grow according to Chickering 4), Delphinium exaltatum (= D. urceolatum), Silene virginica, Liatris spicata, Rudbeckia triloba, Castilleja co xcinia, Physostegia virginiana, Melanthium virginicum. Alder Bald or Elk horn, as it is called, is reached from Little Roan Mountain by crossing a smaller wind gap. The slopes of this knob are covered by acres of Alnus viridis (Alnus Association), under which grew formerly the rare Lili um Grayi while the stony places are favorable for the growth of Heuchera villosa, Krigia montana, Cerastium vulgatum, and two alpine species, Potentilla tridentata and Arenaria (A1 sine) groenlandica. The latter herb assumes the cespitose character in exposed situations.

C. Alleghanian—Ozark District.

Geographically this district comprises the Alleghany Plateau west of the Appalachian ranges of mountains, the more level surfaces of Ohio, Indiana, southern Illinois, southwestern Michigan near Lake Michigan, and the Ozark areas of Missouri with an extension southwestward into northwestern Arkansas, Indian Territory, Oklahoma and Texas. Three phytogeographic areas may be recognized, viz., (1) the Lacustrine Area comprising western New York western Pennsylvania, northern Ohio, northern Indiana, southwestern Michigan; (2) the Kentucky-Tennessee Area including southern Ohio, Indiana, Illinois, nearly all of Kentucky, central Tennessee, northern Alabama along the Tennessee River; (3) the Ozark Area, which includes nearly all of Missouri, northwestern Arkansas, Indian Territory, Oklahoma, northern and central Texas. The flora of this districtly is prevailingy one associated with the dominance of hardwood or deciduous-leaved trees, many species of which form a high forest with secondary trees and shrubs and herbs on the ground beneath.

a) Lacustrine Area.

This area lies in proximity to and the distribution of its plants is more or less controlled by three great inland lakes: Ontario, Erie and Michigan. For example, the phyto-geographer finds a difference (amounting to 233 species) between the west end of Lake Erie in the neighborhood of Sandusky Bay and the east end near the city of Buffalo.

Thus the following plants found along the south shore of Lake Erie occur farther north than anywhere else in this part of the country. Viola pedatifida, Desmodium (Meibomia) sessilifolium, D. illinoense, Baptisia leucantha, Petalostemon candidus, P. violaceus (= P. purpureus), Ammania coccinea, Rotala ramosior, Eryngium yuccaefolium, Aster Shortiif, Boltonia asteroides, Eclipta alba, Helianthus grosseserratus, H. hirsutus, H. mollis, H. occidentalis, Eupatorium altissimum, Kuhnia eupatoroides, Liatris squarrosa, Solidago rupestris, Phacelia Purshii, Gerardia aureulata, Seymouria (Azelia) macrophylla, Lippia lanceolata, Euphorbia dentata, Populus heterophylla, Smilax bonanox, Smilax echirrhata, Juncus scirpoidez, Carex conjuncta, C. Shortiana, Poa brevifolia, Equisetum laevigatum.

This difference is due to several factors operating: (1) the prevailing southwest winds, which traverse the length of the lake and keep Buffalo cool; (2) the crowding of the winter ice in the spring at the east end of the lake as to prevent navigation three weeks or more after Sandusky is clear; (3) the mean temperature in summer is four degrees lower at Buffalo than at Sandusky due to the position of the lake; (4) the position of the eastern end of Lake Erie is such that it is protected from cold northwest winds of autumn. The influence of these three lakes is shown also in New York where with the central finger lakes of which Cayuga is the largest the climate is greatly ameliorated in their immediate neighborhood. The shore of Lake Erie is

Harshberger, Survey N.-America.
famous for its grapes 1), that of Lake Ontario for its strawberries, peaches and apples. Because of its snug winters, there is rarely any starting of fruit buds by "warm spells", and consequently little danger of loss from spring frosts. The same is true of that part of Michigan on the east shore which is watered by the Muskegon, Grand and Kalamazoo rivers.

1. The Water-influenced Formations.

Lake Formation. In such ponds as Long Pond in Oswego County, New York, where the water is deep enough, grow Brasenia peltata (= B. purpurea), Nuphar advena, Nymphaea odorata, Potamogeton natans, and in the shallower waters for example in Oneida Lake are found Limnanthemum lacunosum, Sagittaria graminea, Naias flexilis, Equisetum limosum, Scirpus fluviatile, Nasturtium lacustre (= Roripa americana), while in the quiet water of streams emptying into Oneida Lake in central New York abound such species as Azolla caroliniana, Heteranthera graminea, Wolffia columbiana, Polygonum emersum, Sparganium simplex, Comarum, Menyanthes, Utricularia, Saururus cernus and several species of Potamogeton.

The ends of Irondequoit Bay, Lake Ontario are filled with flags, all of the forms of Typha being present. T. latifolia var. elongata is the most plentiful. Extensive beds of Chara exist. Elodea (Philotria) canadensis; Myriophyllum spicatum and various species of Potamogeton are abundant. Wolffia columbiana and Lemma trisulca, L. minor cover the quiet waters in coves and in open stretches of water. Nymphaea reniformis, Utricularia vulgaris, Vallisneria spiralis are common, Naias marina and Sparganium minimum also occur.

The aquatic plant associations found in the western end of Lake Erie have been described as characteristic for the Lake District (Interlacustrine area II. B. A. No. 3, see ante). Therefore the reader is referred to former pages of this book (pages 395—398) for an account of this interesting flora, as well, as the papers mentioned below in the footnote 2).

The flora of Winona or Eagle Lake in northern Indiana 3) is in centrifugal sequence as follows. (1) In deep water occur Ceratophyllum demersum, Myriophyllum sp., Potamogeton lucens, P. amplifolius, P. pectinatus while the plankton consists of floating coniferous algae, Mougeotia, Rivularia, Clathrocystis, Hydrodictyon, Oedogonium. (2) The plants confined to shallow water are Eleocharis interstincta (= E. equisetoides), E. palustris, E. mutata (= E. quadrangulata), Cladium mariscoides, Vallisneria spiralis and Potamogeton natans. (3) The herbs found on shore and extending into the water comprise Scirpus lacustris, Potamogeton fluviatus, Nuphar advena, Pontederia cordata, while (4) there are plants on shore out of the water, viz., Scirpus americanus, Eleocharis acicularis, Typha latifolia and species of Sagittaria, as also Polygonum amphibium.

Lake Shore Formation. The shore of Lake Ontario is usually steep bluffs of "boulder clay" while in some places the Medina sandstone is exposed and in many places the new beach has cut off bays which are filling as marshes. The following plants are peculiar to the lake shore: Ranunculus flammula subsp. reptans, Cakile americana, Polanisia graveolens, Lathyrus maritimus,

Strophostyles helvola, Potentilla supina, P. anserina, Coreopsis (Bidens) dissecta, Artemisia caudata, Polygonella articulata, Euphorbia polygonifolia, Juncus balticus var. littoralis, Cyperus Schaeinitzii, Scirpus Smithii, Sporobolus cryptandrus, Ammophila arenaria, Equisetum variegatum 3).

The eastern shore of Oneida Lake in central New York is a broad beach of white sand from 100 to 300 feet in width. It is particularly rich in cyperaceous plants such as, Cyperus rivularis, C. arifrus (= C. inflexus), C. speciosus. C. filiciformis, Fimbristylis autumnalis, Scirpus Smithii, S. pungens (= S. americanus), Hemicarphe micrantha, Eleocharis acicularis, E. intermedia associated with several flowering plants, viz., Lathyrus maritimus, Polygonella articulata. The occasional sandy beaches of the southern shore present about the same plants as those of the eastern shore. At Lewis Point grow in addition Equisetum littorale, E. hyemale var. intermedium, Dryopteris simulata, Botrychium obliquum var. oneidense (at high-water mark) Ophioglossum vulgatum nearer the water. Onondaga Lake shows a number of maritime species. At this lake several salt springs are found but it lacks however the extensive sandy beaches of Oneida Lake. The east shore of Lake Erie at Buffalo is characterized by Cakile americana, Lathyrus maritimus, Euphorbia polygonifolia, Triodia purpurea, Hudsonia tomentosa and several other lake shore plants not known inland or on the Atlantic sea coast, viz., Artemisia canadensis, Glycyrrhiza lepidota, Corispermum hyssopifolium. Here Ptelea trifoliata, Juniperus communis, Lithospermum hirtum, are always lake shore plants. At Presque Isle, Pennsylvania on the shores of Lake Erie (See JENNINGS 4), pages 309 and 328) grow Juncus balticus, Strophostyles helvola (= S. angulosa), Ammophila arenaria, Sieglinda purpurea, Cakile americana, Lathyrus maritimus, Euphorbia polygonifolia. The shore of the southwest extremity of Lake Michigan is characterized by a low sandy beach on which grow Lathyrus maritimus, Cakile americana. Euphorbia polygonifolia, Cerchurus tribuloides, Juncus balticus, Cnicus (Cirium) Pitcheri 5, Corispermum hyssopifolium, Prunus pumila, Populus monilifera.

Sand Dune Formation. The sand dunes of the Lacustrine Area are typically developed in northwest Indiana along the shores of Lake Michigan and we are indebted to COWLES for a description of the ecologic and floristic aspects of the same as well as for the Succession of the vegetation as influenced by the physiographic conditions 6).

The dunes of this region are held in place by Ammophila arenaria, Elymus canadensis, Calamagrostis longifolia (the two latter of less importance) also Andropogon scoparius, A. furcatus, Chrysopogon natans, Etonia obsusa. Certain shrubs occur: Salix adenophylla, S. glaucophylla, Prunus pumila, Cornus stolonifera, C. Baileyi, Populus monilifera with which dune formers are associated Artemisia canadensis, Cnicus Pitcheri, Lathyrus maritimus, Euphorbia polygonifolia,

32*
Corispermum hyssopifolium. The dune complex is characterized by Salix adenophylla, S. glauco-
phylla, Prunus virginiana, Populus monilifera, Vitis cordifolia, Andropogon scoparius, Arect-
ostaphylos uva-ursi, Juniperus sabina var. procumbens, J. virginiana. The advancing dunes encroach
upon a deciduous forest in the Lacestrine Area consisting of Tilia americana, Fraxinus americana.
The established dunes are finally covered by trees and herbs of a typic mesophytic forest.

Certain dunes are covered by black oak Quercus tinctoria (= Q. velutina) associated with
Quercus alba, Pinus Banksiana (= P. divaricata) and such shrubs as Sassafras officinale, Cornus
florida, Amelanchier canadensis, Hamamelis virginiana, while on the lower or shaded slopes are
Vaccinium vacillans, V. pennsylvanicum, Salix humilis, Viburnum acerifolium, Rosa blanda, R. hu-
milis, Rhus copallina with a large number of herbs and Pteris (Pteridium) aquilina ¹.

Swamp Formation. Typic swamps are found in Oswego County, New York at the point where Lake Ontario makes the great bends to the north ⁷). Such swamps began as a lake and were gradually filled by the encroachment of
vegetation. In a swamp three typic horizons or circumareas of vegetation are recognizable: (1) the lagoon in the center; (2) the moor comprising the open
area surrounding the lagoon and generally overgrowth with sphagnum; (3) the wooded circumarea comprising the outside of the swamp.

The vegetation of the lagoons consists of Potamogeton amplifolius, P. fluviatus (= P. lonehites), P. heterophyllus, Najas flexilis, Potamogeton pauciflorus (= P. foliosus), Vallisneria
spiralis, Eleocharis mutata, Lemna triscula, L. minor, Spirodea polyrhiza, Heteranthera dubia (in
deep water). In the shallower water of such lagoons are Brasenia peltata (= B. purpurea), Nuphar
advena, Myriophyllum spicatum, Utricularia vulgaris, U. minor.

The flora of the moor circumarea consists of typic marsh plants such as Triglochin
maritimum, T. palustris, Scheuchzeria palustris, Muhlenbergia glomerata (= M. racemosa), Glycera
canadensis, Calamagrostis canadensis, Carex filiformis, C. pauciflora, C. teretiuscula, C. magellanica,
C. limosa, C. exilis, C. gymnocrates (= C. Redowskyana), Peltandra virginica, Habenaria blephari-
glottis, H. tridentata (= H. clavellata), H. dilatata, H. leucophaea, Cypridium spectabile (= C.
reginae), Pogonia ophioglossoides, P. verticillata, Arethusa bulbosa, Listera australis, Calopogon
pulchellus; Salix myrtilloides, S. candida are moor plants as also Sarraecenia purpurea, Geum
rivale, Sanguisorba canadensis, Ledum latifolium, Kalmia glauca, Andromeda polifolia, Lyonia
(Chamaedaphne) calyculata, Chiogenes hispida, Vaccinium Oxyoecoccus, V. macrocarpon, Menyanthes,
junceus.

The wooded strip consists of trees which increase in number from the edge of the moor
to the firmer soil on the edge of the swamp. The trees most frequently found are: Ulmus ameri-
cana, Acer saccharum, Fraxinus sambucifolia, Pinus Strobus, Thuja occidentalis, Larix americana,
Pinus nigra (= P. mariana) and Betula lenta.

Bog Formation. The Mendon ponds of northwestern New York near Lake
Ontario are associated physiographically with sphagnum bogs which represent
former ponds captured by vegetation. Acres of bog are yellow with Poten-
tilla fruticosa. Here occurs Picea nigra, while Lyonia (Chamaedaphne) caly-
culata, Andromeda polifolia, Ledum latifolium, Vaccinium corymbosum, Gaylussacia
resinosa, Nemopauthes fascicularis, Pirus (Aronia) arbutifolia var. melanocarpa

¹) Hill, E. J.: The sand Dunes of northern Indiana and their Flora. Garden and Forest IX:
353, 372, 382, 393.

alist XXXI: 690, 592, 1897.
and *Aralia hispida* are all present in great quantities. The herbs are much the same as quoted above for the "moor circumareae", and many orchids occur *Liparis Locselii*, *Corallorhiza odontorhiza*, *Pogonia*, *Calopogon*, *Habenaria*, *Cypripedium spectabile*, *C. pubescens*, *C. parvifolium*, *C. acaule* are abundant, as also *Woodwardia virginica*, *Parnassia caroliniana*, *Decodon verticillatus*.

Bergen bog 1) in its open part is covered with sedges, sphagnum and a few dwarf cedars Thuja occidentalis and tamaracks *Larix americana* (= *L. laricina*). The outer edge is a dense forest of cedars and tamaracks. The flora of this bog is very different from that of the surrounding country, and is characteristically northern 2). Here are many rare plants: *Lonicea coerulea* (= *L. villosa*), *Solidago neglecta* var. *linoides*, *S. Houghtonii*, *Senecio aureus* var. *balsamitae* (= *S. balsamitae*), *Mierostylis monophylla*, *Corallorhiza innata*, *Goodyera repens*, *Arethusa bulbosa*, *Calypso borealis*, *Cypripedium candidum*, *Listera cordata*, *Clintonia borealis*, *Tofieldia glutinosa*, *Eleocharis rostellata*, *Scirpus easiptosus*, *Carex filiformis*, *C. Cravei*, *Dalibarda repens*.

The tamarack bogs in Ohio are characterized by the presence of *Larix americana*, *Sarracenia purpurea*, *Tridentis americana*, *Drosera rotundifolia*, *D. intermediu*, *Arethusa bulbosa*, *Coptis trifolia*, *Chiogenes hispidula*, *Cornus canadensis*.

Ravine or Gorge Formation. The gorge of Niagara, where the spray of the cataract descends in an incessant shower, is a fitting habitat for a number of plants, among them *Hypericum Kalmianum*, *Parnassia caroliniana*, *Lobelia Kalmii*, *Campanula rotundifolia*, *Utricularia cornuta*, *Gentiana crinita*, *Carex Oderi*, etc. In other situations of similar character grow *Saxifraga aizoides*, *Primula mistassinica*, *Pinguicula vulgaris*, *Pterospora andromedea* 3).

2. The Deciduous Forest Formation.

The Lacustrine Area was covered by an almost unbroken forest of deciduous trees which reached and covered the bluffs along the shores of the great lakes and extended in the form of more or less connected groves out into the prairies of Illinois. The primitive forest of the lake region of New York consisted of *Acer saccharum*, *Fagus*, *Fraxinus*, *Quercus alba*, *Q. bicolor*, *Q. rubra*, *Q. tinctoria* with *Q. macrocarpa*, *Q. Prinus*, *Q. coccinea* (infrequent), *Ulmus americana*, *U. fulva*, *Tilia*, *Castanea*, *Prunus americana*, *P. virginiana*, *P. serotina* (scarce), *Populus tremuloides*, *Prunus americana*, *P. monilifera*, *Carya amara* (= *Hicoria minima*), *C. alba* (= *H. ovata*), *C. porcina* (= *H. glabra*), *Fagulus cinerea*, *F. nigra*, *Platanus occidentalis*.

Less abundant and of secondary importance in the forest are *Tsuga canadensis*, *Liriodendron tulipifera*, *Abies balsamea*, species of *Betula*, *Ostrya virginiana*, *Carpinus caroliniana*, *Hamamelis virginiana*, *Cornus florida*. The rare trees in this forest are *Celtis occidentalis*, *Nyssa sylvatica*, *Asimina triloba*, *Liriodendron tulipifera*, *Juniperus virginiana* and *Picea nigra*. This forest on the

1) **BECKWITH, FLORENCE, MACAULEY, MARY E. and FULLER JOSEPH B.:** Plants of Monroe County, New York, Proceedings Rochester Academy Science III: May 1896.

2) It is a difficult matter to decide whether to place these bogs in the Interlacustrine Area of the Lake District, or not, but their geographic position has decided their place in this book.

3) **DAY, DAVID F.:** The Plants of Buffalo and Vicinity. Bulletin Buffalo Society Natural Sciences IV: 71.
lake bluff consists of Quercus alba, Castanea, Carya porcina, Populus monilifera, Tsuga, Hamamelis, and occasional trees of Pinus Strobus and rigida. The lianes are Vitis aestivalis, V. cordifolia, V. riparia, Ampelopsis quinquefolia.

In Ohio the forests on the ridge summits the steepest slopes and on the outcrops of Niagara limestone are of the white oak-, black oak-, hickory type. The most characteristic tree is Quercus alba associated with Quercus rubra, Q. tinctoria, Q. obtusiloba, Q. imbricaria, Q. Prinus, Carya tomentosa (= Hicoria alba), and the other named Hickories, while secondary in importance are Cornus florida, Celtis occidentalis, Prunus pennsylvanica, P. serotina, Cercis, Sassafras, Acer saccharum, Juglans cinerea, J. nigra.

Several stories are represented in the culmination of the deciduous forests about the southern shore of Lake Erie 1). The composition of the first facies is more or less altered if the white pine Pinus Strobus associated with Juniperus virginiana, Ulmus fulva, Populus monilifera, Platanus occidentalis becomes at all prominent. The principal facies, however, consists of Quercus tinctoria and Q. imbricaria associated with Pinus Strobus, Tilia americana, Prunus virginiana, Ulmus americana, Prunus serotina, Fraxinus americana. Juniperus virginiana and such other plants as Smilax herbacea, Aralia nudiflora, Rubus villosus, Galium circæans, Monarda fistulosa, Phryma leptostachya, Aralia racemosa, Ampelopsis quinquefolia, Lespedeza violacea, Solanum nigrum, Prenanthes (Nabalus) alba etc. These plants are arranged in layers with the tree facies uppermost and the shrubs and herbs beneath. Where the accumulation of humus in the soil is greater, the facies consists of Ulmus americana and Acer rubrum with such secondary species as Fraxinus americana, Quercus tinctoria, Platanus occidentalis, Acer nigrum, Ostrya.

In the drainage valleys and level country occurs a strictly mesophytic forest consisting of the following component species: Ulmus americana, Acer dasyacarpum (= A. saccharinum), Fagus, Tilia, Quercus macrocarpa, Ulmus fulva, Quercus bicolor, Q. palustris, Carya amara (= Hicoria minima), Fraxinus quadrangulata, Fraxinus viridis. The shrubs are Lindera (Benzoin) benzoin, Xanthoxylum americanum. The usual spring plants occur in these woods and in autumn Eupatorium ageratoides, Impatiens fulva, Aster novae-angliae, Lobelia syphilitica. Sanicula marylandica, Aralia racemosa.

Certain sand dunes in Wyandot County, Ohio 2) are covered with Ulmus, Quercus alba, Acer sacharinum (= A. dasyacarpum), A. rubrum, Populus monilifera, Prunus serotina, Quercus imbricaria, Fraxinus americana, while on the low ground adjoining grow Ulmus americana, Quercus palustris, Q. bicolor, Acer rubrum. A perfect tangle of shrubs is met with consisting of Cornus stolonifera, Rhus glabra, Corylus americanus, Rubus villosus, Euonymus atropurpureus, Smilax herbacea, S. hispida, Celastrus scandens, Staphylea trifolia, Sambucus canadensis, Pirus (Malus) coronaria, Pópulus tremuloides, Cornus florida.

Indiana was once almost entirely covered with noble forests of deciduous trees. Along its western borders these were interrupted, however, by numerous small prairies. The forests of this state are characterized by an almost entire absence of coniferous trees. In the original condition the uplands of northern Indiana were covered with a forest of various species of oaks, hickories, Juglans nigra, Liriodendron, Prunus serotina, Fraxinus americana, Ulmus americana. The undergrowth consisted of Xanthoxylum americanum,

1) JENNINGS loc. cit. describes in a detailed manner the succession on Presque Isle terminating in a forest where Quercus tinctoria (= Q. velutina) is the dominant tree.

Rubus villosus, R. occidentalis, Gaylussacia resinosa, Ptelea trifoliata, Hamamelis virginiana, while the forest floor is covered with a carpet of Cystopteris, Adiantum pedatum, Arisaema, Podophyllum, Hieracium, Helianthus divaricatus, Hepatica, Impatiens, Anemonella thalictroides, Galium, Seymouria, Gerardia. There is an abundance of fungi growing upon the leaf-mold, viz: Myxomycetes, Boleti and various Agaricineae.

Near the summit of sand-gravel-clay hills are the following trees: Quercus tinctoria, Q. alba, Carya alba (= Hicoria ovata), C. sulcata (= H. laciniosa), with Ceanothus americanus. The beech-maple forest exists in deep rich soils. Accompanying the beech and the sugar maple are Liriodendron, Juglans nigra, Asimina triloba, while beneath on the ground are Hepatica triloba, Podophyllum peltatum, Symplocarpus foetidus, etc. 1).

This deciduous forest extends into southern Michigan where trees like Liriodendron, Asimina, Cercis, Gleditschia, Cornus florida, Nyssa sylvatica and Morus rubra have crept northward favored by the mild influence of the lake winds and the same is true of the associated herbaceous species. The main hardwood forest lies south of the parallel of 43° north latitude. On the uplands the prevailing forest is a beech-maple and oak association.

b) Kentucky-Tennessee Area.

This area phytogeographically considered includes the territory comprehended by the southern parts of Ohio 2, Indiana, Illinois along the Ohio River and including the drainage basin of that river, the western part of West Virginia, also along the Ohio River, the states of Kentucky and Tennessee and northwestern Alabama. In fact, this area may be said to cover the drainage basin of the Ohio River and its tributaries the Tennessee, the Cumberland, the Green, the Kentucky, the New, the Scioto and the Wabash rivers. In this area, the deciduous, or hardwood forests reign supreme and the associations of plants are in general of a mesophytic character.

1. Deciduous Forest Formations.

West Virginia has a larger amount of hardwood timber in its forests than any other state. These splendid forests cover over sixteen thousand square miles and yield the following species:

<table>
<thead>
<tr>
<th>Pinus Strobus L.</th>
<th>Juniperus virginiana L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mitis Michx. (= P. echinata Mill.)</td>
<td>Salix nigra Marsh.</td>
</tr>
<tr>
<td>rigida Mill.</td>
<td>Populus monilifera Ait. (= P. deltoides Marsh.).</td>
</tr>
<tr>
<td>Tsuga canadensis L.</td>
<td></td>
</tr>
</tbody>
</table>

Juglans cinerea L.
 » nigra L.
Carya amara Nutt. (= Hicoria minima Marsh.).
 » porcina Nutt. (= Hicoria glabra Mill.).
 » alba Nutt. (= Hicoria ovata Mill.).
Ostrya virginiana Mill.
Carpinus caroliniana Walt.
Betula lenta L.
Fagus americana Sweet (= F. ferruginea Ait. = F. grandifolia Ehrh.).
Castanea dentata Marsh. (= C. americana Michx.).
Quercus tinctoria Bartr. (= Q. velutina Lam.).
 » falcata Michx. (= Q. digitata Marsh.).
 » palustris Muench.
 » imbricaria Michx.
 » Prinus L.
 » aquatica Walt. (= Q. nigra L.).
 » alba L.
 » rubra L.
Ulmus americana L.
 » fulva Michx. (= U. pubescens Walt.).
Celtis occidentalis L.
Maclura aurantiaca Nutt. (= Toxylon pomiferum Raf.).
Morus rubra L.
Magnolia acuminata L.
 » umbrella Lam. (= M. tripe-Liriodendron tulipifera L. [tala L.].
Asimina triloba Dunal.

Sassafras officinale Nees & Ebrems.
Hamamelis virginiana L.
Liquidambar styraciflua L.
Platanus occidentalis L.
Prunus serotina Ehrh.
Pirus (Malus) coronaria L.
Amelanchier canadensis L.
Crataegus coccinea L.
Robinia pseudacacia L.
Gleditschia triacanthos L.
Cercis canadensis L.
Aesculus glabra Willd.
Negundo aceroides Moench (= Acer negundo L.).
Acer saccharinum L. (= A. dasycarpum Ehrh.).
Acer rubrum L.
Rhus typhina L. (= R. hirta L.).
Ilex opaca Ait.
Vitis labrusca L.
Tilia americana L.
 » heterophylla Vent.
Aralia spinosa L.
Cornus (Cynoxylon) florida L.
Nyssa sylvatica Marsh. (= N. multiflora Wang.).
Diospyros virginiana L.
Halesia tetraptera L. (= Mohrodendron carolinum L.).
Fraxinus americana L.
 » nigra Marsh. (= F. sambuci-folia Lam.).
Viburnum prunifolium L.
Lindera (Benzoin) benzoin L. ¹).

As an illustration of the composition of the West Virginian forest situated between the lower portions of the great Kanawha (New River), the Big Sandy near where these rivers empty into the Ohio may be mentioned the following enumeration of trees on a tract of land 655 acres in extent on the top of a dividing ridge between two streams. It was found that 16,989 trees, or an average of twenty-six large timber-trees to the acre were growing on the 655 acres. Of these 1986 were Quercus alba, 5886 were Q. Prinus, 1100 were Q. tinctoria, 736 were Q. rubra, 2547 were hickories (species not given), 1900 were Castanea dentata,

207 were Robinia pseudacacia, 330 were maples (species not given), 333 birches, 858 Liriodendron tulipifera, 939 were pines and 167 were Tilia americana. The percentage of hardwoods is therefore about 88 percent. The record shows that most of the trees were of large size, the oaks for example ranging in diameter from eighteen to sixty inches (46—152 cm).

The early settlers in southern Indiana found the country one vast forest broken only by the wind swept streak of the cyclones or the marshy land of the prairies. Juglans nigra was abundant in this forest and on the hills back of the Ohio River, Fagus americana was abundant forming an almost exclusive growth. Elsewhere the forest was of the mixed type and an enumeration in 1876 showed the following percentage:

<table>
<thead>
<tr>
<th>Species</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juglans nigra L.</td>
<td>5 per cent</td>
</tr>
<tr>
<td>Carya alba Nutt. (= Hicoria ovata Mill.)</td>
<td>5 per cent</td>
</tr>
<tr>
<td>Platanus occidentalis L.</td>
<td>3 per cent</td>
</tr>
<tr>
<td>Aesculus glabra Willd.</td>
<td>2 per cent</td>
</tr>
<tr>
<td>Aesculus flava Ait.</td>
<td>1 per cent</td>
</tr>
<tr>
<td>Ulmus americana L.</td>
<td>1 per cent</td>
</tr>
<tr>
<td>Other species</td>
<td>10 per cent</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

To appreciate something of the size of the trees of this forest, we need but note the following (measurements in feet):

<table>
<thead>
<tr>
<th>Species</th>
<th>Diameter</th>
<th>Height to First Limb</th>
<th>Total Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quercus macrocarpa Michx.</td>
<td>7</td>
<td>72</td>
<td>160</td>
</tr>
<tr>
<td>Quercus alba L.</td>
<td>6</td>
<td>60</td>
<td>150</td>
</tr>
<tr>
<td>Quercus tinctoria Bartr. (= Q. velutina Lam.)</td>
<td>6.5</td>
<td>75</td>
<td>165</td>
</tr>
<tr>
<td>Quercus rubra L.</td>
<td>7</td>
<td>94</td>
<td>181</td>
</tr>
<tr>
<td>Juglans nigra L.</td>
<td>7</td>
<td>74</td>
<td>155</td>
</tr>
<tr>
<td>Populus monilifera Ait. (= P. deltoides Marsh.)</td>
<td>8</td>
<td>91</td>
<td>190</td>
</tr>
<tr>
<td>Acer saccharum Marsh.</td>
<td>5</td>
<td>62</td>
<td>120</td>
</tr>
</tbody>
</table>

Perhaps of the same floristic constitution is the most remarkable aggregation of trees in the north temperate zone found in the lower Wabash Valley in Illinois where the number of indigenous species south of the mouth of White River is one hundred and seven. This forest may be considered to represent the most northern extension of hardwood bottom forests of the Arkansas-Louisiana District where they have already been described.

The dry bottom-land on the Illinois side of the Mississippi River opposite St. Louis is characterized by a sandy soil which supports a rich and diversified vegetation. The principal trees in places that are wooded comprise Quercus tinctoria, Q. imbricaria, Q. macrocarpa, Q. Muhlenbergii (= Q. acuminata), Acer saccharinum (= A. dasycarpum) and Ulmus fulva. The wet

1) HOTCHKISS, JED.: GARDEN and FOREST, V.; 155. March 30, 1892.
2) COULTER, M. S., Botanical Gazette I; 15.
3) See ante Arkansas-Louisiana District (Ch. 2. D. page 455) Hardwood Bottom Formation.
4) HES, HENRI: An ecological Cross Section of the Mississippi River in the Region of St. Louis, Mo. 19th Annual Report Missouri Botanical Garden 1908: 127—258.
bottom shows clumps of willows consisting of *Salix amygdaloides*, *S. cordata*, *S. longifolia* and *S. nigra*. Species of *Crataegus* occur as isolated individuals which in some cases are the only representatives of the species, the Mississippi acting as a barrier to their general distribution westward, as is the case also with *Gleditschia aquatica* which occurs on the Illinois side, but not in Missouri.

The wooded bottom is characterized by *Carya amara* (≡ *Hicoria minima*), *C. oliviformis* (≡ *H. pecan*), *Quercus bicolor*, *Q. macrocarpa*, *Q. palustris*, *Gleditschia triacanthos*, *Populus monilifera*, *Celtis mississippiensis*, *C. occidentalis*, *Betula nigra*, *Ulmus americana*, and such lianes as *Ampelopsis quinquefolia*, *Vitis cinerea*, *V. cordifolia*, *V. riparia*. The herbaceous flora of the dry bottoms includes *Myosurus minimus*, *Ranunculus abortivus*, *R. repens*, *Anemone pennsylvanica*, *Dentaria laeziata*, *Draba brachycarpa*, *D. caroliniana*, *Sisymbrium canescens*, *Cerastium nutans* and *Geranium carolinianum* (in rosettes). The summer adds *Cassia chamaecrista*, *Crotalaria sagittalis*, *Desmodium canecens*, *D. bracteosa* (≡ *D. eupistatum*), *D. Illinii*, *D. paniculatum*, *Glycyrrhiza lepidota*, *Lespedeza capitata*, *L. violacea*, *Ambrosia artenisiaefolia*, *A. bidentata*, *Aster patens*, *Helenium annuus*, *H. tuberosus*, *Solidago canadensis*, *S. serotina* and others.

On the wet bottoms are found *Isopyrum bibernatum*, *Myosurus minimus*, *Ranunculus abortivus*, succeeded in summer by *Hypericum mutilum*, *H. perforatum*, *Cassia chamaecrista*, *Abutilon Avicennae*, *Amorpha fruticosa*, *Baptisia leucantha*, *Asclepias incarnata*, *Ipomoea hederacea*, *I. lacunosa*, *I. pandurata*, *I. purpurea*, *Convolvulus sepium*, *Stachys palustris*, *Datura stramonium*, *D. Tatula*, *Phytolacea decandra*, *Polygonum aere*, *P. hydropiperoides*, *P. lapathifolium*, *Euphorbia glyptosperma*, *E. humistrata* and *Boehmeria cylindrica*.

Upland Deciduous Forest Formation. The woods which extend back from the river bluffs toward the prairies are decidedly different from those of the alluvial bottoms. The trees are of lighter growth and the species are fewer in number. The predominating trees are several species of *Quercus* and *Carya* which vary according to locality. The undergrowth lacks rankness, consisting of patches of hazel, *Corylus americana*, thickets of *Prunus americana*, *P. coronaria*, beneath which are *Frasera carolinensis*, *Arisaema triphyllum*, *Podophyllum peltatum* and other herbs. The vines of these woods are *Tecoma radicans*, *Bignonia capreolata* (≡ *B. crucigera*), several species of *Smilax*, *Humulus lupulus*, *Dioscorea villosa*, *Rosa setigera*. The Oak Openings are a striking feature of southern Illinois and they afford a transition to the prairie formation to be considered later in this work. The characteristic oaks *Quercus imbricaria*, *Q. aquatica* (≡ *Q. nigra*), or in damp situations *Q. palustris* are of symmetrical shape, uniform size and compact foliage. They arise from a grassy turf seldom encumbered with brush but not infrequently broken by dense growths of dwarf sumac and flowering plants.

The plateau region of *Tennessee* is covered by a forest of broad-leaf trees which grow on the rolling surface with a soil of poor quality, loose and moist. The following trees distributed originally according to their soil and moisture preference occur:

Carya porcina Nutt. (≡ *Hicoria glabra*)	Quercus obtusiloba Michx. (≡ *Q. stelata* Wang.).
Salix nigra Marsh. (Mill.)	» Muhlenbergii Engelm. (≡ *Q. acuminata* Houba).
Castanea dentata Marsh.	
Quercus coccinea Muench.
 » tinctoria Bartr. (= Q. velutina Lam.).
 » aquatica Walt. (= Q. nigra L.).
Sassafras officinale Nees & Eberm.
 (= S. variifolium Salisb.).
Liriodendron tulipifera L.
Liquidambar styraciflua L.

<table>
<thead>
<tr>
<th>Platanus occidentalis L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amelanchier canadensis L.</td>
</tr>
<tr>
<td>Robinia pseudacacia L.</td>
</tr>
<tr>
<td>Rhus venenata DC. (= R. vernix L.).</td>
</tr>
<tr>
<td>Acer rubrum L.</td>
</tr>
<tr>
<td>Cornus (Cynoxylon) florida L.</td>
</tr>
<tr>
<td>Oxydendrum arboreum L.</td>
</tr>
<tr>
<td>Kalmia latifolia L.</td>
</tr>
<tr>
<td>Diospyros virginiana L.</td>
</tr>
</tbody>
</table>

Quercus alba follows the deep loamy soil of the hollows; Liriodendron grows a little higher up, where it mingles on the slopes with Quercus coccinea, Castanea dentata, grows on the thin dry soil of the ridges, while Acer rubrum confined itself to the swampy hollows. Oxydendrum arboreum grows on the creek slopes, while Salix nigra clings to the water's edge with Robinia pseudacacia, Diospyros virginiana, Cornus florida on the levels 1).

On the summits of the sharper ridges of the plateau the forest is composed of Castanea dentata, Q. Prinus and Q. coccinea. The chestnuts predominate in this type of forest. A little below the ridges on the slopes grows as the dominant tree, Quercus coccinea, associated with Quercus alba, Carya porcina (= Hicoria glabra), Nyssa sylvatica (= N. multiflora), Quercus Prinus, Q. obtusiloba (= Q. minor), Liriodendron tulipifera (a few trees). The broad level tops of some of the ridges and certain bottom lands are classed as oak flats with a relatively good soil. Here white oaks Quercus alba are found and Q. coccinea, Q. obtusiloba and Carya porcina (= Hicoria glabra). The soil of the low land which lies at the foot of the slopes is always the deepest and most moist on the plateau. The swampy bottoms contain Acer rubrum, Nyssa sylvatica, Liquidambar styraciflua with Quercus alba and Liriodendron tulipifera on the drier ground.

Barren Formation. The barrens of southern Indiana occupy a large area in the corners of four counties, Clarke, Floyd, Washington and Harrison. Sink holes abound in a country covered with flinty stones and concretionary boulders. As a result thickets of scrub oak and small shrubby plants abound with openings of some extent between which were found Liatris scariosa, Eupatorium sessilifolium L. 2), Brachycahta cordata, Solidago rigida, S. nemoralis, Silphium trifoliatum, Rudbeckia laciniata, Lepachys pinnata, Helianthus mollis, H. rigidus, H. parviflorus, H. hirsutus, Dysodia chrysanthemoides, Stylosanthes eliator, Desmodium rotundifolium, Lespedeza procumbens, Tephrosia virginiana, Strophostyles helvola, Eryngium yuccaefolium. Similar barrens are also found in southern Illinois.

Cedar Barren Formation. In the highlands of middle Tennessee the somber tint of the red cedar Juniperus virginiana delineates a cedar barren where the rock is exposed and where occur beneath the trees, (viz: Celtis, Gleditschia,

Ulmus, Quercus obtusiloba and Q. imbricaria) a host of herbaceous plants, such as Sedum pulchellum, Arenaria patula, Scutellaria nervosa, Talinum terctifolium, Astragalus platensis, A. caryocarpus, Psoralea subacaulis, Baptisia australis, Houstonia patens, Anemone caroliniana, Viola pedata var. bicolor, Heliotropium tenellum, Phlox stellariæ. The shrubs of these rock outcrops are Ptelea trifoliata, Rhus canadensis (= R. aromatic), Forestiera ligustrina, Calli-carpa americana.

The forests of Kentucky resemble in general features those of Tennessee. The central region is covered by a hardwood forest while in the western part the river swamps are occupied by Taxodium distichum and associated species. This part of the state, therefore, must be excluded from our description at this point because it has been described previously. One or two special features of the Kentucky flora now claim our attention.

Cliff Formation. The cliffs along the Kentucky and Dix rivers consist of limestone ¹). Growing in the crevices of these cliffs, as chasmophytes, are found Silene rotundifolia, Polygala senega, Galium trifidum, G. circæans, Nemophila microcalyx, Enslenia albida, Tradescantia pilosa, Arenaria patula and such trees as Juniperus virginiana, Ulmus racemosa and Cladrastis tincto-

toria (= Virgilia lutea).

The Illinois cliff flora proper presents a rosette physiognomy not differ-
ing materially from that described in the Ozark Area on the Missouri side of the Father of Waters. The talus at the foot of the Illinois bluffs presents the same general aspect as on the Missouri side, according to Hus ²), although the exposure is diametrically opposite.

The talus slope (shingle) vegetation is richer on the Illinois side and comprises Stylophorum diphyllum, Arabis brachycarpa (= A. confinis), Viola striata, Hypericum Aseyron, Epilobium coloratum, Osmorrhiza longistylis, Bidens eonnata, Vernonla altissima, Phaeelia bipinnatifida, P. Purshii, Euphorbin obtusata, Habenaria virescens (= H. flava), not found on the Missouri side. Large springs issue from the face of the Illinois bluff permitting the growth of numerous liverworts and algae. The occurrence of the lithophyte, Chlorotylium mammillosum which covers the rocks at Falling Spring with a green felt is to be noted here.

Cave Associations. Southern Kentucky is a cavernous country where sinks or sink holes abound. Actaea alba occur only in sink holes with Impatiens pallida, Scrophularia nodosa, Clussonia canadensis, Asplenium angustifolium. Cystopteris fragilis is common in the crevices of moist limestone rock, while Asplenium ebeneum is on the rocks nearer the surface. Pellaea atropurpurea grows at cave entrances, and Nephrodiun (Polystichum) acrostichoides grows in the woods near the top of the sink. Mats of walking fern Camptosorus rhizophyllus are also occasionally found in the bottom of sinks. About the entrance

of caves in the sandstone region grow *Nephotium spinulosum* var. *intermedium*, and *marginale*, *Cheilanthes vestita* and *Asplenium pinnatifidum* 1).

This deciduous-leaved forest has its southern extension in the Tennessee valley in northern Alabama where decidedly northern types prevail with many plants found in the Ohio valley not seen in other parts of Alabama, such as: *Aesculus flava*, *A. glabra*, *Acer saccharum*, *Cladrastis tinctoria*, *Staphylea trifolia*. Pines are almost totally absent in this valley.

North of the Tennessee River the detached spurs of the Cumberland Mountains rise to an elevation of 1200 to 1500 feet above sea level. The flat tablelands are covered with a mesophytic type of forest which begins at the headwaters of the Ohio River in Pennsylvania and stretches southward west of the mountains to this point where it reaches its southern limit. Species of oaks form the predominating forest growth of these highlands, viz: *Quercus alba*, *Q. Primus*, *Q. tinctoria*, *Acer saccharum* var. *barbatum* associated with *Magnolia acuminata*, *Tilia heterophylla*, *Aesculus flava*. The valleys on the other hand skirting the detached spurs of the mountains are filled with a forest of *Liriodendron tulipifera*, *Quercus alba*, *Tilia*, *Fraxinus*, *Sassafras*, *Juglans nigra* and *Juniperus virginiana* of superior quality occupying the damp rocky recesses 2). *Rhus* (*Cotinus*) *cotinoides* makes its appearance on the calcareous summits and upon the shelves where the sandstones overlie the calcareous rocks on the flanks of the higher mountains.

Barrens also occur in the northern part of the Tennessee Valley covered with an open forest of upland oaks and trees of stunted growth. Such grasses as *Andropogon virginicus*, *Agrostis hiemalis*, *Panicum commutatum*, *Elytrachis tenuis*, *Cyperus ovularis* are found associated with *Phlox maculata*, *Steironema lanceolatum*, *S. ciliatum*, *Coreopsis senicola*, *Ceanothus americanus*, *Polygala incarnata* and *Lespedeza striata*.

South of the Tennessee River, lowlands border the principal streams and these are covered with extensive hardwood forests of *Quercus Michauxii*, *Q. texana*, *Q. phellos*, *Q. falcata* associated with *Carya tomentosa* (= *Hicoria alba*), *Fagus*, *Fraxinus*, *Carpinus*, *Asimina*, *Ilex decidua*, *Crataegus apiifolia*, *C. rugosallis* and *C. spathulata*. The benches of mountain limestone are covered with oaks. The herbaceous flora of the forests of the bottom and bench land comprises but a small number of shade loving species, viz: *Chimaphila maculata*, *Galium cirsaezans*, *Mitchella repens*.

Cedar Glade Formation. The lower terraces of the higher ridges are almost bare of soil. On these rugged grounds the red cedar *Juniperus virginiana* abounds with stunted forms of *Fraxinus quadrangulata* and a form of white ash *Fraxinus americana*. On the sunny exposures in the openings and borders of the forest which covers the calcareous hills where the soil is deeper are found: *Rhamnus caroliniana*, *Viburnum prunifolium*, *Bumelia lycioides*,

B. lanuginosa, Crataegus coccinea, Cornus asperifolia, Ostrya virginiana. Rhus (Cotinus) cotinoides is confined in Alabama, to the mountain limestone.

The herbaceous associations are naturally xerophile. On the exposed rocks small cruciferous plants, as chasmophytes, fill every crevice, viz: Leavenworthia aurea, L. uniflora, L. tomentosa, Draba caroliniana, D. brachycarpa the first harbingers of springtime. In late spring slightly sheltered rocks are adorned with Oxybaphus (Allionia) nyctaginea, Ranunculus fascicularis, Arabis laevigata, Claytonia virginica, Arenaria serpyllifolia. Opuntia Rafinesquii, Geranium maculatum, Lithospermum canescens, L. tuberosum, Salvia urticaefolia, Scutellaria campestris, Bellis integrifolia. Sedum pulchellum, Phacelia Purshii grow in the interstices of rocky fragments and Arenaria patula occurs on bare rocks. The spring plants are succeeded by Hypericum aureum, H. sphaeroecarpum, Aster oblongifolius, A. cordifolius, Solidago amplexieaulis and Brachychaeta cordata (= B. sphaclata).

The isolated knolls of silicious limestone rising above the wide river plain support in their scanty soil a stunted growth of Quercus Muhlenbergii (= Q. acuminata), Prunus americana, Gleditschla triacanthos, Ostrya virginiana and under their shade Liparis littilifolia, Cypripedium parviflorum, Delphinium tricorne, Dentaria laeoniata, Mertensia virginica.

c) Ozark Area.

As an area of varied territories it includes, as shown on the map, portions of Missouri, north-western Arkansas, Indian Territory reaching its southern limit in eastern Texas. The past few years have seen an active investigation of the flora from a phytogeographic standpoint.

Southern and south-western Missouri were originally covered with a dense forest of hardwood, in which were extensive areas of short-leaved pines Pinus mitis (= P. echinata) covering gravelly ridges and the lower Ozark hills. The region south and southwest of the Archaean outcrops in the southeastern part of the state on the silicious soils was dominated by this pine. The north-western corner of the state is partly prairie formation and there the trees are confined mostly to the broad bottom lands in belts often two or three miles in width. Southeastern Missouri belongs to the Arkansas-Louisiana phytogeographic district where forests of Mississippi valley type abound. The flora in the Ozark Plateau may in general be said to have some distinctly Appalachian elements, but with many peculiarities common to the extension of this ridge into Arkansas, Tennessee and Alabama.

The Ozark Mountain region was first supplied with trees from Kentucky and other southern Appalachian districts. When trees were once established in the Ozark this region served as a base of supply from which the territory to the north, west and southwest was stocked. The Minnesota forests had much less influence on the prairies 1). Barrens of post oak Quercus obtusiloba (= Q. minor) are a feature of the Ozark country. There are many species of trees and plants common to this region, but there are others such as Fagus americana, Carya olivacformis and C. alba (= Hicoria pecan and ovata),

Tilia americana and Liquidambar styraciflua, Celastrus scandens, Dirca palustris are sparingly distributed 1).

Aquatic plants are scarce but there are species of Lemna (L. minor, L. Valdiviana), Spirodela (S. polyrhiza), Potamogeton (P. Hillii, P. pusillus), Ceratophyllum (C. demersum), Nelumbo (N. luteum), Philotria, Alisma (A. Plantago), Sagittaria (S. variabilis, S. platyphylla), Typha, Sparganium, Zizania in such pools as do occur.

In slow-flowing streams with leaves floating in the direction of the current are found Potamogeton fluviatilis, P. hybridus, while the submerged aquatics are two other species of Potamogeton with Naia flexilis, Elodea minor, Ceratophyllum demersum. The muddy shores and low alluvial flats accommodate plants which stand in shallow water, such as, Eleocharis acuminata, E. tenuis, E. intermedia, E. palustris, E. Engelmannii, E. ovata, Cyperus flaveescens, C. diandrus, C. acuminatus, Carex Frankii, Eragrostis hypnoides, Juncus nodosus, J. acuminatus, J. scirpoideus, Heteranthera, Ranunculus septentrionalis, R. abortivus, Ludwigia. Nasturtium, Cardamine pennsylvanica, Conoidea, Illogantia, Eclipta.

Sinkhole Pond Formation. Here and there on the Missouri Plateau according to Hus
ds 2) sec 505 footnote 4) the deciduous forest formation is interrupted by small ponds formed by the obstruction of the underground drainage of the limestone sinks. The hydrophytic flora of such ponds consists of Heteranthera limosa, Pontederia cordata, Sagittaria variabilis (in the shallower pools), Jussiaea repens, Lemna perpusilla, Wolffia punctata while large quantities of Riccia natans also occur. The surrounding vegetation consists of grasses and sedges.

1. Deciduous Forest Formations.

The forests of Missouri may be divided into two types, viz: the upland and lowland forests.

Upland Forest Formation. The upland forest includes, as most common representatives in the northern and central portions of the state, a considerable variety of oaks, hickories, the black walnut. This forest type in southern Missouri is much richer in species than the forests situated back from the streams in the northern portion of the state. The disposition of the trees is governed by soil and exposure — Quercus alba is found on the ridges in the southeast and gives stamp to nearly all the wooded uplands throughout the middle and northern portion of the state. Occupying a considerable territory west of the region of pine and white oak, there is found the black jack-scrub oak associations. The deciduous forest in the vicinity of Columbia, Missouri, according to Daniels 3) consists typically of the Oak Facies. Here occur Quercus alba adapted to a wide range of soils associated with the bur oak Quercus macrocarpa on the heavier soils in swamps and along streams, Q. platanoides, Q. palustris, Q. rubra, Q. texana (= Q. Schneckii), Q. acuminata, Q. tinctoria, Ulmus, Juglans nigra, Carya alba, C. celtis, C. tomentosa, C. porcina, C. amara (Hicoria ovata, H. laciniosa, H. alba, H. glabra, H. minima), Celtis, Gleditschia, Gymnocladus, Acer saccharum and nigrum, Aesculus glabra, Diospyros, Fraxinus.

1) La Mance, Lora S.: Rambling Notes from the Ozarks. Garden and Forest V: 525.
2) This paper of 130 pages with valuable phytogeographic and phenologic data was received too late to incorporate all of its important results in this volume of "Die Vegetation der Erde". It should be consulted by all students of the flora of the Mississippi Valley.
The herbaceous plants that occur in these forests are found in several seasonal aspects. The vernal herbs are Carex pennsylvanica, Trillium sessile, Claytonia virginica, Podophyllum peltatum, Dentaria laciniata, Oxalis violacea, Viola pubescens, Polemonium reptans, Pedicularis canadensis. The estival herbs of the forest floor in Missouri are of the ferns Adiantum pedatum, Cystopteris fragilis, Nephrodium (Polystichum) acrostichoides, Botrychium virginianum, Muhlenbergia sylvatica, M. diffusa, Agrostis perennans, Carex retroflexa, Cassia marylandica, Geranium maculatum, Aralia racemosa, Thaspium aureum, Cynoglossum virginicum, Monarda fistulosa, Pentstemon hirsutus, Triosteum perfoliatum, etc. The serotinal herbs are Desmodium nudiflorum, D. canescens, D. Dillenii, Gerardia grandiflora, Solidago ulmifolia, S. serotina, S. canadensis, Helianthus hirsutus, Iliacium sebrium.

The bottom of the ravines occupied by a stream that runs dry in summer is characterized by a modification of the forest described above known as the Blue Beech Facies. Here occur in association Juglans cinerea, Carpinus amara (= Hicoria minima), Carpinus caroliniana, Ostrya virginiana, Quercus alba, macrocarpa, acuminata, rubra, Morus rubra, Asimina, Platanus occidentalis, Cercis, Rhus toxicodendron, Euonymus atropurpureus, Celastrus scandens, Acer dysasarum, Viu riparia, Ampelopsis.

The prevernal ravine plants possess bulbs, bulb-like corms, rootstocks, or tubers. Such are Sanguinaria canadensis, Claytonia virginica, Erythronium albidum, Isopyrum biternatum, Dicentra cucullaria, Dentaria laciniata, Erigenia bulbosa, Phlox divaricata, Collinsia verna. The vernal ravine herbs consist of plants that mature their fruits in late summer and autumn, comprising Uvularia grandiflora, Smilacina racemosa, Polygonatum biflorum, Cypripedium parviflorum (very rare), Thalictrum purpurascens. The estival flora is not well-marked and the list includes Agrimonia striata, Zizia aurea, Sanicula canadensis. The autumnal woodland ravine species are Campanula americana, Lobelia syphilitica, Eupatorium ageratoides and Solidago flexicaulis.

The Walnut Facies of rich slopes consists of Juglans nigra, various hickories, Quercus alba, Q. acuminata in control, but often the ironwood, Ostrya virginiana covers the lower slopes with Rhus glabra and Corylus americana. The herbs in general are those common to the forest. — The Blue Ash (Fraxinus quadrangulata) Facies of hills summits consists of this tree together with Quercus tinctoria (= Q. velutina), Q. alba, Q. imbricaria, and Diospyros virginiana. Shrubs and undershrubs are frequent. The herbs are semi-xerophytic such as Astrapalus mexicanus, Antennaria plantaginifolia, Comandra umbellata. — The Elm Facies occupies the region of the coal measures north of Columbia, Missouri. The dominant trees are Ulmus americana, Quercus macrocarpa, Q. platanooides, Q. palustris, Q. rubra. The white oak is relatively scarce. The black cherry Prunus serotina is frequent and the red cedar Juniperus virginiana is common on hill slopes. — The Sassafras Facies occupies light soils. Here are vigorous Sassafras, Quercus tinctoria (= Q. velutina), Q. imbricaria, Q. rubra, Q. texana (= Q. Schneckii) with herbs that prefer light dry soils.

Lowland Deciduous Forest Formation. The lowland forests of the river valleys and alluvial plains afford a heavy growth of timber consisting of poplars (Populus), Sycamore (Platanus occidentalis), willows (Salix) and others.

At the point where the Missouri River enters Kansas in Jackson County, Missouri, the forest of the bottom lands consists of giant elms Ulmus americana, U. fulva, Platanus, Populus monilifera (= P. deltoides), Quercus macrocarpa, Jaglans nigra, Gymnocladus canadensis (= G. dioica), Salix nigra, Aesculus arguta, Acer dasycarpum with such small trees as Ostrya virginiana,
Pirus Ioënsis, species of Crataegus and Prunus with such undershrubs as Symphoricarpos occidentalis and Corylus americana.

In the open parts of these forests\(^1\) are Tricurus (Sieglingia) sesleroides, Helianthus tuberosus var. subeaneseens, Anemone pennsylvanica (= A. canadensis), Apocynum hypericifolium, Veronica maxima, Solidago serotina, Aster missouriensis, Aster paniculatus and various species of Bidens. In the denser forest, various lianes are found Cissus ampelopsis (= Ampelopsis cordata), Vitis vulpina, Clematis Pitcheri, Rhus radicans, with such rare orchids that grow in the shade, viz: Aplectrum hiemale (= A. spicatum), Spiranthes plantaginea, Pogonia pendula (= P. trianthophora) and the saprophytic plant, Monotropa uniflora.

The alluvial forest in Missouri, according to DANIELS, shows several well characterized faces. The Basswood (Tilia americana) Facies occurs on the flats of the streams. There enter into the composition of the facies: Juglans cinerea, Caraya, Ostrya, Ulmus, Celtis, Morus, Asimina, Platanus, Acer, Negundo and lianes. — The Swamp Oak Facies consists of Quercus palustris, Q. platanoides, Q. macrocarpa. The floor of these forests has the usual lowland vegetation, such as Arisaema dracontium, Claytonia virginica, Dentaria laciniata, Viola cucullata, Osmorhiza longistylis, Mertensia virginica, Commelina nudiflora etc.

West of a line drawn from the northeastern corner of Missouri to the southwestern corner, we find a flora which represents a transition from the forests of the Mississippi valley to the flora of the prairie regions lying west\(^2\). The flora shows the presence of Quercus alba, Q. macrocarpa, Q. obtusiloba and here in the extreme limit of Fraxinus quadrangulata, Carpinus americana, Alnus scrolulu, Cornus florida. Here also Sassafras, Juglans cinerea, Betula nigra, Tecoma radicans reach their western limits.

We do not find Quercus alba, Q. bicolor (= Q. platanoides), Q. imbricaria, west of a line that represents the western boundary of Missouri. West of this line only three oaks remain, viz: Quercus macrocarpa, Q. rubra and Q. palustris, Juglans nigra, Platanus occidentalis, Negundo aceroides (= Acer negundo), Populus monilifera (= P. deltoides), Acer dasyacarpum (= A. saccharum), Celtis occidentalis, Ulmus fulva, Cercis canadensis, which occur in eastern Kansas in considerable bodies, but finally restricted to the valleys preceding toward the west, where the trees become greatly reduced in size or stunted. At this point the treeless prairies are reached that begin to appear as features of the landscape in western Missouri. Wherever the limestone approaches the surface of the prairies in this neighborhood occur Desmanthus brachylobus, Helianthus organalis.

The forest trees which border the prairies in eastern Missouri are chiefly Quercus alba, Q. stellata, Q. tinctoria, Q. Muhlenbergii and an occasional tree of Platanus occidentalis. Between the forest and the prairie vegetation is found a thicket consisting of Rhus glabra, Sambucus canadensis, Euonymus atropurpureus, Cercis canadensis, Rhamnus lanceolata, Pirus [Malus] coronaria, Cornus asperifolius, together with an undergrowth of Rosa arkansana, R. blanda, R. humilis, Rubus canadensis, R. occidentalis, R. villosus. The lianes are Vitis riparia, Celastrus scandens, Menisperum canadense, Smilax eecrinata, S. herbacea, S. hispida and the poison ivy Rhus toxico-dendron. This thicket is fringed on the prairie side with low-growing shrubs (Ribes gracile,

\(^1\) MACKENZIE, KENNETH K.: Manual of the Flora of Jackson County, Missouri. 1902. p. V.
Rhhus canadensis, Symphoricarpos, while between this shrubby fringe and the prairie vegetation grow in Spring many herbs.

The forest of the Ozark Plateau extends into Indian Territory (now part of the State of Oklahoma). The timber is most compact along the Arkansas border and as a rule where the contour lines show the elevation to be greatest, although here as in other portions, the river-bottom lands are heavily and densely wooded. The forest consists of oaks: Quercus marylandica (black-jack), Q. obtusiloba (post oak), Juglans nigra, Quercus alba, Juniperus virginiana, Fraxinus americana, Carya ovata (Hicoria pecan), Populus monilifera, Maclura aurantiaca, Platanus, Ulmus, Celtis, Robinia, Betula nigra, Bumelia laurina. Looblolly pine (Pinus taeda) is found only in the mountainous portion of the eastern portion, its range being confined to a limited area. It grows with other trees and is nowhere abundant.

The forests in the western part of the late Indian Territory may be considered to be a part of that mentioned below extending through Texas, Indian Territory and Oklahoma into southern Kansas and known as the 'Cross Timbers'. The Wichita Mountains of Oklahoma may be considered as a northern extension of the upper Cross Timbers. The characteristic tree of this region is Quercus obtusiloba (= Q. minor). The mountain sides are clothed with three species of oaks almost to the exclusion of other species, namely, Quercus obtusiloba, Q. falcata (= Q. digitata) and Q. texana. The creek valleys at the base of these mountains contain some fine specimens of Mexican walnut, Juglans rutepstis.

Other species here are: Ulmus americana, U. alata, U. fulva, Diospyros virginiana, Gymnocladus canadensis (= G. dioica), Populus monilifera, Celtis occidentalis, Negundo aceroïdes (= Acer negundo), Juniperus virginiana, Sapindus Drummondii, Cercis canadensis, Khus cotinus (= Cotinus cotonoides). Near the western boundary of Oklahoma this forest fades out into a scattering growth of Populus monilifera, Celtis occidentalis, Ulmus americana, Prosopis juliflora, Carya ovata (Hicoria pecan), Quercus obtusiloba. Growing on sandy or rocky soil of the uplands are found many oaks but more especially Quercus obtusiloba, Quercus marylandica, and in the river bottoms Juglans nigra, Populus monilifera, Carya ovata (Hicoria pecan), Ulmus americana, Acer sp., etc.

The southern extension and limit of the deciduous forest of the Ozark Area is to be looked for in Texas where two forks of the forest (see map) extend almost to the Rio Grande River. The upland timber in Texas in the lignitic belt, where sandy clay ridges and hills prevail, consists mainly of oak, extending far into the Rio Grande plain. Other belts of this timber are isolated from the main forest and are open savanna forests. The upper

 Part V.: 609.
2) Clotther, George L.: Silvicultural Possibilities of the Prairies. Forestry and Irrigation IX:
 89—90. Feb. 1903.
and lower Cross Timbers are of this type. — The open forests of the granite region of the Carboniferous area and of the isolated gravel terraces as those above the Colorado River at Austin, where on the picturesque banks of this river grows Carya olibaeformis (Hicoria pecan), Populus monilifera, Platanus, Quercus virginiana (Q. virens), Q. rubra, Q. nigra, Q. macrocarpa, Q. palustris, Sapindus Drummondii and Juniperus virginiana. Beyond the Neucees River, the post oak formation loses its identity. Quercus marylandica and obtusiloba constitute the chief elements in this type of forest, the post oak (Q. obtusiloba) forming the more abundant and larger growth.

2. Rock Cliff Formations.

On wet and dripping rocks, the vegetation forms an association of species that may be designated the Fontinal Association. Here occur the walking fern Camptosorus rhizophyllus, liverworts Conocephalus conicus, Grimmia rupestris and Dumortiera hirsuta. A few phanerogams are found. These plants occupy the lowest portions of such dripping rocks. Above them grows an association of ferns Cystopteris bulbifera, C. fragilis, Woodsia obtusa, Asplenium platyneuron, Nephrodium acrostichoides and such flowering plants as Arabis laevigata, A. dentata, A. canadensis and Erigeron philadelphicus. The next association of plants occupies the upper portion of wet cliffs, or often whole sides of low moist cliffs. The crevices and cracks of the rocks accommodate Aquilegia canadensis and Solidago Drummondii while the ferns Woodsia, Cystopteris fragilis, Pellaea atropurpurea, P. dealbata (very rare), Cheilanthes lanuginosa occupy such situations. The summit edge of the cliff usually very dry and sterile is characterized by Androsace occidentalis, Draba cuneifolia, Scutellaria campestris and parvula, Astragalus distortus, Carex scitifolia, Arenaria texana, Allionia hirsuta 1). The forest of the cliff summits that occupies the verge of the cliffs along the Missouri is dominated by Quercus acuminata, Q. minor (= Q. obtusiloba), Q. marylandica, Acer saccharum, Fraxinus quadrangulata, Carya alba (= Hicoria ovata), C. amara (= Hicoria minima), Diospyros virginiana, Juniperus virginiana, Amelanchier canadensis, Celtis occidentalis, Ostrya virginiana, Cornus asperifolia, C. Drummondii, Viburnum rufotomentosum, Morus rubra, Vaccinium vacillans (south of Grindstone Creek), Mentzelia oligosperma (along cliffs of the Missouri River). The characteristic herbs are Solidago Drummondii, S. radula, S. speciosa, Aster anomalous, A. turbinellus and A. oblongifolius.

The cliffs along the Mississippi River, according to Hics, are almost perpendicular and sometimes even concave with soil in the numerous crevices of the rock faces. The plants of the spring flora which chiefly occur as rosette-forming annuals are Arabis canadensis, Draba cuneifolia, Erysimum asperum, Lechea major, Silene antirrhina, Astragalus mexicanus, Polygala verticillata, Heuchera hispida, Androsace occidentalis, Phlox pilosa, Lithospermum canescens, Monarda Bradburiana, Scutellaria parvula, and such grasses as Melica diffusa, Panicum depauperatum. At this time Eryngium yuccaefolium, Agave virginica, Verbascum thapsus enlarge their

rosettes. The chief moss is Gymnostomum euryrostre, the lichens are Parmelia capitata, Physcia stellaris and Peltigera rufescens and the ferns are Cheilanthes lanuginosa, Pellaea atropurpurea, Woodsia obtusa. During the summer the cliff flora is augmented by Hypericum maculatum, Linum virginicum, Pimpinella integerrima, Sporobolus asper, Aster oblongifolius, A. novae-angliae, Solidago Drummondii, S. ulmifolia. The top of the bluff is occupied mainly by Panicum depauperatum, Androsace occidentalis, Rudbeckia hirta, Desmodium marylandicum, D. paniculatum, Psoralea tenuiflora, Stylosanthes clatior, (= S. biflora) and in patches the lichen Cladonia fimbrata.

Prairie Formation. In the vicinity of Columbia, Missouri, according to Daniels, true prairies are represented only by a thin ribbon of vegetation about the summits of cliffs, upon the tops of hills and bluffs or in open thickets. It is, therefore, a portion of the true prairie flora that is interdigitated with the forest formations of the Ozark Area and in a soil of such slight depth that trees and shrubs can find no foothold, this remnant of a prairie flora leads a precarious existence. The most successful plant in the struggle is Schrankia (Morongia) uncinata. The cliff prairie grasses are Andropogon furcatus, Chrysopogon avenaceus, Panicum virgatum (rare), Bouteloua racemosa, Agropyrum spicatum (rare).

Chapter III. North American Temperate Zone: Xerophytic Section of the Interior.

1. Prairie Region.

The origin of the American prairies has long been a favorite theme for discussion among physiographers and botanists. The general consensus of opinion has been that fires have played a prominent part in their formation. Other theories advanced have had adherents, the cause of prairies being traced to the fineness of the loess, the direction of the strong prevailing southwest winds, inimic to tree growth; the occupancy of a recent submerged area by grass vegetation after the recession of the water; the peculiar chemic character of the soil; the character of the climate: the underlying geologic formations, rainfall, etc. 1). It seems, however, to the writer that none of these theories adequately express the reason for the origin of prairies, but that the explanation is to be sought in phytogeography, not in geology, meteorology, etc. The soil, the climate, the underlying geologic formations are all favorable to tree growth. The prairie soils, however, originating as loess, were at once tenanted by grass vegetation, because in proximity in nearby plant formations.

Once a prairie soil was formed, trees were unable to encroach upon it, except where by erosion in the stream valleys the dense turf was broken, or at the base of cliffs, and elsewhere, where loose talus, or stony ground prevented the grass vegetation from making a close mat.

The experience of orchardists and farmer tree planters in the prairies has demonstrated that the eastern trees, on good soil cannot compete singly with the prairie grasses, no matter how great a supply of moisture is furnished either by rainfall or irrigation. Harvey 1) suggests that it is the absence of soil fungi that constitute the mycorrhiza upon which the forest trees depend for food supply, the difficulty of seed germination in a dense sod and finally prairie fires that account for the preservation of the typic grass-land formations against the encroachment of trees. There is only one way in which eastern trees may conquer the prairie grasses and that is by advancing in solid phalanx. This method of encroachment is necessarily very slow and accounts for the lack of time since the glacial epoch for the trees to extend their supremacy over the whole prairie region. Another cause that operated in the past to prevent trees from extending into the prairies was the presence of millions of buffaloes in the region. The buffalo severely grazed the grasses and kept them in close mats. The buffaloes likewise attracted the Indians, who set fire to the grass, thus confining the trees to the river banks, mountains and broken lands. With the settlement of the country, the other external factors remaining unchanged, as before, the cultivation of the ground and the destruction of the graminaceous plants with deeply penetrating matted fibrous roots permitted the trees and shrubs to gain ground upon a territory formerly covered with prairie plants. In a former page (p. 235), we have given some of the proofs of this kind of invasion. A prairie is a heavily grassed area (a closed formation), destitute of forest growth, but existing in the midst of a wooded region, where the climatic conditions are favorable to the growth of timber, but where on account of the exclusiveness of the grasses and their success against all competitors coupled with ecologic, physiographic, edaphic and historic influences rather than want of water and soil conditions the spread of forest trees has been prevented.

The boundaries of the prairie region cannot be given in an abbreviated statement. The map will show the approximate location of this grassy country. Phytogeographically this region is made to comprise the great plains, as well, as the prairie region proper, notwithstanding that this may be a violation of the views of some eminent phytogeographers, who would separate the two as quite distinct floristically considered. Turf-forming plants are the most important vegetation-form for the characterization

1) Floral Succession in the prairie-grass Formation of southeastern South Dakota, Botanical Gazette XLVI: 81—108. According to experimental studies at Woburn Fruit Farm, a grass sod is injurious to fruit trees through an active poison resulting directly or indirectly from the growth of the grass. See Livingston, Burton E., Studies on the Properties of unproductive Soils; Bulletin 36. U. S. Bureau of Soils 1907: 10—14.
of the prairies. — Of the thirty three species of grasses which comprise the facies and the principal species of the prairies, according to POUND and CLEMENTS, Nebraska, Kansas and the Dakotas possess the entire number: the prairies of Saskatchewan, Assiniboia and Manitoba possess 30 species, the Red River country 29 species, and the southern prairies 31 species. Of 140 species most important with respect to frequency, abundance or characteristics 83 are spread throughout the entire region, while 129 are found throughout the central and southern portions, and 91 throughout the central and northern portions. The following plants are proper to the prairie formation:

Acerates viridiflora Raf. var. Ivesii Britton.
> viridiflora var. linearis A. Gray.
Agrostis hiemalis Walt. (= A. scabra Willd.).
Allinion ovata Pursh.
Amorpha canescens Pursh.
Andropogon furcatus Muhl.
> scoparius Michx.
Androsace occidentalis Pursh.
Anemone caroliniana Walt.
> cylindrica A. Gray.
Antennaria campestris Rydb.
Artemisia gnaphalodes Nutt.
Asclepias obtusifolia Michx.
> syriaca L. (= A. cornuti Dec.)
> tuberosa L.
> verticillata L.
Aster multiflorus Ait.
> oblongifolius Nutt.
> sericeus Vent.
Astragalus crassicarpus Nutt. (= A. caryocarpus Ker.).
Baptisia bracteata Ell. (= B. leucophaea Nutt.).
Bouteloua curtipendula Michx. (= B. racemosa Lag.).
Braunera pallida Nutt.
Carex Meadii Dewey.
> pennsylvanica Lam.
Ceanothus ovatus Desf.
Comandra umbellata L.

Coreopsis palmata Nutt.
Delphinium carolinianum Walt. (= D. azureum Michx.).
Eatonia obtusata Michx.
Eragrostis pectinacea Michx.
Erigeron ramosus Walt.
Euphorbia corollata L.
Gentiana puberula Michx.
Helianthus Maximiliani Schrad.
> scaberrimus Ell. (= H. rigidus Desf.).
Hieracium longipilum Torr.
Koeleria cristata L.
Kuhnistera candida Willd.
> purpurae Vent.
Kuhnia eupatorioides L.
Lespedeza capitata Michx.
Liatris (Lacinaria) scariosa L.
> squarrosa L.
Linum sulcatum Riddell.
Lithospermum canescens Michx.
> angustifolium Michx. (= L. linearifolium Goldie).
Desmodium (Meibomia) illinoensis A. Gray.
Mesadenia (Cacalia) tuberosa Nutt.
Prenanthes (Nabalus) asper Michx.
Onosmodium molle Michx.
Oxalis violacea L.
Panicum depauperatum Muhl.
> pubescens Lam.
> Scribnerianum Nash.
Phlox pilosa L.
Physalis heterophylla Nees.
 » virginiana Mill.
Polygala verticillata L.
Psoralea argophylla Pursh.
 » esculenta Pursh.
 » tenuiflora Pursh.
Rosa arkansana Porter.
Ruellia ciliosa Pursh.
Salix humilis Marsh.
Senecio plattensis Nutt.
 » integerrimus Nutt.
Silphium laciniatum L.

| Sisyrinchium angustifolium Mill. |
| Solidago nemoralis Ait. |
 » rigida L. |
 » rigidiuscula T. & G. |
 » rupestris Raf. |
| Sporobolus asper Michx. |
 » heterolepis A. Gray. |
| Stipa spartea Trin. |
| Verbena stricta Vent. |
| Vernonia gigantea Walt. |
| » fasciculata Michx. |

The vegetation center of the prairies is found in Nebraska, Iowa, Kansas and the Dakotas 1). From this center, the typic plains flora slowly shades out toward both south and north. The prairie region naturally separates itself into several districts; Transition Prairie Forest District; Prairie District; Sand Hill District; Foothill District. The prairies and sandhills being in close conjunction and only edaphic modifications are to be united in the same paragraph (B.).

A. Transition Prairie-Forest District.

The passage from the heavily wooded region of the north and east into the treeless plains of the west is a gradual one and the disappearance of the underwood and the predominance of oak openings, or groves of oak and other forest trees, not crowded together, but scattered over the surface at a considerable distance apart without any low shrubs or underbrush is the characteristic appearance of the prairies in Illinois, eastern Iowa, parts of Wisconsin and Minnesota and in fact along the eastern border of the prairies where they abut upon the eastern deciduous forests 2).

1. The forests of the Transition District.

Throughout the central part of Illinois, the prairie represents the most primitive plant formation which has been invaded by a forest along the drainage lines where the succession of plant associations is hastened by the change in soil and topography due to stream action. As there are no water courses

running through the sand prairies the encroachment of the forest has been slow. The first tree-growth that invades the sand prairies is a xerophytic association composed mainly of the black-jack oak *Quercus marylandica* and usually known as black-jack timber. Besides the oak, which constitutes about 50 per cent of the forest, there is about 35 per cent of the black oak. *Quercus tinctoria (= Q. velutina)* and 15 percent of the hickory *Carya odorata (= Hicoria microcarpa)*. The trees seldom exceed a foot in diameter, and they are generally very crooked, gnarled and full of dead branches. The hickory is nearly always sterile, only the largest trees producing fruit.

The undergrowth, according to C. A. Hart and H. A. Gleason1), consists of young trees of the above species and Rhus aromatica, Amorpha canescens and Salix tristis. In the edge of the woods prairie bunch grasses occur while in the denser shade of the trees are found Panicum cognatum, Tribodia cuprea (= Tricuspis seslerioides), Eragrostis trichodes (= E. tenuis), Paspalum setaceum and Andropogon fureatus, all these grasses in bunches few and wide apart. The remainder of the flora is characterized by Callirhoe triangulata, and Tephrosia virginiana, which is extremely abundant and grows in dense patches ten feet or more in diameter together with Opuntia humifusa (O. mesacantha), Oxybaphus [Allionia] nytaginea, Cassia chamaecrista, Froelichia campestris, Helianthus occidentalis, Helianthemum majus. The soil in which the trees and herbs grow is a pure sand and the formation of leaf mold goes on very slowly. With the first traces of leaf mold there appear Aquilegia canadensis, Silene stellata, Anemone virginiana, Agrimonia mollis and later as the soil deepens are found Smilacina (Vagnera) racemosa, Eupatorium ageratoides, Geum canadense and Aselepias exaltata with scattering trees of Cercis canadensis, Morus rubra and Celtis occidentalis.

Oak Grove Formation. In eastern Iowa and elsewhere the oak groves are remarkable for the paucity of large trees, but wherever they occur, their composition varies. Sometimes one species predominates and sometimes another, so that they receive the distinctive names of white oak, bur oak, or so called black oak groves. For example one grove consisted of *Quercus coccinea* which predominated with *Quercus rubra* and *Q. macrocarpa*, *Q. alba* as subordinate species, and occasionally *Q. Muhlenbergii (= Q. acuminata)* and *Q. tinctoria*. In southern Iowa *Q. marylandica* becomes the dominant tree and elsewhere *Q. prinoides*, *Q. obtusiloba (= Q. minor)* the post oak, which occurs sparingly in the southern groves2). In Wisconsin3) the oak openings consist of *Quercus alba*, *Q. rubra*, *Q. coccinea*, *Juglas cinerea*, *Corylus americana* with such herbs beneath as Anemone nemorosa, *Lupinus perennis*, *Baptisia leucophaea*, *Monarda fistulosa*, while such herbs, as *Linaria canadensis*, *Ocnoothera rhombiptela*, *Aster multiflorus*, *A. oblongifolius*, *Arctostaphylos uva-ursi*, *Castilleia sessiliflora* are transitional between the oak openings and the undulating prairie above the Wisconsin River.

This formation in Oklahoma and Texas corresponds to the open savanna forests of the Cross Timbers described as a prolongation of the deciduous forest into Texas. With much pro-

priety such timber might have been described as an oak opening and the description included here, but as a border forest extending into the prairie and of a greater extent territorily than the oak groves in Illinois and elsewhere, it was thought better to consider them as a part of the Ozark deciduous forest Area. 'See ante Chapter II. § 3. C. c.)

The principal trees of the deciduous forests in the upper Mississippi basin proper are Quercus alba, Q. coccinea, Q. tinctoria, Q. rubra, Q. macrocarpa, Q. bicolor (bottom-land), Q. Muhlenbergii, Acer dasycarpum, A. rubrum (on sandy, black loam), Carya porcina (= Hicoria glabra), Juglans cinerea, F. nigra, Populus monilifera (in bottoms). The trees of the dry ridges are Betula papyrifera, Carya alba (= Hicoria ovata), Quercus alba, Q. macrocarpa, Gymnocladus canadensis (dioica), Prunus virginiana, Juniperus virginiana, Tilia americana and Celtis occidentalis. These are the trees between Trempealeau, Wisconsin and Dubuque, Iowa: Betula papyrifera, B. nigra, Juglans cinerea are more abundant north of this territory. The sycamore Platanus occidentalis, Gleditschia triacanthos, Gymnocladus, Juglans nigra, Quercus Muhlenbergii and Morus rubra are southern trees which have moved north along the great river 1).

The herbs of these moist woods in the upper Mississippi Valley are Aetaea alba, A. rubra, Adiantum pedatum, Aralia nudieaulis, A. racemosa, Arisaema triphyllum, Asarum canadense, Dicentra eueullaria, Caulophyllum thalictroides, Hepatica acuta (= H. eulobas), Hydrophyllum virginicum, Liparis liliifolia, Podophyllum peltatum, Pedicularis canadensis, Viola pubescens, etc. The phytogeographer is led to believe that this forest formation is an intrusion into the prairie region of one type of the mesophytic forest region of Piedmont-Appalachian-Ozark type.

The forest of this transition territory occupies three distinct types of physiography, viz: ridges and hill slopes, rock ledges and alluvial bottomland. Each physiographic area is characterized by a distinct phytogeographic formation.

Ridge and Hill Slope Forest Formation. The most conspicuous trees on the flat slopes are Quercus alba, Q. rubra, Q. tinctoria, Carya alba (= Hicoria ovata), Populus tremuloides, P. grandidentata, Tilia americana (occasional), Ostrya, Carpinus, Fraxinus sambucifolia. — The most conspicuous trees of the upper slopes are Betula papyrifera, Carpinus caroliniana, Ostrya virginiana, Tilia americana, Juglans cinerea. The lower sunny clay slopes were in early times covered with Quercus macrocarpa and Q. tinctoria, the former species predominating in Wisconsin and Minnesota. The shaded slopes were characterized by Quercus alba, Q. rubra, Pinus ionensis, Prunus americana, P. virginiana, Corylus americana.

Alluvial Bottom Forest Formation. The higher alluvial soils are characterized by Acer dasycarpum, Tilia americana, Ulmus americana, Populus monilifera, Quercus rubra, Carya amara (= Hicoria minima), Fraxinus viridis and occasionally Juglans nigra. The absence of Betula nigra and Quercus bicolor (= Q. platanoides) is noteworthy.

The alluvium of the Mississippi consists of detached sandy prairies in places not always covered by water. In other places are found 1) Acer saccharinum, Ulmus americana, Betula nigra. Populus monilifera, Quercus bicolor, Fraxinus viridis, occasionally Quercus rubra and near the mouth of Root River Morus rubra and Gymnocladus canadensis (= G. dioica). — The flora of the flood plain of the Iowa River consists of Acer dasyacarpum, Negundo aceroides (= Acer negundo), Ulmus racemosa, U. americana, Fraxinus viridis, Populus monilifera while on the second shore line occur Acer nigrum, Juglans nigra, J. cinerea, Ulmus fulva, U. americana, U. racemosa, Caryya amara (= Hicoria minima), Quercus macrocarpa, Q. rubra, Crataegus mollis, C. punetata, Pirus (Malus) ioensis, Prunus americana. — The vegetation of the Des Moines alluvium is somewhat similar. Here occur Acer dasyacarpum, Negundo aceroides, Ulmus americana, Fraxinus viridis, Populus monilifera, Salix amygdaloides, S. nigra, S. longifolia and under the tree shade Leersia virginica, Elymus virginicus, Panicum crus-galli, Pilea pumila, Bidens frondosa, Vernonia fasciculata, Aster Tradescanti, Nasturtium (Roripa) palustre, Cinna arundinacea and Spartina cynosuroides. Platanus occidentalis is absent from the Des Moines alluvium.

Rocky Ledge Forest Formation. Along the upper slopes of the St. Croix sandstone ledges occur Pinus Strobus, Taxus canadensis, Betula lenta, while close to the springs Alnus incana occurs.

On these ledges grow such plants as Phegopteris dryopteris, P. polypodioides, Lycopodium lucidulum, Asplenium filix-fœnia, Nephrodium (Dryopteris) spinulosum var. dilatatum, Pellaea gracilis, Mitella diphylva and along the Kickapoo, Sullivantia procumbens, Circaea alpina, Cornus cireinata, Arabis nudicaulis, A. racemosa, Acer spieatum, Oenothera fruticosa and Aquilegia canadensis.

On rocky talus the botanist finds such trees as Pinus Strobus, Betula papyrifera, B. lenta, Juglans cinerea, Quercus rubra (occasionally), Acer nigrum, Juniperus virginiana, and shrubs, Amelanchier canadensis, Cornus cireinata, Diervilla trifida. Along Pine Creek beneath the trees are Osmunda Claytoniana, Cornus cireinata, Diervilla trifida, and Cypripedium spectabile. Where sufficiently weathered the sandstone ledges are characterized by Populus grandidentata, Quercus rubra, Quercus alba, Q. Muhlenbergii (= Q. acuminata), Juniperus virginiana, Acer nigrum, Cornus cireinata, C. alternifolia, Viburnum pubescens, Rhamnus lanceolata and such herbs as Thalictrum dioicum, Lathyrus venosus, L. ochroleucus, Asarum canadense, Cypripedium pubescens, Trillium rivale, Aralia nudicaulis, A. racemosa, Monarda fistulosa and Eupatorium ageratoides.

2. The Prairie- and Cliff Formations.

Prairie Grass Formation. In central Illinois 2) in the oak opening territory two kinds of prairie may be distinguished viz: wet and dry.

The first plants blooming in the spring on the dry prairies are Draba caroliniana, Anemone decapetala, Ranunculus fascicularis, Oxalis violacea, Androsace occidentalis; in May, Lithospermum angustifolium (= L. linearifolium), L. canescens, L. hirtum (= L. Gmelini), Troximmon cuspidatum, Baptisia leucophaea, Pentstemon pubescens (= P. hirsutus); in June, Viola delphinifolia, Scutellaria parvula, Linum sultatum, Polygala incarnata, P. sanguinea (= P. viridescens), Asclepias Meadii, A. obtusifolia, Sisyrinchium bermudianum, Tradescantia virginica, Silene antirrhina, Mesadenia (Caellia) tuberosa; in July, Silphium laciniatum, S. terebinthinaceum, S. integrifolium, Echinacea angustifolia, Coreopsis palmata, C. lanceolata, Rudbeckia hirta, R. subtomentosa, Lepachys pinnata, Asclepias tuberosa, A. verticillata, Euphorbia corollata, Petalostemon violaceus (= P. purpureus), P. candidus, Amorphia canescens, Desmodium illinoense, Ruellia ciliosa, Callirhoe triangulata, Potentilla arguta, Eryngium yuccaefolium (E. aquaticum); in August, Heli-

1) PAMMEL, L. II.: loc. cit.
2) BRENDEL, FREDERIC: Flora Peoriana. 1887: 34.
The grasses of dry prairies are *Chrysopogon nutans*, *Andropogon furcatus*, *A. scoparius*, *Koeleria cristata*, *Eatonia obtusata*, *Fimulus canadensis*, *Stipa spartea* and *Sporobolus heterolepis*. The flora of such prairies in Wisconsin is peculiarly uniform, because the following grasses predominate: *Andropogon furcatus*, *A. scoparius*, (see Fig. 27) *Chrysopogon nutans*.

![Fig. 27. Bunch-grass Formation. Andropogon scoparius Michx. together with Artemisia filifolia Torr. and the short grass Bouteloua hirsuta Lag. Photograph by Dr. H. L. Shantz with permission United States Department of Agriculture.](image-url)

Sporobolus asper, *Bouteloua hirsuta* and *Festuca tenella*. In depressions twenty feet below the general surface occur *Agrostis scabra* (= *A. hiemalis*), *A. perennans*, *Asclepias coruntnis*, *Viola pedatifida*, *Ranunculus rhomboideus*.

The prairies in the neighborhood of Chicago near Lake Michigan have had a swamp or lake origin. Aquatic floating plants such as, *Riccia, Potamogeton, Brasenia* are supplanted by bulrushes, *Scirpus lacustris*, *Typha, Pontederia, Sparganium, Sagittaria, Zizania, Phragmites, Acorus calamus* and *Eriophorum cyperinum*. Sedges later encroach on these plants as the new soil
becomes raised more and more above the lake and grasses follow the sedges forming a prairie. Sometimes with the prairie grasses are a number of coarse herbs *Silphium laciniatum*, *S. terebinthinaceum*, *S. integrifolium*, *Solidago rigida*, *Allium cernuum*).

The flora of the wet prairies in Illinois is mixed with the species of the neighboring banks, swamps and bottom-woods and differs according to the soil. Tall grasses such as *Calamagrostis canadensis*, *Leersia (Homalocechrum)* lenticularis, *Spartina cynosuroides* abound mixed with sedges as *Scirpus*, *Cyperus*, *Carex vulpinoidea*, *C. crus-corvi*, *C. stipata*, *C. conjuncta*, *C. scoparia*, *C. straminea*, *C. hystrix*,. The most conspicuous herbaceous plants of the spring are: *Menyanthes trifoliata*, *Camassia esculenta*, *Allium canadensis*; of the summer, *Phlox glaberrima*, *Aclepias Sullivantii*, *Saxifraga pensylvanica*, *Steironema lanceolata*, *Ipomoea lacunosa*, *Habenaria leucophaea*; of the autumn, *Boltonia asteroides*, *Prenanthus (Nabalus) racemosa*, *Solidago neglecta*, *S. Rifellii*, *S. ohiensis*, *Helianthus giganteus*, *Gentiana Andrewsii* and *Polygonum ramosissimum*.

The grassy slopes in the St. Croix country where the soil is brownish, or blackish, are covered by *Bouteloua curtipendula*, *Andropogon scoparius*, *Koeleria cristata*, and such early flowing herbs as *Viola pedatifida*, *V. pedata*, *Arabis lyrata*, *Phlox pilosa*, *Silene anitirrhina*, while later in the season appear *Ceanothus americanus*, *Delphinium azureum (= D. carolinianum)*, *Solidago rigida*, *S. nemoralis* and *Rosa blanda*.

The flora of the Wisconsin drift consists of the characteristic prairie vegetation including species of *Liatris and Andropogon*, accompanied by *Phlox pilosa*, * Panicum Scribnerianum*, *P. virgatum*, *Vieea americana*, *Geranium maculatum*, *Echinacea purpurea*, *Lithospermum canescens*, *L. angustifolium*, *Viola palmaria*, *V. petata*, *Castilleja sessiliflora*, *Astragalus caryocarpus (= A. crasscarpus)*, *Stipa spartea*, etc. *Polytaenia Nutalli*, *Ceanothus ovatus*, *Baptisia leucophea*, *Rudbeckia hirta*, *Oenothera serrulata*. The plants of the lower and flat areas are: *Anemone pensylvanica*, *Thalictrum purpurascens*, *Junoa tenuis*, *Panicum Scribnerianum*, *P. virgatum*, *Liatris scariosa*, *L. pyenostaechya*, *Vieea americana*, *Baptisia leucantha*, *Lilium philadelphicum*, *L. canadensis*, *Lathyrus venosus* and *Cieuta maculata*).

Sand Prairie Formation. The plant associations of the sand prairies are three: the bunch-grass, the blow-sand and the blow-out associations. The Bunch Grass Association (see Fig. 27) is characterized by *Eragrostis trichodes*, *Stipa spartea*, *Panicum cognatum* in dense flat bunches scarcely a foot high, *Triodia cuprea (= Tricuspis seslerioides)*, *Calamagrostis (Calamo-vilfa) longifolia*, *Eragrostis pectinacea*, *Bouteloua hirsuta*, *Panicum virgatum*, *Paspalum setaceum* and *Sporobolus cryptandrus* also produce more or less well-developed bunches. Here also occur *Carex grava*, *Cyperus Schweinitzii* and *C. filiculmis*.

The Blow-Sand Association occurs where the wind causes a shifting of the sand, which if excessive remains without vegetation. The mat-like *Opuntia humifusa*, the dense clumps of *Amorpha canescens* or *Chrysopsis cam- porum* may be effectual in anchoring such drifting sand. The most typical plants of this association are *Ambrosia psilostachya*, *Cassia chamaecrista*, *Cenchrus tribuloides*, *Cycloloma atriplicifolium (= C. platyphylum)*, *Cristatella Jamesii* and *Aristida tuberculosa*. The vegetation of the front of an advancing dune is different from that of the blow-sand association.

2) PAMMEL, L. H.: Comparative Study of Vegetation, etc. loc. cit.
The Blow-out Association exists where the wind has scooped out hollows in the sand and an entirely new set of plants occupies the ground. *Fimbristylis capillaris* first appears and forms a carpet over the flat bottom of the blow-out, ultimately forming a thin layer of black humus over the surface. Associated with it are large clumps of *Panicum virgatum*, and *Andropogon furcatus*. With these grasses are often associated *Vitis vulpina*, *Menispermum canadense*, *Populus monilifera*, *Negundo accroides*. The two vines scramble over the ground and the trees grow rapidly. Lichens of the genus *Cladonia* appear and are succeeded by *Helianthus occidentalis*, *H. rigidus* (= *H. scaberrimus*), *Liatris scariosa*, and *Cacalia atriplicifolia*).

Sand Prairie Formation. These associations occur near the mouths of the principal rivers that are tributary to the northern Mississippi River in Wisconsin and elsewhere (*). The only arboreal vegetation growing on these prairies are *Quercus macrocarpa*, *Q. tinctoria* and occasionally *Fraxinus viridis* and *Betula lenta*. These trees, however, occur only in close proximity to the Mississippi bottoms.

Prairie Swamp Formation. The marshes of the transition prairie-forest country are the sources of perennial springs, which if of sufficient size form small streams that are lined by *Salix discolor* and *S. Richardsonii*. Confined to the marsh edges are *S. caudida*, *S. lucida*, while *Alnus incana* and *Cornus stolonifera* are characteristic shrubs.

The commoner plants of these marshes are *Saxifraga pensylvanica*, *Thalictrum purpurascens*, *Viola blanda*, *Iris versicolor*, *Glyceria nervata*, *Parnassia caroliniana*, *Lilium canadense*, *Pedicularis lanceolata*, *Lycopus simuatus* (= *L. americanus*), *Mentha canadensis*, *Stachys palustris*, *Gentiana crinita*, *G. Andrewsii*, *Castilleja coecinea*, *Herculeum lanatum*, *Valeriana edulis*, *Cnicus (Carduus) muticus*, *Archangelica (Angelica)*, *atropurpurea*, *Conium maculatum*, *Cardamine rhomboides* and *Bromus Kalmii*, while *Cypripedium candidum*, *Caltha palustris*, *Viola blanda*, *V. canina* var. *Muhlenbergii* (= *labradorica*) and *Symphoricarpus foetidus* are local plants found in proximity to the springs.

The species of the larger open swamps in the prairie country of Illinois are: *Epilobium palustre*, *E. coloratum*, *Prosperpinaca palustris*, *Cicuta maculata*, *Sium cicutaefolium*, *Aster phoeniceus*, *A. novi-Belgii*, *A. junceus*, *A. salicifolius*, *A. paniculatus*, *Acorus calamus*, *Typha latifolia*, *Triglochin palustris*, *T. maritima*, *Dulichium spathaceum* (= *D. arundinaceum*), *Eleocharis palustris*, *Eriophorum gracile*, *Rhynehospora alba*, *Carex polytrichoides*, *C. teretiscula*, *C. filiformis*, *C. comosa*, *C. riparia*, *C. monile*, *Muhlenbergia glomerata* (= *M. racemosa*), *Phragmites*, *Phalaris arundinacea*, *Nephrodium (Aspidium) thelypteris*, *Osmunda regalis*.

The alluvial marshes along the sloughs of the Mississippi and Black Rivers are common and similar situations along the Wisconsin River support many herbs as *Ranunculus multifidus* (= *R. delphinifolius*), *Sarracenia purpurea*, *Viola blanda*, *Stellaria (Alkine) longifolia*, *Hypericum mutilum*, *Potentilla palustris*, *Saxifraga pensylvanica*, *Parnassia caroliniana*, *Lythrum alatum*, *Epilobium lineare*, *Cicuta bulbifera*, *Gallium trifidum*, *Eupatorium perfoliatum*, *Boltonia asteroides*, *Aster novae-angliae*, *A. Tralescantei*, *Coreopsis (Bidens) trichosperma*, *Campanula aparinaoides*, *Gentiana Andrewsii*, *Menyanthys trifoliata*, *Chelone glabra*, *Veronica anagallis*, *Gerardia purpurea*,

1) C. A. Hart and H. A. Gleason (loco citato).
Pedicularis lanceolata, Seutellaria galericulata, Polygonum amphibium, P. sagittatum, Salix discolor, S. petiolaris.

Cliff Formation. On the banks of the thickly wooded bluffs of the upper Mississippi bold rocky ledges arise quite abruptly from the flood plain. The lower part of these ledges is sandstone, the upper magnesian limestone. _Arabis lyrata, Poa compressa_ a few sedges and lichens occur on the limestone. The shaded gullies, however, reaching to the escarpments are tenanted by _Athyrium filix-femina, Cystopteris fragilis, Osmunda Claytoniana, Adiantum pedatum, Onoclea struthiopteris_ and _Pteris aquilina_. The sandstone outcrops are moist and occur in places by _Pinus Strobus_ with ferns. Such ferns as _Osmunda cinnamomea, O. regalis, O. Claytoniana_ are at the base of the sandstone. _Camptosorus rhizophyllus_ occurs on detached limestone blocks on the flood plain 1. On the rocks of the St. Croix sandstone ledges grow _Woodsia obtusa, W. ilvensis, Melica mutica, Poa nemoralis, Arabis lyrata, Campanula rotundifolia, Danthonia spicata, Vaccinium pennsylvanicum_.

Of the many plants occurring on the dry ledges in this transition district attention may be called to _Campanula rotundifolia, Danthonia spicata, Eragrostis capillaris, Lechea major (= L. villosa 1), Helianthemum canadense, Erigeron divaricatus, Draba caroliniana_, while in shaded woods under sandstone ledges are found _Trillium nivale, Viola pubescens, Isopyrum biteratum, Dicentra eucellaria_ and _Anemone nemorosa_. — _The moist rocks_ and _sandstone_ show the presence of _Aralia racemosa, A. nudicaulis, Camptosorus rhizophyllus, Cornus eireinata, C. alternifolia, Galium aparine, G. boreale, Phryma leptostachya, Rudbeckia hirta, Woodsia obtusa, Cystopteris fragilis, Fragaria vesca, Polypodium vulgare, Mitella diphylla, Actaea rubra, Prenanthes (Nabalus) alba, Ampheiaarpae monoeica, Thalictrum dioecum, and Teucrium canadense_. — _The open spaces on ledges between the forest trees in some places are covered with Cladonia sylvatica, Polytrichum juniperinum, Helianthemum canadense, Lechea major (= L. villosa), Danthonia spicata, Enotia obtusata, Koeleria cristata, Euphorbia corollata, Petalostemon candidus and P. violaceus_.

B. Prairie- and Sand Hill District.

a) The true Prairie Territory center.

The floral covering of the prairies corresponds to their physiography, and is essentially homogeneous. In many localities there is noticeable difference between the vegetation of low prairies and that of high prairies. The former are characterized by a more or less closed type, the latter by the open type of formation. The same facies, however, occur in both situations, and the change in aspect proceeds entirely from a difference in the secondary species. With reference to the constitution of the soil, prairie formations are of two kinds, 1. the prairie-grass formation found on loamy soils and 2. the buffalograss formation occurring on argillaceous soils, "gumbo" hills and plateaux.

Prairie Grass Formation). The principal grasses of this formation are sod producers and the soil is therefore covered with a close turf. The facies are Sporobolus asperifolius, Koeleria cristata, Elymus obtusata and Panicum Scribnerianum. In different localities plants of adjacent formations wander in and modify the constitution of the formation. For example Stipa spartea and Panicum virgatum enter from the meadow formation, Aristida purpurea from the beard-grass formation and Buchloe (Bulbilis) dactyloides from the buffalo-grass formation. Bontelona curtipendula and B. oligostachya are important secondary species of great frequency here, as in all the grass formations. Andropogon scoparius and A. furcatus which are characteristic of certain other formations are of comparatively little abundance. Agropyrum pseudorepens, in low prairies becomes a bunch-grass. The important secondary species, however, are Festuca ovina, Eragositis pectinacea, Sporobolus asper, S. vaginiflorus, Agrostis hiemalis and Schedonurus paniculatus.

A vernal and an estival-scutinal aspect, according to Pound and Clements, are presented by this formation. The grassy covering in the spring is spangled with Draba caroliniana, Androsace occidentalis, Scutellaria parvula, Astragalus crassicarpus (A. caryocarpus), Antennaria campestris, Peucedanum foeniculaceum, Carex pennsylvanica, Baptisia bracteata, Anemone caroliniana, Comandra umbellata. On low prairies the vernal species are Allium mutabile, Callirhoe alceaoides, C. involucrata, Lithospermum angustifolium (L. linearifolium), and Viola pedatifida. In the autumn, the prairie is brightened by Amorpha species of Solidago, Verbena, Trifolium, Aster, Liatris. Outside of the grasses the most characteristic plants are Amorpha canescens, Psoralea floribunda, Solidago rigida, S. rupestris, S. canadensis, S. rigidiuscula, S. speciosa, Verbena stricta, V. hastata, Kuhnistera purpuracea, K. candida, Liatris scariosa, L. punctata, L. squarrosa, Aster multiflorus, A. sericeus and Vernonia gigantea (V. altissima). These are plants of greater frequency. The widely distributed and scattered plants are: Cnicus (Carduus) undulatus, Achillea millefolium, Mesadenia (Caenlia) tuberosa, Prenanthes (Nabalus) asper, Gerardia purpurea, Potentilla arguta while Eriocarpum spinulosum, Hymenopappus flavescens, Yucca angustifolia (Y. glauca), Cactus viviparus, Opuntia missouriensis (O. polyacantha), Evolvulus pilosus, and Talinum teretifolium are all common.

Harvey has traced a similar succession of plant species on the prairies of southeastern South Dakota.

The prevernal aspect is due to the flowering of Antennaria campestris, Carex pennsylvanica, Peucedanum nudicaule, Pulsatilla hirsutissima, as principal species, together with Astragalus crassicarpus, Peucedanum foeniculaceum, Draba micrantha, and Ranunculus ovalis without these plants contributing to the formation of a facies. The vernal aspect begins with the blossoming of Troximon (Nothocalais) cuspidatum and Lithospermum angustifolium (L. linearifolium), closely followed by Castilleja sessiliflora, Lithospermum canescens, Viola pedatifida and Oxalis violacea, Pentstemon gracilis, Gaura coecinea, Psoralea esculenta, the last two ending the vernal period about the first of June.

The estival aspect is marked by decided climatic changes and flowering of Panicum Scribnerianum, Koeleria cristata, Rosa arkansana, Erigeron ramosus, Delphinium carolinianum (D. azureum) and Brauneria pallida. The facies is formed by Koeleria cristata, Poa pratensis.

1) Pound, Roscoe and Clements, Frederic, E.: The Phytogeography of Nebraska 1900: 348 et seq.; also Thorner, John, J.: The prairie-grass Formation in Region I. Botanical Survey of Nebraska V (1901); 29—143.
Scarcefly have these forms flowered before the third week of June when there appear Anemone cylindrica, Physalis heterophylla, Verbena stricta, Linum sulcatum, Allionia littoralis, Festuca octoflora and Aristida purpurea.

The serotinal aspect, perhaps the most distinct of the aspects, is introduced in early July by the general flowering of Agropyron occidentale (= A. Smithii), Buchloë (Bulbilis) dactyloides, Petalostemon (Kuhnistera) purpurea and K. (P.) candida.

The facies is composed of Bouteloua oligostachya, B. hirsuta, B. curtipendula (= racemosa). Buchloë dactyloides with such primary species as Petalostemon purpurea, Verbena stricta, Symphoricarpus occidentalis, Amorpha canescens.—The autumnal aspect begins in early August by the blooming of Helianthus scaberrimus, Solidago rigidia, the bunch grasses Andropogon furcatus and A. scoparius. It extends into early October. Its floral activity is terminated, however, by the middle of September by the anthesis of Gentiana puberula and Solidago rigidiuscula.

Buffalo Grass Formation. Buffalo grass Buchloë (Bulbilis) dactyloides 1) and grama grass Bouteloua oligostachya are the sole facies. The dense masts of the former are peculiarly exclusive. Other grasses are never abundant, and are to be found only in the intervals between the masts of the buffalo-grass. Bouteloua curtipendula and B. oligostachya are the most common, while Aristida purpurea, Agropyron pseudorepens, Distichlis spicata var. stricta and Koeleria cristata are the remaining grasses. Asclepias pumila, Verbena bipinnatifida are characteristic while Amorpha canescens, Petalostemon candidus, Solidago missouriensis are common and Yucca angustifolia (= Y. glauca), Ipomoea leptophylla, Psoralea esculenta, Dalea aurea are infrequent.

The area of Buchloë is large, but greatly interrupted. The Llano Estacado (Staked Plain) of Texas, a tableland about 4000 feet above sea level, is covered with a buffalo-grass sod. Under different names it is continued north to the Black Hills of Dakota as a treeless plain, in many parts not even a native cottonwood (Populus monilifera) being found along the streams for hundreds of miles. This is the true "Great American Desert" of early writers.

That covered by Bouteloua oligostachya and Andropogon scoparius is more extensive. The fullest development of this formation is in the Dakotas and eastern Montana from which it extends southward through Nebraska and Kansas. The prairie, or range, as it is called in western South Dakota, is tenanted by such characteristic species as: Stipa comata, Bouteloua hirsuta, B. oligostachya, B. curtipendula (= B. racemosa), Agropyron glaucum, A. repens, Yucca, Sophora sericea, Schrankia, Psoralea, Astragalus cassinarius (= A. carvocarpus), A. flexuosus, Gutierrezia, Solidago missouricensis, S. canadensis, S. serotina, Helianthus petiolaris 2). The Buchloë-prairie type exists on the argillaceous tablelands, the Bouteloua type is found over sandy stretches, thus offering a transition to the sand-hill flora.

The southern extension of the North American prairies is to be found in Texas which has a climate that may appropriately be called "a grass plains climate", and the grasses may be said to form the foundation element

of the vegetation. Even in the region of greatest rainfall, however, the climatic conditions, together with geologic and physiographic conditions, result in a decidedly xerophytic vegetation. The grass vegetation is a direct expression of the xerophytic conditions, and certain ecologic types of grasses are found through the entire region, as *Buchloé dactyloides* specifically designated as "buffalo grass". Setting aside the coastal prairies 1) which are sod prairies with grasses and sedges of mesophytic requirements and annuals similarly adapted to wet, low, coast lands, the prairie plains demand our attention as the southern extension of the prairie region proper.

The prairie plains embrace the grass country of central and north Texas. They merge with the prairies in the wooded country to the east and with the Great Plains proper (Llano Estacado, Edwards Plateau and Stockton Plateau) on the west. The dominant vegetation is a grass formation, but upon the areas of sand and gravel exposed on the hills, bluffs and streamways, where the sod is not compact, timber formations prevail. Grand Prairie which occupies a lower Cretaceous area supports a grass vegetation, accompanied by a very abundant assortment of prairie annuals and herbaceous perennials, with ligneous, tuberous, or bulbous underground parts. The underground parts according to Bray are several types, as succulent fibrous roots with a thick zone of mucilaginous or saponaceous tissue (*Krameria secundiflora*, *Yucca rupicola*); woody subterranean tuberous caudex *Liatris pycnostachya*; mucilaginous bulbs with impervious coats (*Allium*, *Cooperia*), and deep irregular or fusiform roots with hard sclerenchymatous coat (*Asclepias decumbens*). The plants with these characters assist in giving individuality to the grass formation. The Red Beds plain 2) of reddish chocolate soil, west of the Grand Prairie, shows two specific formations constantly to be distinguished, viz: the *Hilaria Jamesii* association and the *Aristida fasciculata* association which occurs on ridges alternating with the lower areas of *Hilaria*.

These grasses together with the black grama *Hilaria mutica*, curly mesquite grass (*H. cenchroides*) from a fairly close sod in which grow such annuals as *Sphaeralcea angustifolia*, *S. cuspidata*, *Malvastrum cocineum*, *Gaillardia pinnatifida*, *Actinella Tetranieris* linearifolia, *Perezia runcinata*, *Xanthium texana*, *Berlandiera lyrata*, *Polypterus Hookerianna*, *Hoffmanseggla stricta* and *Mentzelia nuda*.

1. See discussion under head of coastal plain forests where these prairies are referred to. The great plains elements extend southward in great strength over the Llano Estacado, the plateau country about Fort Davis, Alpine, Marfa, &c. and are strong over the central Red Beds country, the Grand and Black prairies, and extend in some strength over the black prairie lands to the Gulf at Port Lavaca and Corpus Christi. There is further an element which is not typically Great Plains, or at any rate is a more mesophytic expression of it which occupies the prairie region in Indian Territory and eastern Kansas and is very strong in the Black and Grand Prairies of Texas. Quoted from a letter, dated Oct. 28, 1903 from Prof. William L. Bray, University of Texas.

Harshberger, Survey N.-America.
The southern part of the Texan prairies receives species from the south and southwest. At the north the prairie annual flora of Oklahoma and Kansas appears to be largely predominant. These prairie annuals form an important factor in the flora especially in the early spring, when there is a solid mass. This disappears before the climax of the grass vegetation season. — West of the Pecos River there is a vast prairie region traversed by many ranges of hills and bluffs and cut up by many arroyos and ravines; much of it, however, is simply undulating or nearly level.

The gramineous vegetation of this prairie consists chiefly of the following species: Buchloë (Bulbilis) dactyloides (east of the Pecos), Bouteloua oligostachya, B. hirsuta, B. eriopoda, B. curtipendula (= B. racemosa), Pappophorum Wrightii, Triodia (Tricuspis) pulchella, Hilaria mutica (north), H. cenchroides (south), Aristida purpurea, A. dispersa (= A. fasciculata), A. striata, A. Schiediana, Muhlenbergia texana, M. arenicola, Andropogon saccharoides, A. scoparius, Lycurus phleoides, Panicum obtusum, P. leucophoem (= P. insulare), P. Hallii, Setaria caudata.

This prairie although apparently level, is seldom entirely free from shrubs, such as: Clematis Drummondii, Acacia filicinæ (= A. Hartwegii), Microrhamnus ericoides, Zizyphus obtusifolius, Ephedra trifurca, E. antisiphilitica, Larrea mexicana (= Covillea tridentata), Yucca angustifolia (= Y. glauca), Nolina texana, Opuntia arborescens. — The summer display of herbs is owing to the presence of: Talinum aurantiacum, Calophases linearis, Linum Berlandieri, L. rigidum, Callirhoe pedata, C. digitata, Sida physocalyx (= S. hastata), S. diffusa, Sphaeralcea hastulata, Nyctaginea capitata, Abronia turbinata, Osyphalus (Allionia) angustifolius, Cooperia Drummondii, Phascolus retusus, Rhyphosia texana, Petalostemon candidus, P. multiflorus, Verbena bipinnatifida, Chamaesaracha coronopus, Solanum eleagnifolium, Tradesactia virgínica, Commelina virginíca, C. dianthifolia, Salvia lanceolata, Tetraelea Coulteri, Eriogonum annuum, Croton corymbosus, Aulepia Junesii (= A. latifolia), Senecio longilobus, Gaillardia pulchella, Riddellia tagetina, Gutierrezia erioëarpa, Lygodesmia aphylla, Aster tanaacetifolius, Thelesperma gracile.

A large portion of southeastern Texas included between the coast the Rio Grande and the Nueces River is a dry grassy country 1 and therefore should be included with the prairies. Zones of chaparral and small timber traverse and break this prairie into detached portions. Such trees as Celtis mississipiensis, Prosopis juliflora, Fraxinus viridis, Acacia Farnesiana, Ulmus americana fringe the dry forks and beds of streams. One of the prairies is covered with Elionurus ciliatus, Aristida purpurea, Sporobolus cryptandrus, while near the Rio Grande and coast grow Bouteloua texana, Cynodon dactylon, and Bouteloua oligostachya is rarely seen.

The Grand and Black prairies, lying parallel, with only the narrow strip of lower Cross Timbers between, extend from near Austin north in a broad strip to the Red River bottoms, forming an extensive area over which trees and forest species are mainly restricted to narrow stream bottoms. Here and there island strips of grassy prairie are found in the timbered region farther east becoming smaller and smaller. The timber is restricted to narrow strips in the river bottoms in the territory of the coast prairie which extends from

western Louisiana to San Antonio Bay and irregularly beyond. These prairies are characterized by a rich growth of grass and many flowering plants and spreading trees of *Quercus virgins* (= *Q. virginiana*) drooped with *Tillandsia usneoides* border the grassland 1).

According to Bray 2) the pronounced xerophytic aspects of this grassland vegetation are due to the occurrence of summer drouths indicated by the occurrence of perennial roots, storage tubers, bulbs etc. The associates of the grasses are so numerous that for some weeks during spring, these flowering plants may quite overshadow the grasses so that the prairiers are brilliant with color.

The following prairie annuals occur in great abundance: Draba euneofolia, Astragalus Nuttallianus, A. Lindheimeri, Lupinus texensis, Euphorbia biecolor. Croton corymbulosus, C. texensis, Gaura suffulta, Monandra citriodora, Centaurea americana, Evax prolifera, Gaillardia pulchella, Gutierrezia texana, Hymenopappus corymbosus, Parthenium hysterrophorus. The perennials with roots and tubers of various structural adaptations are Yucca rupeicola, Krameria secundiflora, Astragalus caryocarpus, A. mexicanus. Indigofera leptosepala, Psoralea esculenta, Stillingia sylvatica, Oenothera (Hartmannia) speciosa, Asclepias decumbens, Salvia farinacea, S. azurea, Pentstemon coba, Cucurbita foetidissima, Lygodesmia aphylla together with such bulb plants as Allium Nutallii, Nothoscordum striatum (= N. bivalve), Androstephium violaceum, Zephyranthes texana, Cooperia Drummondii, C. pedunculata.

Loess Mound Formation. The loess mounds on which a peculiar flora grows parallel the Missouri River in Missouri and Iowa. There is a heavy belt of timber back of the mounds and back of this is a high rolling prairie. Between the mounds and the river is a fertile gumbo bottom-prairie.

Where the south and west side are steep and precipitous there are found such plants as Yucca angustifolia, Gaura eoeinnea. Psoralea argophylla, Sporobolus arioides; where they descend gradually to the bottom are Pentstemon grandiflorus, Astragalus lotiflorus, Dalea enneandra (= Dalea taxiflora), while on the north are pockets running up the sides of the mounds covered with dwarfed trees and shrubs: Corylus virginiana, Rhus glabra, Salix humilis. The tops of the mounds present a denuded appearance and of considerable elevation and upon them grow Castilleia sessiliflora, Psoralea argophylla, Gaura eoeinnea, Gheyryrhiza lepidota, Yucca angustifolia, Sporobolus arioides, Anemone cylindrica, Liatris punctata, Bouteloua hirsuta, Dalea enneandra, Lithospermum angustifolium (= L. linearfolium), Lygodesmia juncea, Laetuea pulchella and Onosmodium molle 3).

b) The Sand Hill Territory.

The sand hills extend from Nebraska into the Dakotas on the north Kansas, Oklahoma, Indian Territory and Texas on the south and into northeastern Colorado. Some sand hill species enter the level prairies: *Aristida basiramea*, *A. oligantha*, *Carex stenophylla*, *C. stipata*, *Cyperus*

2) Distribution and Adaptation of the Vegetation of Texas. Bulletin University of Texas No. 82 Scientific Series No. 10 1906: 86.
Schweinitzii, Gaertneria (Fraseria) tomentosa, Hypericum majus, Polygonum camporum. The trees are almost entirely confined to the narrow belts which border the streams. These belts are wider in the east, but in the west they are contracted and the trees become shrub-like. They are Finus scopulorum, Juniperus virginiana, J. scopulorum, Ulmus americana, Celtis occidentalis, Fraxinus viridis, Negundo, Quercus macrocarpa, Salix humilis and tristis, Rhus glabra and trilobata etc.

The most abundant woody plant of the sand hills is Amorpha canescens. Next comes the western sand cherry Prunus Besseyi, Ceanothus ovatus. All these belong to the true sand hill flora. The sand hill region is the region of the bunchgrass (blue-stem and beard-grass), blow-out and sand-draw formations.

The facies of the blue-stem formation are Andropogon scoparius, Stipa comata, Calamagrostis (Calamovilfa), and Andropogon Hallii. The secondary species are Eragrostis tenuis (= E. trichodes), Oryzopsis (Eriocoma) cuspidata, Muhlenbergia pungens, Bouteloua hirsuta, B. olligoustachya, Sporobolus cryptandrus, Cyperus Schweinitzii. Modifications are imparted to it by Prunus Besseyi, Rosa arksana, Amorpha canescens, Ceanothus ovatus and Yuca angustifolia (= Y. glauca), while as additional species occurring here should be mentioned Cycloloma atriplicifolium, Froelichia floridana, Eriogonum annuum, Chrysopsis villosa, Alopappus (Eriocarpum) spinulosum, Opuntia humifusa (= mesacantha), Psoralea lanceolata. The facies of the beardgrass formation are Aristida purpurea, Aristida basiramea, Sporobolus cuspidatus and Stipa spartea. Secondary species of grasses are Panicum Scriberianum, Aristida oligantha, Koeleria cristata, and Eutonia obtusata while Helianthus petiolaris, Potentilla arguta, Argemone alba, Plantago Purshii and Linum rigidum also occur.

Blow-out Formation (see ante, Trans-iton district § 2, p. 525). The blow-out formation is restricted to peculiar crateriform hollows formed by wind action, and termed blow-outs. It occurs of course only in the sand hills proper, since it is here only that blow-outs are found. The facies are Redfieldia flexuosa, Muhlenbergia pungens, Eragrostis tenuis (= E. trichodes), Oryzopsis cuspidata and Calamagrostis (Calamovilfa) longifolia, with secondary species, such as Tradescantia virginia, Eriogonum annuum, Oenothera serratula, Lathyris ornatus var. flavescens, Astragalus (Phaca) longifolia and Euphorbia petaloideas.

Sand-Draw Formation. The sand-draw formation has much in common with the blow-out formation. It is less frequent and grasses are not controlling. Their place is taken by Cristatella Jamesii and Polanisia trachysperma while the grasses if present are represented by scattered tufts of Munroa squarrosa, Eragrostis major and Paspalum setaceum associated with Euphorbia petaloideas, E. hexagona and E. montana. According to Rydberg in the sand-draws grow Ipomoea leptophylla, Argemone platyceras, Mentzelia nuda, Oenothera albicaulis, Lupinus argenteus var. proembens, Cleome serratula (= C. integrifolia), Chrysopsis villosa, Asclepias speciosa, Croton texensis, Eriogonum annuum, E. corymbosum, Prunus pumila while rarer plants are Peetis angustifolia, Acrerutes auriculata, Petalostemon tenuifolium, P. gracile.

All along the principal river valleys of Kansas especially over the broad valley of the Arkansas river are hills of sand with such plants as Prunus chiaea (= P. angustifolia), Lithospermum hirtum (= L. Gmelini), Yuca angustifolia (= Y. glauca), Discopleura capillacea, Viola tricolor var. arvensis, Cristatella Jamesii, Linaria canadensis, Froelichia gracilis, Hosaekia Purshiana

Association of *Artemisia frigida* Willd.
Growing in the mesa region together with *Argemone intermedia* Sweet in the left foreground, *Stipa Vaseyi* Scribn, the tall grass in the center and in the background *Yucca angustifolia* Pursh (= *Y. glauca* Nutt).
Photograph by Dr. H. L. Shantz.

Euphorbia marginata Pursh.
Growing on the outer margin of salt marshes in the prairie district.
Photograph by Dr. H. L. Shantz.
C. Foothill District.

The foot-hill district extends northward through the Dakotas, Montana, Assiniboia and Alberta to its northern limit in Athabasca. On the south it extends along the mountains into Colorado and New Mexico. Physiographically it is a region of high, barren table-lands, broken by numerous canyons and dotted with frequent buttes. Floristically it is marked by the great number of mountain plants which here find their distributional boundary on the east 3). One territory the Pine Ridge, is akin topographically and phytogeographically to the Black Hills of South Dakota. In another territory the flora of the foothills represent an eastward extension of the flora of the Rocky Mountains. The trees of the foot-hills are not confined to the canyons as in the sandhills but on the contrary grow on the hills and knobs of the mountains. They are Pinus ponderosa var. scopulorum, Juniperus scopulorum, J. virginiana, Populus monilifera (= P. deltoides), P. angustifolia, Ulmus americana, Celtis occidentalis, Fraxinus viridis (= F. lanceolata), Fraxinus pennsylvanica, Prunus americana, Acer glabrum, Negundo accroides, Ostrya virginiana, Betula occidentalis and a rich assortment of shrubs 3). Three plant formations may be distinguished, (1) the undershrub formation of table lands and bad lands, (2) the mat and rosette formation of buttes and hills, (3) the grass formation of high dairies and sandy plains.

1. Undershrub Formations.

The undershrub formation is not peculiar to the foothills of the prairie province; it here covers but a small area in comparison with vast stretches occupied by it in the Great Basin. In the foothills, this formation exhibits two types, the one confined to high, somewhat grassy table lands, the other found solely on alkaline or bad lands. The former may be termed the sagebrush type, the latter the greasewood-white-sage type 4).

Sage Formation. (See plate XII of Artemisia frigida). This is named the sage-brush formation, because the westward species of Artemisia, chiefly A. tridentata, constitute the bulk of its controlling elements. In Nebraska A. tridentata, A. frigida, A. filifolia, A. cana and A. canadensis are found on the high plains and barren table-lands of the foot-hill region. Bigelovia graveolens (= Chrysanthemum nauseosus), Euvertia lanata, Gutierrezia euthamiae

1) CARLETON, M. A.: Characteristic sandhill Flora. Transactions Kansas Academy Science XII part I; 32—34.
2) POUND, ROSCOE and CLEMENTS, F.: The Phyto-Geography of Nebraska. 83.
(= G. saro thrac), singly or collectively constitute the principal facies in the middle prairie region. The secondary species are few and unimportant. The undershrubs are sparsely disposed and with these a few isolated mats of Bouteloua and occasional stragglers of Pectis are about all that are to be found. However, a very pronounced formation of the sage-brush kind takes exclusive possession of extensive sandy areas in the table-lands of the foot-hill region. Artemisia filifolia (see Fig. 27 page 523) constitutes the sole facies. It grows in dark green bunches, 3—5 centimeters wide and very high. These bunches stand less than a meter apart and at the edges of the formation by several meters. These areas are readily discernable at a considerable distance. Artemisia frigida is frequently a secondary species. Carex stenophylla is the characteristic turf-builder of this formation, while Stipa comata, Bouteloua oligostachya, Calamagrostis (Calamovilfa) longifolia, although present, are of little importance. Some species have been derived from the eastern sand-hills: Psoralea lanceolata, Chrysopsis villosa, Helianthus petiolaris and Lathyrus polymorphus (= L. decaphyllus).

Greasewood-white-sage Formation. The loose and easily eroded soil of the Bad Lands due to the washing away of canyon sides and buttes together with the heat and slight rainfall combine to render the vegetation a meager one. Two undershrubs give name to the formation, viz: the greasewood Sar-cobatus vermiculatus and the white sage Eurotia lanata.

Some secondary species that take part in the formations are found in the edges of the Bad Lands. Stephanomeria minor (= Piloria tenuifolia) is a secondary species. In barren gulches Astragalus multiflorus and in dry canyons Cryptantha Fendleri occur. The sand binding grass Calamagrostis (Calamovilfa) longifolia is in the Bad Lands of Nebraska. In the Dakotas, bunch-grasses, Oryzopsis (Eriocoma) cuspidata, Andropogon scoparius are reported as well. Cnicus (Carduus) undulatus, Aster multiflorus, Gutierrezia euthamiae (= G. saro thrac), Bigelovia graveolens (= Chrysothamnus nauseosus), Musenion tenuifolium, Mentzelia ornata (= M. decapetalum), Oenothera caespitosa, Lesquerella Ludoviciana (= L. argentea) and Eriogonum Jamesii have been observed usually along the edges. This list shows how barren and sterile such a territory is.

Cercocarpus Scrub Formation. This scrub formation, according to RAMALEY, exists in north central Colorado where the Cercocarpus bushes grow three feet tall and are, as a rule, so closely associated that it is difficult to walk between them. Sparsely distributed over the landscape, the botanist sees trees of Pinus ponderosa var. scopulorum and Juniperus (Sabina) scopulorum. On limestone ledges the shrubs are often distinctly placed.

The plants of this formation are Townsendia grandiflora, Erystimum aspera-rium, Actinella (Tetraneuris) acutulis, A. planata, Astragalus succulentus, A. erassiarpus, Harbouria (Cieuta) trachypleur, Mammillaria missouriensis, Opuntia polyacantha, Lesquerella (Vesicaria) montana, Lithospermum angustifolium (= linearifolium), Phlox bryoides, Eriogonum flavum (E. crassifolium), Frasera speciosa, Leucocerinu montanum, Astragalus Drummondii, A. caespitius, Oxytropis multiseps, Pentstemon secundiflorus (= P. unilateralis), Mertensia brachyloba. The following plants are occasionally found: Yucca angustifolia (= Y. glauca), Helianthus petiolaris and Arenaria Hookeri.

This is the chief of the foot-hill formations in Nebraska. Almost the sole vegetation is sparse and of the mat or rosette type on buttes, cliffs on rocky hills, rocky ridges and on sandy hillsides. At times a considerable number of secondary species occupying the intervals between the mat-forming species. The monotony found in the bunch-grass formations is relieved in this formation by the bright and showy flowers. Two types may be distinguished (a) the mat formation of buttes and cliffs, including also the mat formation of rocky ridges and stony hills and (b) the rosette formation of sandy hillsides.

Mat Formation of Buttes and Cliffs. This varies considerably in respect to the constituent species.

Thus on Scott’s Bluff according to POUND and CLEMENTS are found Arenaria Hookeri, Gilia spicata, Phacelia cincinnata (≡ P. heterophylla), Astragalus caespitosus, Eriocarpum grindelioides (≡ Aploppus Nuttallii). Aploppus (Stenotus) armerioides, Pieradina acaulis, Eriogonum sericeum, Townsendia sericea (≡ T. exscapa) while Arenaria Hookeri, Gilia pungens var. caespitosa, G. iberidifolia, Phlox Hoodii. Eriogonum flavum, E. multiceps. E. erinaceum, Musineon tenuifolium, Astragalus (Orophaea) sericeus. Homolobus caespitosus and H. montanus (= Astragalus kentrophytus) are characteristic on the cliffs and foothills of the Lodge Pole territory of Nebraska. The chalk rocks of this territory support Gilia iberidifolia, G. congesta and Phlox Hoodii and Oreocarya fulvocanes-cens is a cliff inhabitant. The buttes of the Hat Creek basin show Eriogonum flavum, Sedum stenopetalum, and Eriocarpum grindelioides (≡ Aploppus Nuttallii), Berberis repens (≡ B. aquifolium, and Symphoricarpus pauciflora are to be met with on the buttes or upper canyon sides in this basin. The secondary species are emigrants from other xerophytic localities.

In the Lodge Pole territory the dominant and characteristic plants of rocky ridges and high, stony hillsides are Phlox broyoides, P. Hoodii, Arenaria Hookeri, Eriogonum flavum, Lesquerella alpina, Townsendia exscapa and Viola Nuttallii. Cheilanthes lanuginosa grows on the exposed rocks. — Forming dense cespitose masses on high rocky situations in the Pine Ridge country are Homalobus caespitosus, Gilia pamila, Arenaria Hookeri. Eriogonum flavum, Loeelia texana and here and there are Euphorbia montana, Opuntia humifusa, O. missouriensis (= O. polyacantha) and Thermopsis rhombifolia. Ceroecarpus parvifolius is an undershrub of such situations.

Rosette Formation of Sandy Hillsides. The hills over which it prevails are not unlike the true sandhills being almost pure sand and very sparsely covered with vegetation, but they have no blow-outs and the bunch-grasses are absent. Rosette plants are prominent.

Hill after hill will be covered sparingly with Polygala alba, Pentstemon albidus, P. caeruleus (≡ P. angustifolius), Phlox Douglasii, Paronychia Jamesii, Astragalus sericeus and Oreocarya suffruticosa (≡ Krynitzia Jamesii). Polygala alba and Paronychia Jamesii are the most important and abundant of these plants. Few grasses enter this formation. The most frequent are small circular mats of Bouteloua oligostachya or even Buchloë dactyloides and a few individuals of Stipa comata with Rumex venosus. Astragalus sericeus is almost buried in the sand. Elsewhere Gilia spicata. Oenothera caespitosa, Arenaria Hookeri, Paronychia Jamesii. Pentstemon glaber take part in the rosette formation.

Sandstone Bluff Formation. This formation of several associations is found along the bluffs which border the deep narrow valleys of the streams in the
prairie district. In Iowa in Winneshiek County 1) the following associations are found on the St. Peter sandstone.

Upon the harder exposed rock surfaces grow the following lichens and mosses:

<table>
<thead>
<tr>
<th>Lecanora rubina Vill.</th>
<th>Urecolaria scruposa L.</th>
<th>Bryum intermedium Brid.</th>
</tr>
</thead>
</table>

Upon the upper portion of the ledges in crevices, or on exposed surfaces where a little sandy soil had accumulated:

<table>
<thead>
<tr>
<th>Cladonia cornucopioides L.</th>
<th>Sisyrinchium angustifolium</th>
<th>Potentilla tridentata Sol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cladonia rangiferina L.</td>
<td>Polygala viridescens L.</td>
<td>Prunus pumila L.</td>
</tr>
<tr>
<td>Grimaldia barbifrons Bisch.</td>
<td>(= P. sanguinea L.)</td>
<td>Pirus melanocarpa Willd.</td>
</tr>
<tr>
<td>Polytrichum piliferum Schreb.</td>
<td>Linum sylvarum Rid.</td>
<td>(= Aronia nigra Willd.)</td>
</tr>
<tr>
<td>Selaginella rupestris L.</td>
<td></td>
<td>Scutellaria parvula Michx.</td>
</tr>
</tbody>
</table>

Where the sandy soil on the rock ledges is greater the following occur:

<table>
<thead>
<tr>
<th>Muhlenbergia glomerata Trin. (= M. racemosa Michx.)</th>
<th>Lespedeza capitata Michx.</th>
<th>Gnaphalium obtusifolium L. (= G. polycephalum Michelx.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bouteloua hirsuta Lag.</td>
<td>Helianthum canadense L.</td>
<td>(= Euthamia caroliniana L.)</td>
</tr>
<tr>
<td>Eragrostis Frankii Steud.</td>
<td>Lechea tenuifolia Michx.</td>
<td>Solidago rigidaeula T. & G.</td>
</tr>
</tbody>
</table>

In the better shaded, or protected places, the botanist finds Woodsia ilvensis, Rubus Bailey-anus (= R. Enslenii), while the sandy talus below the ledges yields Sporobolus brevifolius, Cupergus filiculmis, Polygonum tenue, P. Douglasii, Solidago nemoralis, Lechea tenuifolia, Helianthum canadense. — The deeper soil of the talus and the sandy ledges encourages a tree vegetation: Betula papyrifera, Quercus macrocarpa, Q. tinctoria, Amelanchier canadensis, A. rotundifolia, Prunus pennsylvanica, P. virginiana and the usual associated mesophytic herbs. Elsewhere on the wetter sandstone grows Marchantia polymorpha, Poleora platyphylla, Athyrium filix-femina, Cystopteris bulbifera.

3. The Grass Formations.

Grass Formation of High Prairies and Level Sandy Plains. This is emphatically a grass formation and resembles at a distance a typic prairie. It is controlled by two grasses which not only furnish the bulk of the vegetation and give aspect to the landscape, but sometimes take exclusive possession of extensive areas. *Stipa comata* and *Agropyron spicatum* (= *A. divergens*) are the ruling grasses usually associated with one or the other predominant. The high rolling prairies are controlled by *Stipa comata*. The level sandy stretches where the covering is thin and in patches are dominated by *Agropyron pseudorepens*.

The *Stipa* formation of high prairies is the chief grass formation of the region, where the typic grass forms a sod in which secondary species occur such as *Lupinus platensis*, *Astragalus mollissimus*, *A. adsurgens*, *Oxytropis*

Lamberti, Psoralea argophylla and in many places Tradescantia virginica, all with blue flowers which display their colors to perfection against the color of the glistening white awns of Stipa. Thelesperma trifidum with yellow flowers also are found and as of secondary importance Psoralea digitata, P. tenuiflora, P. esculenta also with blue flowers. Later in the summer when Stipa becomes dry, Aster canescens, A. commutatus, Liatris punctata, Oxybaphus (Allonia) linearis and O. hirsuta appear.

Bouteloua (Grama Grass) Formation. Elsewhere in Kansas on the high prairies are Bouteloua curtipendula (≡ B. racemosa), B. oligostachya, B. hirsuta, Lepachys tagetes, Gaillardia pulchella, Engelmannia pinmatifida, Erysimum asperum, Astragalus lotiflorus and mollissimus, Ipomoea leptophylla, Oenothera Hartwegi and the prevailing sunflower Helianthus petiolaris.

The same formation occupies practically the whole mesa region and the low land surrounding it at the eastern base of Pikes Peak in Colorado. It extends many miles north and south and is also typic of the high plains eastward. Bouteloua oligostachya is the dominant species of the formation. The hills and ridges are occupied by Bouteloua hirsuta, alternating with Andropogon scoparius (see Fig. 27 pag. 523) and Koeleria cristata which often become dominant, while the grama grass occupies the sides of slopes and level expanses. Alternating with this are Andropogon furcatus and Calamovilfa longifolia. It is here that the most important associations of the formation are found, many of which extend for many miles without interruption. Grindelia squarrosa forms such an association, while Schaedonardus paniculatus (≡ S. texanus) and Thelesperma intermedia unite to form one. The Gutierrezia saro-thae association occurs more often near the mountains and Artemisia canadensis is also important in similar localities. Opuntia polyacantha (≡ O. missouriensis) and O. arborescens (see Fig. 28) occur but sparingly. Other associations occur in which such species as Carex stenophylla, Selaginella densa, Yucca angustifolia (≡ Y. glauca) (see Fig. 28), Plantago Purshii, Lupinus argenteus are prominent.

The principal species of the prevernal aspec, according to Shantz 1) are Leucocerinum montanum, Townsendia sericea (≡ T. exscapa), Anemone patens (≡ Pulsatilla hirsutissima), while the secondary species are Cymopterus glomeratus (≡ C. acuclus), Cymopterus (Phelopterus) montanus. The greatest number of spring flowers are produced on the north slopes, because here the moisture content of the soil is greater, and this aspect is characteristic of the mesa before the spring rains appear. The vernal aspect is ushered in with the spring rains and usually extends from about the first of May to the middle of July. The principal species are Senecio oblancoelatus, Yucca angustifolia (≡ Y. glauca), (see Fig. 28), Kellermannia yucolegna, Pleospora phragmo-spora, Astragalus Drummondii, Pentstemon coerulesc (= P. angustifolius), P. secundiflorus, Opuntia missouriensis (= O. polyacantha), Astragalus bisulcatus, Euphorbia robusta, Uromyces cinnamollus, Echinocereus viridiflorus, Arenaria Fendleri. Sophora sericea, Ipomoea leptophylla. The aestival aspect is marked by the increase in temperature and decrease in rainfall. Then, according to my observations the mesa is dry and the surface soil looks parched. The facies is due, to Bouteloua oligostachys, B. hirsuta, Andropogon scoparius, A. furcatus, Muhlenbergia gracillima. The principal species are Artemisia frigida, Gutierrezia emansiae (G. saro-thae), Aristida

1) Botanical Gazette XI.IL: 16—47, 179—207.
longiseta, Psoralea tenuiflora, Plantago Purshii. In general it may be said, that the mesa top is dominated by the typical Bouteloua oligostachya formation, the crests by B. hirsuta, the low ground with this formation alternating with Muhlenbergia gracillima, or Andropogon occidentale. During the month of August, the rainfall decreases markedly and is only slight in September. The principal autumnal species are Artemisia frigida, Gutierrezia euthamiae (= G. sarothrae), Grindelia squarrosa, Senecio spartioides, Chrysopsis villosa, Bigelovia graveolens var. glabrata (= Chrysothanmus graveolens). The secondary species are Liatris (Lacinaria) punctata, Eriogonum Jamesii, Aster polycephalus, Munroa squarrosa, Artemisia canadensis, Chrysothanmus platensis, Eruetia lanata. Hence from a study of the composition of this formation it appears that it is typical of the high plains.

Fig. 28. Yucca angustifolia Pursh (= Y. glauca Nutt.) in the foreground and Opuntia arborescens Engelm. in the background. Photograph by Dr. H. L. Shantz with permission of United States Department of Agriculture.

Agropyron Formation of level, sandy and gumbo Plains. On low hillsides the sod is more or less thick, but on level stretches it is sparse. The controlling grass of this formation is Agropyron spicatum associated with Festuca tenella (= F. octoflora), F. ovina, Koeleria cristata, Elymus clymoides, Buchloe dactyloides, Bouteloua oligostachys with large patches of Monarda citriodora, Hedcoma Drummondii, Malvastrum coccineum, Plantago Purshii and Rumex venosus. On less sandy situations near the hills Malvastrum coccineum is almost controlling. Astragalus microlobus is often copiously distributed over definite areas sprawling in the Agropyron sod.
Pepper grass-Cactus Formation. This is included in the grass formations, because the covering mainly consists of Boutelona oligostachys and Buchloe (Bulbilis) dactyloides, both present in nearly equal importance. From the middle of June throughout the remainder of the year these grasses dry up and are not conspicuous. Then the pepper-grass Lepidium intermedium appears interrupted by patches of Opuntia missouriensis (= O. polyacantha). Secondary species have little or no importance in this formation. The pepper-grass cactus formation extends over vast stretches of mesa and table-land north of the Platte River, on the flat tops of peaks and buttes in the Bad Lands of Nebraska and Montana.

4. The Salt Marshes and Meadows.

Salty or alkaline marshes or meadows are to be found throughout the prairie region. In the meadows Distichlis spicata var. stricta is always the controlling and is often the sole inhabitant. Agropyrum pseudorepens is often associated with it.

In small, salt water ponds in the bottoms, Ruppia occidentalis occurs, while in salty wet soil grows Salicornia herbacea, and in the drier soil Atriplex hastata, A. argentea are found in dense patches. Polygonum Ramosissimum also occurs in places. In southern Kansas are Corispermum hyssopifolium, Cycloloma platyphylla, Atriplex expansa, Kochia americana, Scirpus maritimus and S. Torreyi, and in Big Salt Marsh in addition, according to Hitchcock, grow Aster exilis, Flaveria angustifolia, Chenopodium rubrum. All through the central part of Kansas, salt marshes and salt springs are quite common and small salt licks are found in most parts of the state.

Along a stream issuing from Big Marsh one of the largest of the salt marshes occur Scirpus pungens (= S. americanus), S. campestris, S. lacestris, and in the higher parts of the alluvial deposit Distichlis spicata, Panicum crus-galli, Elymus virginicus, Spartina cynosuroides, Rumex britannicus, Polygonum hydropiper, P. persicaria, P. ramosissimum, Amaranthus chlorostachys (= A. hybridus) and Iva ciliata. On the outer margin of the barren salt area are the following circum-areas of vegetation:

1. Distichlis spicata L. (= D. maritima Raf.).

1) See also Bessey, Charles, E.: American Naturalist XXXII: 111.

5. Fresh Water Plants and Wet Meadow Formations.

Marsh Formation. The four types of this formation are constant only when each is subject to certain typic conditions. In other words they exhibit numerous gradations through the suppression of proper facies or the intrusion of other facies. Certain species of general distribution are of course, common in marshes everywhere. Thus Eleocharis palustris is found in the four types of marsh, while Ranunculus (Oxygraphis) Cymbalaria is lacking only in the false loose-strife association.

Reed-grass Rush Association. This type of marsh is found in the lowlands along rivers an on the flood lands of the principal streams in the prairie district. The facies are Phragmites communis, Scirpus lacustris, S. fluviatilis, Typha latifolia, Alisma plantago and Sagittaria variabilis while Spartanium eurycarpum, a common element may occasionally assume the importance of a facies. Sometimes the individual facies become isolated and these are represented in marshy places by one or two facies, sometimes Scirpus lacustris or Typha alone, sometimes Typha and Sparganium, or Sagittaria and Sparganium.

The most typical of these marshes, as closed formations in which layers are developed, occur along the Missouri River. The primary layer is composed invariably of either Phragmites communis, or Scirpus fluviatilis, or both. The secondary layer is constituted by Phalaris arundinacea and species of Scirpus, viz: S. lacustris, S. atrovirens, S. pungens (= S. americanus). Between the clumps formed by Scirpus, Sagittaria, Alisma, Typha and Sparganium grow. Carex lurida occupies the muddy edges; Calamagrostis canadensis in the shallow pools; Eleocharis palustris a dense carpet from the shore throughout the swamps; broken by yellow patches of Ranunculus multifidus (= R. delphinifolius), Ranunculus eymbalaria and occasionally by Ranunculus pensylvanicus. Herpestis (Monniera) rotundifolia is a common floating plant while Cicuta maculata and Lythrum alatum are found to a limited extent along the Niobrara River.

Water hemlock Association. This type is found in the sub-sand hills under the sandhills proper. The facies are water hemlock Cicuta maculata, Asclepias incarnata, Lythrum alatum, and Scirpus atrovirens. — Smartweed Association. This is of wide distribution, occuring in wet ravines and canyons. It is never of large extent. The facies are Polygonum lapathifolium, P. incarnatum, P. acre (= P. punctatum) and these are not in layers. — False loose-strife Association. This occupies broad shallow ditches which are
often filled with a dense growth of *Ludwigia polycarpa*, *Ammannia coccinea* and *Penthorum sedoides* while *Eleocharis palustris* forms thick carpets at the edges, associated occasionally with *Nasturtium palustre*, *Mentha canadensis*; *Spirodela polyrhiza* floats on the surface of the water.

Wet Meadow Formation. This type of formation occurs more especially in the sand-hills and foothills, but occasionally in the prairies proper. — Rush Meadow Association: This type of wet meadow is frequent in the sub-sand-hills. The facies are *Juncus tenuis*, *J. nodosus*, *Scirpus atrociirens* and *S. pungens* (= *S. americanus*). *Juncus tenuis* and *Scirpus atrociirens* are most commonly associated and with them *Glyceria nervata*. In more sandy meadows to the westward *Juncus nodosus* and *J. Torreyi* are prevailing. — Fern Meadow Association: These meadows are confined to wet valleys and canyons of the Loup and Niobrara and the valleys of the principal prairie rivers. They consist of almost exclusively two facies *Nephrodium* (*Aspidium*) thelypteris and *Onoclea sensibilis* with which ferns are associated *Epilobium lineare*, *Hypericum majus*, *Galium trifidum* and *Campanula aparinooides*. — Sedge Meadow Association: This association is of rare occurrence in Nebraska and then along the Missouri River and main streams. *Carex stricta*, *C. filiformis* var. *lanuginosa*, *Spartina cynosuroides* occur in such formations.

Pond and Stream Formation. This exists in several well characterized types mentioned below viz.:

Pondweed Association: This is the most widely distributed aquatic association of the prairie region. The facies are *Potamogeton natans*, *P. amplifolius*, *P. pauciflorus* (= *P. foliosus*), *Myriophyllum spicatum*, *Zannichellia palustris* and *Ceratophyllum demersum*, while *Potamogeton spirillus*, *P. hybridus* (= *P. diversifolius*), *P. zosteraefolius* occurring as secondary species are rare. — Pond-lily Association: The ponds where aquatics grow are of two kinds; those in which the facies is *Nuphar advena*, and those in which *Nymphaea tuberosa* and *Nelumbo lutea* are found. The former type is found in small ponds in the sand-hills and especially in the sub-sand-hills. The second type occurs in the edge of the wooded bluff country. Here the association of species is in large ponds and shows zonation of sedges and grasses. — Water Crowfoot Association: The facies of this type is *Ranunculus circinatus* (= *Batrachium trichophyllum*) with such species as *Nasturtium officinale*, *Cardamine hirsuta*, *Veronica americana* and *V. Anagallis* associated with it. — Stonewort Association: Pools and small lakes, according to *Pound and Clements*, who have been followed in general in the description of the foregoing associations, possess a characteristic vegetation in which four species of *Chara* enter largely, viz: *Chara contraria*, *C. foetida* var. *longibracteata*, *C. fragilis* and *C. coronata*. The other plants present are *Potamogeton* and *Naias flexilis*.

Algal Associations and Limnoplankton. Certain stagnant pools in the valley of the Middle Loup River, Nebraska, besides supporting *Lemma minor*, *L. trisulca*, *Spirodela polyrhiza*, *Riccia fluitans*, *Utricularia vulgaris*, *U. minor*,
Part IV. Chapter 3.

Zannichellia palustris, Zygnema cruciatum and species of Chara showed the following algae 1).

Chroococcaceae.

Merismopedia glauca Naeg. | Chroococcus cohaerens Naeg.
Merismopedia violacea Breb.

Nostocaceae.

Oscillaria (several species). | Nostoc pruniforme Ag.

Palmellaceae.

Scenedesmus caudatus Corda. | Raphidium polymorphum Fres.
Scenedesmus dimorphus Kg.
Scenedesmus obtusus Meyen.
Pediastrum angulosum Ehr.
Pediastrum Boryanum Turpin.

Desmiaceae.

Docidium baculum Breb. | Cosmarium pulcherrimum Nord.
Cosmarium bioculatum Breb. | undulatum Corda.
Cosmarium conspersum Ralts.
Cosmarium Meneghinii Breb.
Cosmarium nitidum De Not.

Diatomaceae.

Cymbella gastroides Kutz. | Gomphonema constrictum Ehrb.
Navicula viridis Ehr. var. amphigompus | Cocconeis pediculus Ehr.
Navicula major Kutz. | Epithemia gibba Kutz.
Navicula producta W. Sm.
Pleurosigma intermedium W. Sm.
Gomphonema clavatum Ehr.
Melosira varians Ag.

6. The intruding Forests of the Foothills.

The Great Plains have no indigenous forest flora, but the trees have been derived from two sources of supply the forests of the Mississippi basin and the forest of the Rocky Mountains represented in the foot-hills. The two elements as previously described meet in the valley of the Niobrara where according to Bessey Juglans nigra and Pinus ponderosa var. scopulorum mingle.

The deciduous leaved forest trees are found in their most typic forms only along the large rivers. Their extension eastward has followed the water

courses). They do not form true forest growth but represent the tongue-like extensions of the eastern forested areas. Tracing the western limits of the species of trees derived from the east we find the following extend farthest west in the north central states: Fraxinus viridis (= F. lanceolata), Celtis occidentalis, Ulmus americana, Juniperus virginiana, Quercus macrocarpa, Populus monilifera (= P. deltoides) and Negundo aceroides (= Acer Negundo). The last two can exist in the prairies because they grow on the river banks where the supply of water is abundant. In the south central states Quercus obtusiloba (= Q. minor) and Q. marylandica (= Q. nigra) replace Quercus macrocarpa. Celtis occidentalis, Ulmus americana and Juniperus virginiana extend farthest west into the Texas plateau, meeting and mingling there with Sapindus Drummondii, Juglans rupestris, Prosopis juliflora and the other southern and western species.

The evergreen forests characteristic of the Rocky Mountains have not extended eastward as rapidly as the eastern forests have extended westward, but are confined wholly to the foot-hills and to the country. Eight species of trees have entered the plains of Nebraska from the Rocky Mountains by way of Pine Ridge and Cheyenne Ridge. These are at first Pinus ponderosa var. scopulorum, Shepherdia (Lepragyraea) argentea. The other trees which have entered from the west have followed one or the other of these two ridges. Thus Populus tremuloides, P. angustifolia, Acer glabrum, Betula occidentalis follow Pine Ridge. On Cheyenne Ridge, Populus acuminata has pushed in from the Wyoming foothills and the mountain mahogany Cerocarpus parvifolius has pursued the same course.

It remains shortly to distinguish the associations of the forests in these territories, following POUND and Clements for Nebraska, in considering firstly the River Bluff Formation. This is most extensive and characteristic. It is typic of the bluffs of the Missouri and other large streams. Two types are known, the red oak- and the bur oak association.

The Red oak-Hickory Association is constituted by the following trees Quercus rubra, Carya alba (= Hicoria ovata, Ulmus americana, Fraxinus viridis, Juglans nigra and as other species occur this type is both variable and heterogeneous.

In the lower Missouri Valley Quercus macrocarpa, Q. coecinea, Q. alba, Carya porcina (= Hicoria glabra), C. amara (= Hicoria minima) are occasional intruders. In places the elm-sh-walnut facies are established and become typic of the greater part of the formation. These three facies are broken by the incursion of such invaders as Celtis occidentalis, Acer dasycarpum, Gymnocladus canadensis (= G. dioica), Crataegus mollis, Zanthoxylum americanum, Cercis canadensis, Ostrya virginiana. Ulmus fulva is often associated with its congener U. americana which it may rarely replace. Gleditschia triacanthos, Juniperus virginiana, Platanus occidentalis are scattered here and there. The role of elms is an important one. Smilax hispida grows in the

deep woods. Ampelopsis (Parthenocissus) quinquefolia, Vitis vulpina, Rhus radicans grow at the forest edge. Menispermum canadense, Sicyos angulatus, Clematis virginiana, Echinocystis lobata also occur. — The secondary layer of shrubs and small trees is never well developed in this formation. Two climbers occur Apios tuberosa, Clematis Pitcheri and the following grasses scattered in patches: Cinna arundinacea, Asperella (Hystrix) hystrich.

The lower herbaceous layer in spring is characterized by Phlox divaricata, Erythronium albidum, E. americanum, Viola senbriscula, Aquilegia canadensis (on steep bluffs), Cyripedium pubescens (rare), Orchis spectabilis (rare), Claytonia virginica, Dicentra cucullaria, D. canadensis. Sanguinaria canadensis and Caulophyllum thalictroides haunting secluded dells are rarely seen in the woods. The estival-serotinal aspect is heterogeneous, consisting of Sanieula marylandica, Cryptotaenia canadensis, Osmorrhiza longistylis, Geum canadense, Acalypha virginica. Parietaria pensylvanica, Cystopteris fragilis, Adiantum pedatum also occur.

The Bur oak-Elm-Walnut Association has much in common with the preceding into which it grades. It is characterized by the disappearance of both Quercus rubra and Carya alba, which are replaced chiefly by facies of bur oak Quercus macrocarpa and elm Ulmus americana, in which the walnut Juglans nigra is often abundant. A large number of eastern trees have likewise dropped out, viz: Aesculus glabra, Amelanchier canadensis, Asimina, Betula nigra, Cercis, Crataegus mollis and Staphylea trifolia. In places especially on steep overhanging bluffs along the Missouri occur Juniperus virginiana, Tilia americana, Ostrya virginiana, Zanthoxylum americanum. Along the bluffs grow Shepherdia argentea, Prunus demissa, Amelanchier botryaptum.

An interesting modification of this association is found on the coteaus of eastern Dakota (Plateau du Coteau du Missouri) extending into Canada. Acer saccharum has found a lodgement in some of the canyons on the eastern margin of the coteaus and with Quercus macrocarpa, Ulmus americana, Tilia, Ostrya forms a characteristic forest. The common shrubs are Corylus americana, Rosa sp., Prunus virginiana and americana. The trees of this district are crooked, gnarled, low and spreading, in fact it is a brush thicket. The undershrub layer and the climbers of the two forest associations considered are practically the same, although certain of the eastern species of shrubs and herbs have entirely disappeared.

Pine Ridge and Pine Bluff Formation. This formation is characterized by a single facies Pinus ponderosa var. scopolorum. Open woodland of this species occur on exposed bluffs, ridges etc. Under such conditions, the individuals are medium-sized. The trees are dotted here and there in the thin grassy vegetation. In some places trees of Juniperus virginiana are intermingled. In the pine forest secondary species are absent, although such herbs as Picola chlorantha, P. secunda, Pterospora andromedea are exceptions.

Lower down the pine is intermingled with Fraxinus viridis, Ostrya virginiana, Celtis occidentalis, Ulmus americana, Populus monilifera, Salix amygdaloides and the montane species Acer glabrum, Populus tremuloides, Betula occidentalis with a shrubby layer of Prunus demissa, Amelanchier alnifolia, Shepherdia argentea, Rosa Fenderi, Ribes oxyacanthoides, R. cereum, R. aureum, R. floridum, Vitis vulpina and Rhus radicans, R. trilobata with Symphoricarpos pauciiflorus, S. occidentalis and the vine Ampelopsis (Parthenocissus) quinquefolia. The herbs of especial
interest are Corallorhiza multiflora, C. striata, Erigeron subtrinervis, Arnica cordifolia, Calochortus Nuttalii, C. Gunnisoni, and Zygadenus elegans!

In north central Colorado, according to RAMALEY, this formation is characterized by the rock pine Pinus ponderosa var. scopulorum, Juniperus scopulorum is rare. The vegetation in general is sparse, probably not over one fourth of the ground surface is covered with plants and the light brown and pink of the granite gives color to any near view. The species in the order of their abundance are Pectenstemon humilis, Geranium Fremontii, Harbournia (Cieuta) trachysperma, Scutellaria Brittoni, Artemisia frigida, A. glandulosa, Potentilla glandulosa, Erysimum asper-rinum, Anemone patens var. Nuttaliana (Pulsatilla hirsutissima), Oxytropis Lamberti, Lesquerella (Vescicaria) montana, Mertensia lanceolata, Heuchera parviflora, Townsendia grandiflora, Opuntia polyacantha (O. missouriensis) and such shrubs as Ribes pumilum, Jamesia (Edwina) americana, Cercocarpus parvifolius.

Springbranch-Canyon Formation. This is characteristic of deep canyons with precipitous sides and numerous springs. Three types may be recognized, viz. linden type, paperbirch type, Pseudotsuga type.

The Linden-Cedar-Ironwood Association are marked by Tilia americana, Juniperus virginiana, Ostya virginiana, Fraxinus pubescens (= F. pennsylvanica). One or two facies only may occur on account of the shut-in character of the canyon, while on the bluffs all the facies may be present. At the base of bluffs and along streams there are thickets composed of Cornus asperifolia, C. stolonifera, C. sericea, Amorpha fruticosa, associated with which are Sambucus canadensis and Zanthoxylum americanum.

The canyons with the Paper-birch Association are confined to a narrow strip of country on either side of the Niobrara River. The canyons are invariably narrow and precipitous. The facies of this association is Betula papyrifera. The individuals are tall and strict and stand above the other trees; Juniperus virginiana, Ostya virginiana, Fraxinus pubescens. Along the upper edges of the canyons, the usual thickets of Prunus americana, P. demissa, Symphoricarpus occidentalis, Ribes aureum occur. On the shady canyon sides grow Elymus strictus, Heuchera hispida, Campanula rotundifolia and Arabis nudicaulis.

The third type exists in north central Colorado and may be called appropriately the "Canyon Forest Formation". The vegetation extends along the stream banks, wherever there is a narrow canyon. The facies consists of Pseudotsuga and Salix.

The secondary species in shady localities are Acer glabrum, Rhus Rydbergii, Populus tremuloides, Potentilla fruticosa, Prunus melanocarpa, Physocarpus Torreyi (= Opulaster monogynus), Ribes valicola (= R. saxosum), Clematis criophora, Hydrophyllum Fendleri, Galium triflorum, Smilacina stellata. Growing in more sunny situations are the same pine and junipers, Juniperus (Sabina) scopulorum and J. sibirica. Symphoricarpus occidentalis, Rhus trilobata, and Ribes pumilum. The plants immediately along the streams are Populus angustifolia, Almus tenuifolia (= A. ineana var. virens), Mertensia eiliata, Heracleum lanatum, Iris missouriensis and Dodecatheon radicatum.

Alluvial Island Formation. The islands are sand-bars which have been captured by trees. They exist in all the large rivers of the prairie region.

1) See Bessey, Charles E.: Some characteristics of the foothill Vegetation of western Nebraska. American Naturalist XXXII: III.

Harshberger, Survey N.-America.
Salix cordata and Populus monilifera, both fast growing trees, are prevailing. In the lower stretches of the Missouri, Populus monilifera prevails; at the mouth of the Niobrara Salix cordata is most prominent and exclusive; elsewhere the two trees may be in association. The secondary layers are almost entirely lacking. Salix fluviatilis grows at the water’s edge, with Amorpha fruticosa; Negrudo occurs in open places while back in the formation grow Cornus shrubs and Ribes gracile with swampy vegetation of Cicuta maculata, Scirpus atrovirens, Asclepias incarnata and Lythrum alatum. A loose grass covering exists on many of the islands consisting of Elymus virginicus, Muhlenbergia racemosa and Poa pratensis.

2. Rocky Mountain Region.

The flora of the Stony or Rocky Mountains is a complex one largely derivative. The principal forest trees as we have shown (pages 244—250) are Pacific coast species that have migrated from a center located somewhere between northern central of California and Puget Sound. The alpine species show a strong northern character, and in all probability, they reached the region during, or after, the final close of the glacial period. Other species have wandered in, as elements of the Mexican flora, while still others (a small percentage), are endemic to the mountains and probably originated in them. Two districts may be distinguished, a northern, or Dominion District, situated above a point represented by the headwaters of the Saskatchewan River and Milk River (a tributary of the Missouri) on the east, and Clarke’s River, a tributary of the Columbia, on the west; and a southern Park Mountain District extending south from this point into northern New Mexico. An eastern outlobe is the Black Hills Territory.

The flora of the Park Mountains is continued southward into the mountains of New Mexico and southwestern Texas, which are isolated from each other by considerable stretches of arid country with a flora characteristic of the Great Basin, or the Mexican tableland. These areas are shown on the general map and a district might be established to include this flora. As these mountains are separated by wide intervals of desert country from the main Rocky Mountain mass and as the Rocky Mountain vegetation is likewise broken into more or less disconnected masses found only on the higher mountain slopes surrounded by a sea of Great Basin, or Mexican arid plant types, it has been thought best to treat each of these separated mountainfloras, as well, as those of Rocky Mountain affinity (as delimited on the map) in central Nevada with the phytogeography of the Great Basin and Mexican floristic regions.

A. Northern Dominion District).

Although the Selkirks and the Rocky Mountains are orographically of the same system, yet floristically there is a considerable difference, because

1 See plate I: Mt. Stephen in the Rocky Mts. of Canada.
the former mountains are more humid than the latter and because the snow
fall is heavier, so that there are few plants in flower in early summer, but by
July and August the mountain slopes, the borders of mountain brooks and
the high meadows are bright with flowers.

As the country included in this district has not been wholly explored and
as large tracts are, therefore, geographically unknown, we are far from pos-
sessing complete information about the flora. The following notes practically
sum up in general way our knowledge of the vegetation of the district.

Coniferous Forest Formation. This varies in different localities. The follow-
ing trees enter into this formation in the Rocky Mountains: *Pseudotsuga
Douglasii* (= *P. taxifolia = P. mucronata*), which occurs on the eastern
slopes of these mountains about the mouth of the Kananaskis and up the
valley of the Bow River. In the dry southern portion of the interior it is
confined to the higher uplands between the various river valleys. It is absent
from the higher portions of the Selkirks. Northward, however, it comes down
to the general level of the country. — The western hemlock *Tsuga Mertens-
siana* (= *T. heterophylla*) occurs on the coast and follows up the Fraser
and other rivers to the limit of abundant rainfall. It appears in the Selkirk
and Gold ranges and is found on the west slopes of the Rockies, while *Tsuga
Pattontiana* (= *T. Mertensiana*) is an alpine species in the fastnesses of the
Selkirks. — *Thuja plicata* (= *T. gigantea*), is unknown in the dry central
plateau but is found in the damp valleys of the Selkirk and Gold Range
mountains. — *Picea Engelmanni* is the prevailing forest tree of the Cana-
dian Rocky Mountains (see plate I) and appears to characterize the interior
plateau forming a dense stand on the mountains. Northeastward, where it
mingles with *Picea alba* (= *P. canadensis*), its limits are indefinable. It borders
the streams and swamps in the northern portion of British Columbia at 2,500
to 3,500 feet altitude. — *Abies subalpina* (= *A. lasiocarpa*) grows abundantly
in the Gold and Selkirk ranges and in the Rocky Mountains east of McLeod's

1 The writer is indebted to the botanic explorations of Miss Edith Farr, Mrs. Charles
Schaffer, Messrs. Charles H. Shaw, M. H. Jacobs, Stewardson Brown, E. Newton Harvey
and the late Edward R. Heacock of Philadelphia for information about the plants of the Cana-
dian Rockies and Selkirk mountains. See also, Van Brunt, Cornelius: The wild flowers
of the Canadian Rockies. Transactions Massachusetts Horticultural Society. 1895: Part I, 182;
Farr, Edith M.: Contributions to a Catalogue of the flora of the Canadian Rocky Mountains
and the Selkirk Range. Contrib. Bot. Lab. Univ. of Penn. 1907. III: 1—88; Brown, St. and
Mrs. Charles Schaffer: Alpine Flowers of the Canadian Rocky Mountains 1908; Wheeler,
A. O.: The Selkirk Range Vol. I, text: Vol. II, maps Ottawa 1905, see especially the appendix
pages 399—404.

2 A most unfortunate confusion of names is found in the synonymy of the two hemlocks
of the western states. The western hemlock in the older systematic works is designated *Tsuga
Mertensiana Engelmanni* (not Carrière), but other botanists call it *Tsuga heterophylla* (Raf.)*Sarg.
The mountain hemlock long designated *Tsuga Pattoniana* (A. Murray) Sénéclauze, becomes *Tsuga
Mertensiana* Bong., Carr. In order to prevent this confusion throughout this work, the two hem-
locks are quoted thus: Western coast hemlock, *Tsuga Mertensiana* (= *T. heterophylla*); moun-
tain hemlock, (*Tsuga Pattoniana* (= *T. Mertensiana*).
Lake. In places, it occurs only in scattered groves and crosses the mountains in the Peace River country and enters that between Lesser Slave Lake and the Athabasca River. — The Russell Mountains at the forks of the MacMillan River, a tributary of the Pelly River, which empties into the Yukon at 137° W. Long., 63° N. Lat., are spurs of the northern Rocky Mountains. In the canyons and along the small streams of these mountains, the white spruce, _Picea alba_ (= _P. canadensis_) is abundant extending up the mountain sides on northerly exposures to about 2,000 feet (610 m) and on southerly to 2,500 to 3,000 feet (915 m). At higher elevation, it is outnumbered by _Abies subalpina_ (= _A. lasiocarpa_). The deciduous trees are _Populus balsamifera_, _P. tremuloides_, abundant along the banks of Russell Creek and on the benches associated with _Betula alaskana_, while on hot exposed benches, _Pinus Murrayana_ is abundant 1. — _Pinus ponderosa_ reaches latitude 51° 30' in the valleys near the upper portion of the Columbia River and extends to the Selkirk and Gold ranges. It forms open groves in the valleys, where it is sometimes exclusive, and stretches up the slopes of the Mountains and upon the plateaux to an elevation of 3,000 feet where it is replaced by _Pseudotsuga Douglasii_ and _Pinus Murrayana_ (= _P. contorta var. Murrayana_). This pine densely covers great areas on the eastern slopes of the Rocky Mountains northward, while in the southern part of British Columbia, it is found on those parts of the plateau and hills which rise above 3,500 feet, but it never reaches timber-line. _Larix occidentalis_ is found in the Rocky Mountains and in the valleys of the Gold and Selkirk ranges, its limit there being determined by that of abundant rainfall. _Larix Lyallii_ grows at an elevation above 7,000 feet near Lake Louise, B. C. and elsewhere, and is the distinctive tree of this phytogeographic district. — _Populus tremuloides_ abounds in all parts of the district characterizing some of the fertile lands. In the southern dry portions, it usually grows on areas denuded by fire and on the dry mountain slopes while _P. balsamifera_ is a characteristic tree of the river valleys.

The valley of the Kootanay River is characterized by open woods consisting of _Pinus ponderosa_, _Pseudotsuga_, _Larix occidentalis_ with _Purshia tridentata_ and _Balsamorhiza sagittata_, but near the upper Columbia Lake a denser forest prevails of which the black or scrub pine, _Pinus Murrayana_ and Engelmann’s spruce, _Picea Engelmannii_, form a large part, and these trees form the forest growth of the Rocky Mountains about the great bend of the Columbia River. — Northward to the headwaters of the Fraser River the same trees constitute the forest growth, viz: _Pinus, Picea, Pseudotsuga Douglasii_ (which there reaches the northern limit) _Populus tremuloides_, _P. trichocarpa_, _Betula papyrifera_, _Juniperus virginiana_ with such shrubs as _Amelanchier alnifolia_, _Sorbus sambucifolia_. The Rocky Mountain country north of this

is practically unexplored. Eastward of the Rocky Mountains proper in the country drained by the headwaters of the Peace and Athabasca rivers the forest vegetation consists of *Picea Engelmanni*, *Pinus Murrayana*, *Abies subalpina* (western species) and the following trees of extensive eastern range, *Picea alba*, *Populus tremuloides*, *P. balsamifera*, *Betula papyrifera*, *Larix americana*.¹

The shrubs beneath the trees in this district are *Sambucus pubens*, *S. melanocarpa*, *Vaccinium membranaceum*, *Shepherdia argentea*, *Ribes laxiflorum*, *R. echniatum*, *Menziesia glabella*, *Sorbus sambucifolia*, *Juniperus sabina* var. *procumbens*, *Taxus brevifolia*, *Vaccinium ovalifolium*, *Berberis repens* (= *B. aquifolium*). *Fatsia* (Echinopanax horrida, *Ledum latifolium*, *Cornus canadensis*, *Acer glabrum*, *Rhododendron albiflorum*, *Viburnum opulus*, *Amelanchier alnifolia*. The under-shrubs *Ribes laevstree*, *R. prostratum* occur on the moraines or along glacial streams, while *Vaccinium microphyllum* (= *V. erhythrocarpum*), is found on rocky aretes in the district with *Vaccinium ovalifolium*.

The moist ravines of the Selkirs are filled with an almost impenetrable undergrowth of which the spiny *Fatsia* (Echinopanax horrida) is a prominent element, together with *Pachystima myrsinites*, *Lysichiton kamtschatus*, while the long beards of dark lichens, Alectoria jubata var. proliza, *Alectoria sarmentosa*, *Usnea barbata* var. *hirta* festoon the trees. *Evernia vulpina*, a yellow lichen, epiphytic on trees, is also conspicuous in the forests of the Canadian Rocky Mountains. The moose of the woods are *Philonotis fontana*, *Dieranum fusescens* (on rotten logs), *Hypnum Schreberi* while the following fern plants form an important element of this formation growing on the forest floor: *Lycopodium complanatum*, *L. annotinum*. *Nephrodium* (Aspidium) spinulosum var. *dilatatum*, *Pteris aquilina* var. *lanuginosa*, *Equisetum pratense*, *Aspidium lonchitis*, *Nephrodium dryopteris*.

Sub-alpine Coniferous Forest Formation. In cool and sub-alpine localities *Abies subalpina* forms extensive groves (*Abies subalpina* Facies), while *Pinus albicaulis* and *Larix Lyallii* abound only at the upper limit of arboreal growth which ranges from 6,000 to 7,000 feet (*Pinus albicaulis* Facies). The succession of trees species seems to be in general, as follows: *Larix Lyallii* Parl., strictly alpine; *Abies subalpina* Engelm. (= *A. lasiocarpa* Hook.), alpine and sub-alpine, and extending downward to the higher and cooler valleys; *Picea Engelmanni* Engelm. and *Pinus Murrayana* "Oreg. Com.", sub-alpine and extending downward, *Thuja plicata* Don. (= *T. gigantea* Nutt.), west slopes only; *Pseudotsuga Douglasii* Carr., lower valley on both slopes; *Larix occidentalis* Nutt., base of mountains on the west.

Bog Formation. The plants of sphagnum bogs are of an arctic-boreal character and have many species already described above (*Kalmia microphylla*, *Viola labradorica*, *Rubus arcticus*, *Epinedium*, *Mimulus moschatus*, *Polygonum viviparum*, *Bryanthus empeitriformis*, *Sphagnum Russellii* and *Sphagnum acutifolium* are the bog mosses of the Selkirk country. The morainic deposits, ¹) For additional details the reader is referred to DAWSON, GEORGE M., Note on the Distribution of some of the more important Trees of British Columbia. Geological and Natural History Survey of Canada. Report of Progress for 1879—80, p. 167—177 B. with map; also Report of Progress for 1876—77, p. 17—149; DAWSON, GEORGE M.: Preliminary Report on the physical and geological Features of that Portion of the Rocky Mountains between latitudes 49° and 51° 30'. Part B. Annual Report 1885. Geol. & Nat. History Survey of Canada.
madow-like as to vegetation, are occupied by *Epilobium latifolium*, *E. luteum*, *E. leptocarpum*, *Vaccinium membranaceum*, *Mimulus Lewisii*, *Cryptogramma acrostichoides*, *Echinopspermum floribundum*, *Bryanthus*, *Cassiope*, *Dryas Drummondii*, *Castilleia miniata*, *Arnica cordifolia*, *Valeriana sitchensis* and as snow plants, *Pulsatilla occidentalis* and *Erythronium grandiflorum*.

Avalanche Slide Formation. A conspicuous landscape feature of the Selkirk, as distinguished from the main Rockies, according to Merkel H. Jacobs, are the avalanche slides the bright green vegetation of which contrasts strongly with the dark green of the forested slopes. The vegetation of these slides consists of dense masses of alder, *Alnus sinuata* (= *A. viridis* var. *sinuata*), willows and young birches, which alone survive in the usual track of avalanche snow, because they bend without breaking until they come to occupy such avalanche paths exclusively. The vegetation of these slides suggests that of Mount Katahdin in Maine with slide-covered thickets of *Alnus viridis*; the alder thickets of Roan Mountain, N. C. (see page 496); the alpine scrub of the mountains of Japan, where *Pinus parviflora* and *Alnus viridis* abound and the subalpine bushland of Europe.

Torrent Fan Formation. A torrent fan is a loose mass of sand gravel and boulders forming a level delta-like deposit of considerable extent at the foot of a waterfall or torrent. Such soil is peculiarly suited to herbaceous plants, such as, *Saxifraga aizoides*, *Tofieldia glutinosa*, *T. palustris*, *Cypripedium parviflorum*, *Dryas Drummondii*, *Dryas octopetala*, *Parnassia parviflora*, *Antennaria lanata*. Orchis rotundifolia, *Sisyricium angustifolium*; *Primula Maccalliana*, *Pinguicula vulgaris*, Carex pseudocirrioidae and *Juniperus prostrata*. Such an assemblage of plants is found near Emerald Lake in the Selkirk Mountains.

Alpine Plant Formation. The summits of the Selkirk Mountains above 6,000 feet elevation display truly alpine conditions. They are for the most part bare hills covered solely with lichens, a few grasses and herbs that adopt the alpine habit. These summits suggest strongly the alpine peaks of Switzerland and the Tyrol with the same variety of exposure and the vegetation of much the same aspect.

Some of the plants of these hills, as far as known between 6,000 and 8,000 feet elevation, are: *Vaccinium mierophyllum* (= *V. erythrocarpum*), *Phleum alpinum*, *Delphinium bicolor*, *Pedicularis racemosas*, Carex nigricans, *Bryanthus* (*Phyllodoce*) glanduliflorus, *B. (P.) empetriformis*, Silene acaulis (forming alpine mats), while the plants above 7,000 feet are *Seneio lugens*, *Gentiana glauca*, *Alopappus Brandegf.* The bare hills of the Il-ga-ehuz range farther north rise from a surface dotted with small ponds and lakes. The vegetation is quite alpine consisting of *Sedum Rhodiolae* (= *R. rosea*), *Erigeron salsuginosus*, *Pedicularis euphrasiioides*, *P. groenlandica var. surrecta*, *Menziesia glandulifera*, *Dryas octopetala*, *Campanula lasiocarpa* and *Gentiana glauca*.

The following plants are typical alpine species of the Selkirk:

Botrychium simplex E. Hitchcock.			
Phegopteris alpestris Hoppe.			
Lycopodium Selago L.			
sitchensis Rupe.			
Festuca brachyphylla Schultes.			
Trisetum subspicatum L.			
Carex atratiformis Britton.			
* pseudocirrioidae* Rydb.			
* rupestris* Rydb.			
Juncus Mertensianus Bong.			
* Parryi* Engl.			
Luzula (Juncoides) spicata DC.			
Tofieldia borealis Wahlenb. (= *T. palustris* Oxyria digyna L.			
Oxyria digyna L. [Huds.].			
Silene acaulis L.			
* Lyallii* Wats.			
Alsine laeta Richards.			
Arenaria capellaris Poir. var. *nordifolia* Ledeb.			

Anemone Drummondii Wats.
 » patens. L. var. Nuttalliana Gray.
Kranunculus nivalis L. var. Eschscholtzi Wats.
 (= R. Feschscholtzi Schel.).
 » alpeophillus A. Nelson.
 » pygmaeus Wahl.
Drya nivalis Liliib.
Heuchera glabra Willd.
Leptarrhena amplifolia Sternb.
Mitella Brewer Gray.
Saxifraga caespitosa L.
 » cernua L.
 » rivilaris L.
Viola canina L. var. adunca Gray (= V. adunca
Dryas octopetala L. Smith).
Rubus arcticus L. var. grandiflorus Ledeb.
Sibbaldia procumbens L.
Oxytropis (Aragallus) alpicola Rydb.
Epilobium angalldidifolium Lam.
Bryanthus glanduliflorus Gray.
Gaultheria humifusa Graham.
Androsace subumbellata A. Nelson.
Castilleia palida Kunth.
Myosotis alpestris Schmidt.
Aplopappus Lyalli Gray.
 » (Pyrocoma) Brandgei A. Gray.
Erigeron simplex Greene (= E. uniflorus Hook).
Seneceio triangularis Hook.
Taraxacum rupestrre Greene.
 » scopalorum Gray.

In concluding this sketch of the vegetation of the Canadian Rocky Mountains it can be said that the alpine plants are not confined exclusively to the mountains above timber-line. Owing to the presence of large glaciers that descend into the valleys the presence of large amounts of treeless morainic deposits and varied conditions of soil and light exposures many alpine plants descend to the treeless areas much below the true altitudinal limit of the arborescent species.

B. Southern Park Mountain District.

This district comprehends the Stony, or Rocky mountains south of the international boundary. The ranges have a general north and south trend and between them there are valleys of larger or smaller size known as parks. Above the timber-line the peaks are naked, below on the flanks of the mountains, great forests stand, and often spread over elevated plateaus, while the valleys are beautiful prairies or parks. Small and picturesque parks exist sometimes called gardens. This is, therefore, a land of mountain ranges and valleys, of peaks and parks, of naked crags, forest clad mountains, lakes and plateaus (see ante page 106).

i. The southern Rocky Mountains Forests.

a) Coniferous Forest Formations.

The forest formations of this district are essentially coniferous. Here, as compared with the eastern deciduous forest region, there is a more equable distribution of temperature throughout the year, with winter rains and dry summers.

The deciduous element is largely confined to edaphic situations along the water courses 1). Timber line seems to exist in the Sawatch and other ranges

1) The writer is indebted to the following mentioned in the Bibliography page 71—74: Leiberg, J. B.; Ayres, H. B.; Town, F. E.; Tweedy, Fr.; Brandee, T. S.; Jock, John G.
at an elevation between 11,000 and 12,000 feet. In the Yellowstone National Park timber line is at 9,600 feet elevation on the peaks and somewhat higher on the table-lands. In Colorado timber line as on Pikes Peak is at 11,500 feet and the altitudes of the belts mentioned for the Coeur d'Alene Mountains are much higher for the same belts in Colorado farther south. This fact should be born in mind, as it explains the apparent discrepancy in the member of feet given for the altitudinal distribution of each species.

The forest on many ranges of the northern Park Mountains exhibit three distinct types, viz: (1) the belt of *Pinus ponderosa* 1, (2) the belt of *Pinus mon- ticola*, (3) the belt of *Abies subalpina* (= *A. lasiocarpa* 2). The *Pinus ponderosa*-belt does not extend above 2,900 feet although on warm southern exposures it may go as high as 4,700 feet. It consists of *Pinus ponderosa* (10 per cent.), *Pseudotsuga Douglasii* (70 per cent.), *Abies grandis* (15 per cent.), *Larix occidentalis*, *Pinus Murrayana*. The altitudinal limit of *Pinus ponderosa* as a timber tree is 3,500 feet above sea-level, while *Pseudotsuga* readily ascends to 4,500 feet on the slopes facing the south west and east. *Larix occidentalis* is a bench-land tree associated with *Pinus ponderosa* in such places. In the Bitterroot Mountains, *Pinus ponderosa* forms a belt reaching to 5,800 feet; in the canyons it extends from two to three miles above their outlet. On the east side of Bitterroot Valley, it fringes the tributary canyons sometimes with a pure growth 3).

In the neighborhood of Pikes Peak, Colorado, *Pinus ponderosa* is the most abundant and widely distributed tree and is found from the lowest altitude (under 6,000 feet) up to above 10,000 feet where it is supplanted by the other species. In some places, it forms a true forest, but as a rule *Pseudotsuga Douglasii* is more or less plentifully associated with it and occasionally it occurs mixed with *Pinus Murrayana*. On south slopes, rocky ledges 8,000 feet to timber line 11,000 feet, *Pinus aristata*, *Pinus edulis*, *Picea Engelmannii*, *Picea Parryana* = *P. pungens*, etc. On the higher it is not so localized as in the lower slopes where it predominates on slopes facing the south, while *Pseudotsuga* is more plentiful on those facing the north. This is a marked feature in most of the canyons and gulches which extend in an easterly and westerly direction.

Pinus ponderosa is abundant at 8,000 feet in southwestern Colorado. According to Brandegee *Pinus flexilis*, an uncommon tree here, grows with it at an altitude of 8,500 feet as do also *Abies grandis*, *A. Menziesii*, *Picea Engelmannii*, *Pseudotsuga*.

1) In this belt always *Pinus ponderosa*, var. *scopulorum* (Editor).

The undergrowth in the northern belts of Pinus ponderosa is noted for the absence of Menziesia ferruginea and M. glabella while Juniperus scopolorum, Salix Nuttallii (= S. flavescens), Alnus rhombifolia, Cercocarpus ledifolius, Amelanchier alnifolia, Crataegus Douglasii (C. brevispina), Prunus emarginata, Rhamnus Purshiana, Acer glabrum, Ceanothus sanguineus, C. velutinus, Cornus stolonifera occur in considerable frequency. In the Coeur d'Alene Mountains the sparse undergrowth consists of HolodiscusDiscolor, Ceanothus sanguineus, Philadelphus Lewisii and sedges Carex Geyeri.

In the Bitterroot Mountains according to Pammel in this forest belt are found with Pinus ponderosa the following: Rubus Nutkanus, Prunus demissa, Philadelphus microphyllus, Amelanchier alnifolia, Betula occidentalis, Geranium Fremontii, Berberis repens (= B. aquifolium).

The principal species in this formation where Pinus ponderosa and Pinus flexilis are associated in the Pikes Peak country in Colorado are in spring, Aretostaphylos uva-ursi, Pentstemon secundiflorus, P. humilis, and as secondary species occur Draba streptocarpa, Pentstemon humilis var. roseiflora, Erigeron multifidus. The summer growing plants are Geranium caespitosum, Potentilla fissa, Arenaria Fendleri and in autumn occurs Gentiana affinis.

2. The Pinus monticola belt lies below 5,000 feet. It is predominant in many places. It is found especially between altitudes of 2,400 and 4,800 feet above sea level and reaches its greatest development between elevations of 2,800 and 3,500 feet. The principal trees are Pinus monticola (42 per cent.), Larix occidentalis (35 per cent.), Thuya plicata, Pinus Engelmanni, western coast hemlock, Tsuga Mertensiana, Abies grandis. Mixed with these species are scattered individuals of Pseudotsuga, Populus trichocarpa, Betula occidentalis, B. papyrifera, Salix Nuttallii, S. lasiandra.

In northwestern Montana such a forest type occupies the middle slopes. The heaviest growth in this belt is on the level areas bordering the principal streams. Around Flathead Lake, Pinus monticola grows on lower Swan River and the South Fork of Flathead River together with Abies grandis. Thuja plicata, western coast hemlock Tsuga Mertensiana, mountain hemlock Tsuga Pattoniana. This belt of Pinus monticola occupies northern and eastern slopes and follows canyon bottoms from an altitude of 5,800 feet down to 2,400 feet.

The more common shrubs in the belt of Pinus monticola are Acer glabrum, Sambucus glauca, S. melanocarpa, Ceanothus sanguineus, C. velutinus, Cornus stolonifera, Rhamnus Purshiana and Rubus parviflorus. The upper areas toward the subalpine belt carry the densest undergrowth of over 80 per cent. of Menziesia ferruginea and M. glabella.

3. The Abies subalpina-belt exists above 5,000 feet. It is not a continuous forest being broken at intervals by grassy slopes or rocky crests. In the main Abies subalpina and Pinus albicaulis prevail. The subalpine belt covers all the forested slopes in the Bitterroot Mountains having a northern, or direct western exposure above 5,800 feet. The forest trees in the main canyons in the Bitterroot ranges are Larix Lyallii, Abies subalpina (= A. lasiocarpa), Pinus Murrayana, P. albicaulis, Abies grandis, Picea Engelmanni, Taxus brevifolia, mountain hemlock, Tsuga Pattoniana. A great variety of combinations are formed by these trees, but the alpine fir is everywhere the predominating tree. In descending to 3,300 feet its associates are Pinus Murrayana, Picea Engelmanni. In the Yellowstone Park Abies subalpina is

nowhere abundant, while in the Teton Mountains this tree occurs about timber line on the northern slopes and follows streams down to lower elevations. \textit{Pinus flexilis} occurs on exposed peaks. In Colorado \textit{Abies subalpina} reaches up to the average timber line also extending well down the mountain sides on cold northern slopes. Here it is rare and locally distributed among \textit{Picea Engelmanni} and occasionally with \textit{Pinus Murrayana}, but nevermingles with \textit{Abies concolor}.

The subalpine belt presents four chief features. The first and most typical consists of a forest of medium density with little underbrush, the ground being covered with low shrubby \textit{Vacciniums}, alpine sedges or rushes while \textit{Xerophyllum} tenax forms dense swards. Litter is scanty and humus is practically absent. Forests of this character are found about 5,500 feet elevation mostly on ridges and slopes. The second aspect is a forest of great density one to two thousand trees to the acre with an abundance of litter. The third aspect is that of densely brush-covered areas with thin forest. The brush consists of \textit{Alnus viridis}, \textit{Sorbus sambucifolia}, \textit{Ledum glandulosum}, \textit{Menziesia ferruginea}, \textit{M. glabella}, \textit{Rhodo-tendron albiflorum} with a large amount of litter and no humus. The edges of this belt are occupied by \textit{Vaccinium occidentale} and \textit{Betula glandulosa}. Above this belt for example in the Cœur d'Alene Mountains exists one where mountain hemlock, \textit{Tsuga Patoniana} and \textit{Pinus albicaulis} are dominant. There is not much undergrowth, but \textit{Sorbus sambucifolia} and \textit{S. occidentalis} occur.

The subalpine coniferæ in southwestern Colorado on southwestern slopes are mainly \textit{Picea Engelmanni} and \textit{Abies grandis}. These two species either together or in forests of one alone cover the western mountain slopes down to forests of \textit{Pinus ponderosa} (9,000 feet). \textit{Picea Engelmanni} is the only tree at timber line, but \textit{Abies grandis} reaches very nearly as high. \textit{Pseudotsuga Douglasii} \textit{(=} \textit{P. taxifolia} = \textit{P. mueonata}) is not very common in southwest Colorado (9,000—7,000 feet) descending into the region of \textit{Pinus edulis} and \textit{Juniperus occidentalis}. \textit{Abies concolor} is not seen on the western slope).

4. Still another type of forest is formed by the almost pure stands of \textit{Pinus Murrayana} \textit{(Pinus Murrayana Facies)}. In northwestern Montana about Flathead Lake, this pine usurps the low morainic ridges leading from mountain spurs while \textit{Pseudotsuga Douglasii} occupies sunny rocky slopes. The forests of the Yellowstone Park consist principally of \textit{Pinus Murrayana}, the lodge pole pine, intermingled with groves of \textit{Populus tremuloides}. The pine reaches its best development on the drier plateaus between 7,000 and 8,000 feet, here forming 90 per cent. of the forest).

The bulk of the forests in the Teton range consists of \textit{Pinus Murrayana} with \textit{Populus tremuloides}, \textit{Picea Engelmanni} along streams between 7,000 and 10,000 feet. \textit{Pseudotsuga Douglasii} (not abundant, \textit{Populus angustifolia} (along streams in the valleys), \textit{P. trichocarpa} (not common), \textit{Junipers communis} (very uncommon), \textit{J. virginiana} (little found), \textit{Pinus flexilis} (in exposed places, and on dry ridges from 7,500 feet upward).

The prevailing tree in northern Wyoming in the Bighorn Mountains is the lodge pole pine with \textit{Pinus flexilis} scattered among it and in certain localities \textit{Picea Engelmanni} makes a considerable growth, while \textit{Pseudotsuga Douglasii} \textit{(=} \textit{P. taxifolia}) is rare. \textit{Pinus Murrayana} in

Colorado is sometimes found in admixture mostly with Picea Engelmanni, but its most characteristic growth is found on those areas where it occurs alone or greatly predominates over other species. It is uncommon in Pikes Peak Forest Reserve. In Plum Creek Reserve, it is nowhere abundant and in South Platte Reserve, its distribution is peculiar and irregular. It grows most abundantly on the higher plateaus and on northerly slopes at altitudes ranging between 8,000 and 10,500 feet exceptionally reaching 11,000 feet, but never extending to the highest timberline. It is accompanied by a parasite Arceuthobium (Razuomofskya) americamum.

5. The principal tree of the valleys in the Flathead Forest Reserve is the larch,

Larix occidentalis; whether this formation is widely distributed has not been determined. The western larch is essentially a bench-land tree associated with Pseudotsuga, Pinus Murrayana, Abies grandis, Pinus monticola, Picea Engelmanni, Thuja plicata and occasionally Abies subalpina, Pinus ponderosa and western coast hemlock, Tsuga Mertensiana, also certain deciduous trees. This type of forest gradually passes into that in which Pinus monticola predominates. As a tree the western larch does not tolerate shade and cannot reproduce itself unless an opening be made first in the forest.

Acer glabrum gives decided tone to the undergrowth of this forest type which consists of Philadelphus Lewisii, Holodescis ariaeformis, Menziesia glabella, Taxus brevifolia, Spiraea betulifolia (= S. lacida), Elaegnus argentea, Corus stolonifera, Sorbus sambucifolia, Viburnum pnwitifolium, Shepherdia canadensis, Juniperus communis, J. sabina, J. scopulorum, Fatsia, Rubus Nutkanus, Ribes laustre, Crataegus Douglasii, Sambucus melonecara and such plants of the lower layer as Berberis repens, Amlia nudicaulis, Cornus canadensis, Chimaphila, Pirola, Linnea, Clintonia uniflora, Adeneaulon, Tiarella &c. — The characteristic non-tree species of the subalpine belt on Pikes Peak, according to T. D. A. Cockrell, are Aquilegia brevistyla (= A. saximontana), Phacelia sericea, Castilleja pallida, Pyrola chlorantha, Polemonium humile var. pulchellum (= P. scopulimum), P. mellitum, Atragene occidentalis, Erysimum asperum, Potentillla fruticosa, Rubus strigosus, Fragaria americana, Valeriana edulis, Carduus eriocephalus (= C. scopulorum), Achillea lanulosa, Helianthenlla Paryi, Senecio MacDougallii (= S. eremophilus), Pentstemon glaucus, Mertensia eilliata, Sedum rhodanthum, Zygadenus elegans, Thalictrum alpinum.

Other facies of the fir-, spruce- and pine associations are the following:

Spruce-(Picea Engelmannii) Facies. Picea Engelmannii advances on the meadows of the Flathead Valley wherever small streams spread out over a level extent of land. The youngest trees are found on the hummocks in the meadows, nearer its borders are the older ones, which grade imperceptibly into dense forests of Picea Engelmanni associated with the spruce in the open edges of the dense forest are found Populus angustifolia, P. tremuloides and Betula papyrifera. In the dense woods the undergrowth is scanty, sometimes only one or two species are present. Rhamnus alnifolia is the most common plant in pure spruce growths, although Cornus stoloni-fera is often found. In the narrow strip of this forest along the streams nearer the mountains Fatsia (Echimopanax) horrida and Veratrum californicum are present1).

The Picea-Pseudotsuga Facies in Colorado consists of Picea Engelmanni, Pseudotsuga Douglasii, Picea Parryana (= P. pungens). Pseudotsuga

ranges with the yellow pine with which it is usually found associated sometimes one preponderating; sometimes the other. It grows well at lower altitudes (6,000 feet) and the highest altitude at which it was noted was between 10,500 and 11,000 feet. On the lower altitudes and along canyons and gulches the red fir is found mixed with blue spruce as well as yellow pine and in its upper limits it is often scattered among *Picea Engelmanni* and *Pinus Murrayana* upon which is a parasite *Arceuthobium Douglasii*.

Picea Engelmanni white spruce, grows as almost pure forest but commonly some *Pinus Murrayana, P. aristata, Abies subalpina* are found mixed with it. Often extending down cool northern mountain slopes and following cold canyons and gulches in small numbers to 6,000 or 7,000 feet altitude, it is most abundant and seems most at home. It reaches its best development at an elevation between 10,000 and 11,000 feet covering the tops of mountains under timber line and forming a belt around the highest often up to 11,500 to 11,700 feet and extending in more or less dwarfed or stunted form according to exposure to the highest limit reached by trees.

Picea Parryana (≡ *P. pungens*), Colorado blue spruce, is uneven in its distribution and is confined to the lower altitudes where it is found along rivers and creeks or where the average amount of soil moisture is greater. It commonly occurs over the same territory occupied by *Pinus ponderosa* and *Pseudotsuga* which usually grow on the slopes while blue spruce more closely follows the water courses. As a rule it seems to range between 6,000 and 9,000 feet, where it never occurs as pure forest, generally being scattered among other species.

The *Picea-Pinus Facies* is typically represented in Colorado. It consists of two trees which constitute the facies, viz: *Picea Engelmanni* and *Pinus aristata*. *Pinus aristata* is usually found on ridges, rocky ledges from about 8,000 feet altitude to timber line (11,500 feet), but in favorable situations it may extend in twisted and dwarf specimens to 12,000 feet. It is often the chief tree on the upper parts of southern slopes of many mountains, the upper northern slopes being chiefly occupied by *Picea Engelmanni*.

Pinus aristata is not always present as an element, according to Young, for it is absent almost entirely in the mountains of Boulder County, Colorado. *Thuja plicata* (≡ *T. gigantea*), the giant arbor vitae, a tree found generally west of the Cascade Mountains, in the Flathead Valley in the midst of the Rocky Mountains of Montana forms several isolated places a full stand of trees. It is usually found in moist places (*Arbor Vitae Facies*).

b) Broad leaved Tree Formations.

Populus tremuloides Formation. The tree which constitutes the almost exclusive growth of this formation is found from levels of 10,500 to

11,500 feet in open woods, which show no trace of fire. Where the original timber has been destroyed it forms an almost pure growth.

Many species are associated with this tree, viz: Rosa Sayii, Fragaria glauca, Poa crocata (= P. nemoralis), Anemone globosa (= A. multifida), Festue Thruberi (= F. seabra), Pedicularis procera, Helianthella Parryi, Pentstemon glaucus, Frasera speciosa, Rudbeckia flava, Carex obtusata, Caloehortus Gunnisoni, Castilleia confusa, Gentiana Parryi, G. acuta, &c. In the Davis mountains in Texas a thicket of Populus tremuloides is found along the northeast base of a high cliff near Livermore Peak and indicates a mere trace of a formation developed more extensively to the northeast 1).

Salix-Betula Formation. The meadow-thicket formation consists of several willows, such as, *Salix Geyeriana, S. chlorophylla, S. glau cops, S. Bebbiana, S. monticola, Betula glandulosa, Potentilla fruticosa.*

The vernal aspect is due to Thalictrum alpinum, Carex aurea, Mertensia lateriflora and in summer grow Deschampsia caespitosa, Crepis runcinata, Lilium montanum, Thlaspi glaucum. Cerastium olericulum. The autumn vegetation consists of Aster Geyeri, Gentiana acuta, Mertensia ciliata, Saxifraga hirculus.

Quercus-Cercocarpus Formation. This is a foothill formation in the shape of a thicket along the eastern base of the mountains and down the ridges and gullies far out on the plains. *Cercocarpus parvifolius, Rhus trilobata, Quercus Gambelii, Q. utahensis (= Q. stellata var. utahensis), Prunus dewissa* constitute the facies.

The species mentioned by Clements in association are numerous. Only a few are given below. Malvastrum coccineum. Oxybaphus (Allionia) hirsutus, Mertzelia nuda, Chrysopsis villosa, Gaura coccinea, Castilleja integra, Phacelia glandulosa. Verbesina encelioides, Mirabilis oxybaphoides, Woodsia mexicana, Notholaena Fendleri, while Rubus deliciousus, Holodiscus dumosus, Ribes cereum, R. leptanthum, R. pumilum are among the principal shrubs.

2. Meadows, Lakes and Bogs.

Meadow- and Swamp Meadow Formation. The plants of this formation cover the filled-in beds of old lakes and they resemble in the Flathead Valley and elsewhere swamps with similar edaphic situations in the eastern United States. Near the head of Ross Lake, for example, is a sphagnum meadow in which grow Menyanthes trifoliata, Drosera rotundifolia, Potentilla palustris, Eriophorum polystachyon, and Betula pumila 2). — Other large meadows show this combination. These meadows are usually submerged during the spring and early summer months, when the melting snow of the mountains to the eastward swells the streams. These meadows, as previously stated, show a gradual encroachment of *Picea Engelmanni* upon them.

The meadow flora in the Yellowstone Park (7,500—9,000 feet) (2300—2740 m.) consists of Stellararia umbellata (= Alnus baicalensis), S. (A.) longipes, S. borealis, Saxifraga punctata, S. integrifolia, Valeriana edulis, V. sylvestica, V. septentrionalis, Potentilla dissecta, P. gracilis, P. fruticosa,

Senecio triangularis, S. crassulus, Polygonum bistorta (P. bistortoides), P. viviparum, Habenaria hyperborea, H. dilatata, Allium Schoenoprasum, A. brevistylum, Trifolium longipes, Pedicularis groenlandica, Rumex paulfolius, Zygadenus elegans while here and elsewhere over the hot spring geyser areas, the small strews are bordered by Parnassia fimbriata, Gentiana serrata and Mimusulus luteus.

Lake Formation. The species of lake waterplants are as much the same as named before in this formation in the eastern states. A few examples may prove it.

The lakes in the Flathead Valley are shallow with a muddy bottom. In the center of such lakes are found Utricularia, Brasenia peltata, four species of Potamogeton, Myriophyllum and Hippuris. The sedge circumarea bordering the water of shallow ponds consists of Bromus Richardsonii var. pallasii, Muhlenbergia racemosa, Carex utriculata, C. viridula, C. hystrixiana, Calamagrostis caespitosa, Phalaris arundinacea, Juncus Rugelii, Scirpus lacustris var. occidentalis, Cieuta maculata and species of the genera Lobelia, Solidago and Dodecaetheon.

The flora of the ponds and streams in the Yellowstone country consists of Ranunculus multifidus, Utricularia, Brasenia peltata, four species of Potamogeton, Myriophyllum and Hippuris. The sedge circumarea bordering the water of shallow ponds consists of Bromus Richardsonii var. pallasii, Muhlenbergia racemosa, Carex utriculata, C. viridula, C. hystrixiana, Calamagrostis caespitosa, Phalaris arundinacea, Juncus Rugelii, Scirpus lacustris var. occidentalis, Cieuta maculata and species of the genera Lobelia, Solidago and Dodecaetheon.

The flora of the ponds and streams in the Yellowstone country consists of Ranunculus multifidus, Utricularia, Brasenia peltata, four species of Potamogeton, Myriophyllum and Hippuris. The sedge circumarea bordering the water of shallow ponds consists of Bromus Richardsonii var. pallasii, Muhlenbergia racemosa, Carex utriculata, C. viridula, C. hystrixiana, Calamagrostis caespitosa, Phalaris arundinacea, Juncus Rugelii, Scirpus lacustris var. occidentalis, Cieuta maculata and species of the genera Lobelia, Solidago and Dodecaetheon.

Red Rock Lake at an altitude of 10,100 feet (3,078 m) in Colorado shows the following circumareas, according to Ramaley. The aquatic circumarea is marked by Sparganium angustifolium, Potamogeton alpinus, Utricularia, Brasenia peltata, four species of Potamogeton, Myriophyllum and Hippuris. The sedge circumarea is Deschampsia caespitosa, Hierochloa odorata, Carex siccata, C. utriculata, Juncus balticus, Caltha leptosepala, Sedum rhodanthum, Sagittaria bicuspidata, Dodecatheon multifidus, Polygonum amphibium, several species of Sagittaria, Sparganium, Lemna and Potamogeton. In the mud at the water's edge grow Elatine americana, Tillaea angustifolia, Krynitzka (Allocarpa) californica and Limosella aquatica.

Bog Formation. (Compare the swamp meadow described previously.) The bogs of the Yellowstone National Park are characterized by patches of low willows Salix Geyertiana with Betula glandulosa and Potentilla fruticosa, the most characteristic shrub of the mountains bogs.

Massed in great profusion over the surface of the bogs are Gentiana serrata (= G. detonsa), G. Forwoodii, Senecio lugens, S. subnudus, Zygodenus elegans, Trifolium longipes, Polygonum viviparum, Parnassia limbriata. Habenaria hyperborea, L'edelicularis groenlandica, P. brodiaea, P. racemosa, Valeriana edulis, while as secondary species hidden beneath the taller ones are Stellaria (Alnine) borealis, S. longipes, S. crassifolia. Androsace filiformis, A. septentrionalis. Wyethia helianthoides is a striking plant and such grasses as Phleum alpinum, Bromus breviaristatus, B. ciliatus, B. Kalmii are found.

3. Vegetation of the Yellowstone and Hot Springs.

This formation is confined to the Yellowstone Park. The alkaline nature of the soil and the warmth afforded by the hot spring and geyser areas have influenced the distribution of species to a marked extent. Such seashore plants as Salicornia herbacea, Rumex maritimus (= R. persicarioides) and Triglochin maritima are found. The barren soil supports few plants but where overlaid by other soil or where the species grow along streams occurs a luxuriant vegetation of Chrysopsis villosa, Gnaphalium Sprengelli, Panicum dichotomum var. pubescens. Ruppia maritima has been observed in water with 90° F. of heat. The small streams are filled with Potamogeton pectinatus, while Botrychium ternatum var. austrole has never been observed out of hot spring soil. The bare geyserite supports Spraguea umbellata, Castilleia minor, Orthocarpus luteus and Glyceria airoides.

The following plants have not been observed on soils other than that due to the hot springs:

- Aplopappus uniflorus Torr. and Gray.
- Lycopus virginicus L. var. pauciflorus Benth.
- Eriogonum flavum Nutt.
- Juncus tenuis Willd. var. congestus
- Engelm.
- Spartina gracilis Trin.

The geyseres are actively throwing up in jets at periodic intervals, steam and boiling water; the hot springs are either quiescent, or are bubbling without explosive eruption. They are found in four distinct areas in the Park; the geyseres and the hot springs in the Upper, Lower and Norris Geyser Basin, hot springs only in the Mammoth Hot Spring Region. This division also accords with the predominating chemic content of the waters. In the Upper, Lower and Norris Geyser Basins, we have springs and geyseres which are actively depositing silicic material (sinter); in the Mammoth Hot Spring Basin, springs which are forming calcareous deposits, called travertine (see plate XIII).

In the hot springs of the Yellowstone no plant life has been found at a temperature exceeding 185° F., some degrees below the boiling point of water, which, at the altitude of the park (7,000—8,500 feet) is 198° F. The most luxuriant growth of algae is found in water which has cooled down to a temperature of 104° F. to 125° F.; (= 40° C. to 52° C) in such water we have the greatest display of color, because many green algae can live in water of that degree of heat. In the hottest waters (185° F. = 85.4° C.) only white filamentous bacteria are found, which gradually become of a sulphur-yellow color at 175° F. (80° C.).

2) Tweedy, loc. cit. p. 21.
Setchell 1) concludes after a study of the upper temperature limits of life that no living diatoms occur in strictly thermal waters and that the plants of hot springs belong to the Bacteriaceae and Cyanophyceae. The Cyanophyceae grow in water up to a temperature of 150°—158° F. (65°—68° C.); scantily at a temperature ranging between 168°—172° F. (75°—77° C.) while the Bacteriaceae endure highest temperatures and are abundant at 158°—160° F. (70°—71° C.) and in considerable quantity at 180° F. (82° C.), and at (192° F.) 89° C. Such plants live in siliceous waters at a higher temperature than in calcareous waters, the limits being green algae 168°—172° F. (75°—77° C.) and chlorophyllless plants at 192° F. (89° C.).

As the water cools down, other forms of vegetable life appear, give variety to the colorations and give beauty to the borders of the hot pools and overflow channels leading from them. The sequence of temperatures and colors is somewhat as follows: White 160° F.—185° F.; yellow, 145° F.—160°F.; red, 130° F.; green 110° F.—130° F.; green-orange-brown, 95° F. There are variations, however, in the sequence of these colors, owing to various environmental conditions. Thus, in the Black Sand Basin and Specimen Lake, the range of color is somewhat this: White, yellow, flesh pink, bright pink, yellowish-green, emerald. The prevailing tints are yellow at 185° F. (85° C.), green preponderating at 132°—150° F. (55°—65° C.) and prevailing green, 104°—122° F. (40°—50° C.).

Studying the growths at several temperatures, we find Leptothrix laminosa growing at 135° F.—185° F.; Phormidium at 165° F.; Beggiatoa at 150° F. —165° F., and Spirulina at a lower temperature. The leathery felt about the edges of hot springs is due to species of Phormidium the smallest of which is found in water as hot as 160° F. (75° C.). Spirulina grows with Phormidium and forms with it curious raised rims about such pools as Prismatic Spring. As the water grows cooler in the overflow streams species of Anabaena occur 2).

Gloeocapsa, a blue-green alga, is found growing on the sides of geyser cones, where steam is escaping, forming there a delicate olive-green coloration. A kind of fibrous sinter is formed by the growth of the little alga, Calothrix gysophila, or the young form of Mastigonema thermale, the latter olive colored, and forming the sinter of the crater of the Excelsior Geyser 3). A coarse sinter is due to a bright red species, Leptothrix, a finer variety to Leptothrix, (Hyphothrix) laminosa, ranging from white to flesh pink, yellow and red to green, as the water cools. Besides the above plants, which belong to the Bacteriaceae and the Cyanophyceae, speaking in a general way, we find that several mosses are active in the formation of sinter on the slopes below Hillside Spring. These springs issue from the rhyolite slopes beneath the cliffs of the Madison Plateau, and the waters, whose temperatures are 184° F.—198° F., contain both silica and lime in solution, which they deposit in their downward flow. This moss has been determined by Charles R. Barnes, of the University of Wisconsin, to be Hypnum adunum, var. gracilescens.

3) Weed: loc. cit.
Besides the sinter and travertine formed by algae, which remove in the case of the carbonated waters, containing calcium bicarbonate, Ca\(\text{(HCO}_3\text{)}_2\) in solution, the gaseous carbon dioxide, thus depositing calcium carbonate, CaCO\(_3\), we have stalactites produced by the growth of several algae. Gloeocaps-a violacea, Sehizonthrix calcicola. Syneecoeoccus aeruginosus and Phormidium (Leptothrix) laminosum. An interesting account of the formation of these stalactites has been given to us by JOSEPHINE TILDEN, who visited the Yellowstone Park to study the thermal algae.

In the tepid waters of the overflow basins, for example Specimen Lake, which is produced by the water from Black Sand Pool, we find extensive diatomaceous beds formed by the growth of numerous diatoms. The water of these areas has encroached on the timber, killing the trees, which stand as bare poles from the treacherous-marshes. It is known that these plants deposit silica, as a box, test, or frustule, and it is thus by the activity of the protoplasm that the siliceous diatomaceous earths are formed. Samples of this material show the presence of Den
ticula valida, which forms the bulk of the material. Denticula elegans, Navicula major, N. viridis, Epithemia Argus and E. Hyndmannii. Coecenema cymbiforme. Achnanthes gibberula and Maspigia smithii.

Park Formation. The open parks in the Yellowstone country are covered with grasses which form a conspicuous element of the vegetation. Such grasses as Phleum alpinum, Sporobolus (Vilpa) asperifolius, Agrostis scabra, Muhlenbergia mexicana, Calanagrostis canadensis, C. conifinis, Stipa comata, Agropyron divergens, A. caninum, Stipa viridula, Koeleria cristata, Melica bulbosa, Festuca ovina, Bromus breviaristatus and such sedges as Eriophorum polystachyum, Carex rigida, C. Jamesii, C. Douglassii, C. aquatilis, C. Ray
noldsi, C. leporina, C. teniurostris are found.

On the elevated grassy slopes set in the uniform forest growth occur Caltha leptosepala, Oxytropis nana, Astragalus Kentrophyta. Erigeron urisinus. Aploppus suffrutescens, Senecio am
plectens. At lower elevations, the same character of country is set off with copses of Abies grandis and such plants as Ribes viscissimum. Peucedanum leiocarpum. Ligusticum scopulorum. Lonicer
cens), Echinosperum deflexum, Spiranthes Romanoffiana. Fritillaria pudica, Calochortus eurycarpus, and Botrychium simplex occur and give character to the vegetation 1).

Plants to reach these parks from below must make their way up narrow canyons or else over passes and this peculiar situation leads to a paucity of plants from lower altitudes and an abundance of peculiar mountain forms. Aquilegia coerulea is abundant in Colorado in many places. Willows, poplars and alders fringe the streams, such as Populus balsamifera, P. angustifo
cilia, &c. Pentstemon secundiflorus occurs in such moist places as also Potentilla fruticosa 2).

Rocky Hills. The broken parts in the Uintah Mountains contain on the border, small groves of Pinus Murrayana in which Astragalus alpinus, Pachystima myrsinites, Arctostaphylos uva-ursi, Juniperus communis var. alpina occur. The open rough hilly parks according to PAMMEL 3) contain Potentilla

Harshberger, Survey N.-America.
Hippiana, Eriogonum umbellatum, E. ovalifolium, Arenaria congesta, Castilleja miniata, and as the chief constituent Artemisia tridentata and in scattered bunches Bigelovia. Open xerophytic parks exist between streams in these mountains where are found Campanula rotundifolia, Cnicus Drummondii, Arenaria congesta, Potentilla Hippiana and Artemisia tridentata.

Rock Outcrops. There is little or no vegetation where the outcrops of rock occur in the Flathead Valley. The undis-integrated rock has a covering of lichens of the foliaceous sort. With the accumulation of more soil such a fruticose lichen as Cladonia rangiferina var. sylvatica appears accompanied by Selaginella densa, Sedum Douglasii, Heuchera parvifolia. The rock crevices however filled with soil are favorable for the growth Prunus demissa, Amelanchier alnifolia, Juniperus nana (= J. sibirica), Campanula rotundifolia, Arctostaphylos uva-ursi. If the outcrop is near a large body of water Juniperus scopulorum is found and with it Pseudotsuga Douglasii and Pinus ponderosa.1)

5. Alpine Formations.

These extend properly above timber-line which in the Park Mountains may be fixed approximately at an elevation between 11,000 and 12,000 feet (3350—3660 m). It is a rock desert and steppe belt. Mat-forming plants and deep-rooted perennials are common. In Colorado the alpine flora at 12,000 feet, or above, according to Cockerell 2) comprises 386 species, 48 of which extend to the old world. Boulder fields are practically destitute of vegetation except lichens. Sedges and grasses are numerous in species, but seldom form a dense sod, being mixed with various flowering herbs. Dwarf willows occur often forming a dense scrub over large areas, but there are no other woody plants. — None of the peaks are glaciated, although snow banks persist in protected places well through the summer months. The trees which reach timber-line in the Rocky Mountains are Abies subalpina, Pinus albicaulis, mountain hemlock Tsuga Patoniana, Pinus aristata, Pinus flexilis, Picca Engelmanni (Uintah Mountains).

Alpine meadow Formation. The facies of this formation in Colorado 3) is due to Carex rupestris, Carex filifolia, Sieversia grandiflora, Festuca brachyphylla var. nana.

Associated together as the principal species are Primula angustifolia, Androsace chamaejasme, Eritrichium arctioides, Saxifraga flagellaris, S. chrysantha, Dryas octopetala, Sibbaldia procumbens, Potentilla rubricaulis, Artemisia scopulorum, A. Pattersoni, Castilleja occidentalis, Polemonium confertum, Campanula uniflora, Trifolium nanum, Lloydia serotina. As secondary species exist Pedicularis Parryi, Carex festiva, Draba streptocarpa, D. aurea, Festuca ovina var. caespitosa. Later in the season the facies changes somewhat, then Deschampsia caespitosa var. alpina, Polygonum viviparum prevail with the following herbs; Phleum alpinum var. coryphoculum, Trisetum subspicatum, Gentiana tenella, Agoseris (Troximon) aurantiaca, Poa Grayana.

On Mount Lincoln, Colorado, in a grassy meadow kept wet by the melting snow grew Primula Parryi, P. angustifolia, Actinella (Rydberrygia) grandiflora, A. (Tetraneuris) acaulis, Sedum Rhodiola (= R. rosea), S. rhodanthum, Geum (Sieversia) Rossii, Calandrinia pygmaea (Oreobroma Grayi), Saxifraga cernua, with white or cream colored flowers and numerous stolons. S. punctata with white petals and a tall naked scape.

The meadows of the Wind River range above 9000 feet are characterized by Saxifraga nivalis, Eriophorum (Omphalodes) aretioides, Polaenum confertum, Townsenia spathulata, T. cespitosa, Bulpleurum ranunculoides (= B. americanum), Llyodia serotina. Within the timbered recesses of these mountains are grassy meadows dotted with clumps of willows between which course clear mountain streams overhung with vegetation. In this variety of exposure, limited in every direction by irregular, rocky ridges, occurs a confused association of Draba alpina, Lupinus caespitosus, Hedysarum borealis (= H. americanum), Astragalus alpinus, Oxytropis campestris, Sedum stenopetalum, S. rhodanthum. Actinella (Rydberrygia) grandiflora, Antennaria dioica, Senecio lunics, Kalmia glauca, Synthyris plantaginea, Mertensia paniculata, Gilia nudicaulis, Androsace septentrionalis 1). Primula Parryi, Gentiana humilis, Phacelia sericea 2).

Alpine Lakes and Bogs. The alpine lakes of the Pike's Peak region exist between 3,110 m and 3,265 m altitudes and also below timber line. Marsh Lake is surrounded by a circumperea of Sparganium augustifolium on the shore side and an inner much interrupted circumperea of Ranunculus Batrachium flaccidum. Michigan Lake is completely overgrown with the same Sparganium. According to Clements the most important plants in these alpine lakes in the order of their importance are: Sparganium and Potamogeton alpinus with which are associated as of secondary importance Utricularia vulgaris, Callitriche bifida and Isotetes lacustris var. paupercula. In Isoetes Lake there is a rank growth of Batrachium flaccidum near the center of the lake. At Bald Mountain Lake mosses constitute the only macroscopic flora. The other types of alpine lakes, however, show, as well as the lakes above mentioned, a plankton consisting of algal species of Spirogyra, Oedogonium, Mesocarpus, Volvox, Cosmarium, Zygnesia, Coleochacte, Bulbochaete, Chara and Cladophora 3). — In the Rocky Mountains of northern Colorado the lakes of the subalpine and alpine districts are of the morainal type 4). The lakes above timber line show no true circumpereas, although birches and willows with grasses, sedges and such plants as species of Elephantella, Pedicularis, Dodecatheon, and Clementsia exist between the water edge and the coniferous forest behind.

Alpine Bog Formation. According to Clements this formation in Colorado consists early in the season of a facies, the elements of which are Carex scopulorum, C. melanocarpa (= C. alpina), Caltha leptosepala associated with such species as Carex aurea, C. brunnescens, C. acutina, C. alpina, C. variabilis, and the following as secondary in importance: Juncus subriflorus, Vaccinium myrtillus, Veronica alpina (= V. Wormskjoldii). Later the facies consists of Scirpus pauciflorus (= Eleocharis pauciflorus), Polytrichum gracile and principally of

1) The widely distributed arctic-alpine species, also European, printed in widened letters.
the herbs: Antennaria nardina, Senecio erocatus, Carex capillaris, and as secondary species: Juncus triglumis, J. castaneus.

Alpine Mat Formation. The facies of this formation early in the season is Paronychia pulvinata, Silene acaulis, Arenaria sajanensis, Erigeron pinnatisectus, Actinella (Tetraneuris) lanata and the principal herbs associated with above in this formation are Trifolium dasyphyllum, Carex petasata (= C. leporina), Zygadenus elegans, Polygonum bistortoides, Pentstemon Hallii, Agropyrum Scribneri, Sieversia turbinata var. nana, Potentilla minutilifolia with the following as secondary elements of the early season: Saxifraga australmontana, Phacelia Lyallii, Festuca brevifolia (= F. brachyphylla). Later in the season the presence of Senecio taraxacoides, Potentilla fruticosa var. tenuifolia changes the facies and the principal herbs at that time of the year are: Macronema pygmaea, Trisetum subspicatum, Calamagrostis purpurascens and associated with them are: Sedum stenopetalum, Arenaria (Alsin) verna var. aequicaulis. Only one fern occurs, viz: Cryptogramma acrostichoides. — Timber line is reached on Pikes Peak at approximately 11,500 feet (3500 m).

The plants characteristic of the treeless alpine belt are Senecio Fremontii, Artemisia scopulorum, Mertensia alpina, Eritrichium argenteum, Paronychia pulvinata, Silene acaulis, Claytonia megarhiza, Primula Parryi, Salix reticulata (= S. saximontana) Saxifraga cernua, Gilia sp., Oxyria digyna, Chionophila Jamesii, Trifolium dasyphyllum, T. nanum. Dryas octopetala, Erigeron uniflorus, Solidago multiradiata, Saxifraga rhomboidea, S. Jamesii, Campanula uniflora, Pentstemon Hallii, Cymopterus (Oreoxis) alpinus, Caltha leptosepala (= C. rotundifolia). — High upon Mount Lincoln, Colorado at 14,000 feet (4270 m) where found the following plants of eespitose habit. Silene acaulis, Claytonia caroliniana, var. lanceolata, C. arctica var. megarhiza, with its deep, purple tap root running deep into the rocks and its scape with white flowers, Trifolium longipes, T. nanum, T. dasyphyllum, T. Parryi, Eritrichium (Omphalodes) arctioidei.

On the high alpine crest at the head of Stinking Water, overlooking to the west the Yellowstone basin and lake) the flora displays the usual dwarf forms of high alpine summits, viz: Arabis Drummondii, Arabis canescens, Draba alpina, Smelowska kalyca, Arenaria arctica, Ivesia (Horkelia) Gordonii, Potentilla dissecta, Astragalus alpinus, A. Kentrophyta (= Homalobus montanus), Lupinus minimus, Sedum stenopetalum, Erigeron compositus, Senecio canus, Achillea millefolium, Phlox Douglasii, Mertensia alpina, Myosotis alpestris, Erigopenum ovalifolium.

The bare wind swept summit of Mount Holmes in the Yellowstone Park is characterized by the presence of Douglasia montana, Salix reticulata, Draba crassifolia, D. alpina, Smelowska kalyca, Arenaria Michauxii (= A. stricta), Silene acaulis, Saxifraga oppositifolia, Oxytropis Lambertii, Astragalus vegetarius var. impexus, Dryas octopetala, Sibbaldia proculbens, Antennaria alpina, Artemisia scopulorum, Erigeron uniflorus, E. radicatus9).

Alpine Rockfield Formation. According to CLEMENTS, the exposed rocky areas where boulders are found, or where the surface is bare and stony, are characterized early in the season by a facies of Polemonium speciosum (= P. humile), Primula Parryi, Claytonia arctica var. megarhiza, Boykinia Jamesii,

Heuchera Hallii and Aquilegia saximontana, Synthyris plantaginca var. cory-phoculus, as of minor importance. The facies late in the growing season, which is short on these high mountains, consists of Senecio carthamoides, Oxyria digyna, Selaginella densa.

Elsewhere in the debris of broken granite blocks grow Trifolium nanum, Papaver nudicaule, Saxifraga serpyllifolia, Gentiana frigida, Pedicularis sude-tica and other plants.

The alpine flora of the Yellowstone Park is comprised of the following list according to Tweedy. Those marked * are arctic.

* Poa alpina L.
* Phleum alpinum L.
* Trisetum subspicatum Beauv.
* Festuca ovina L. var. brevifolia Wats.
* Carex atrata L.
 * alpina Swartz.
 * rigida Good.
 * concinna R. Br.
 * scirpoidea Michx.
* Juncus Parryi Engelm.
* Luzula spicata Desv.
* Lloydia serotina Sweet.
* Habenaria obtusata Richards.
* Salix reticulata L.
 * arctica Pall. var. petraea Anders.
* Polygonum viviparum L.
* Oxyria digyna Camptd.
* Draba alpina L.
 * crassifolia Graham.
 * aera Vahl.
* Smelowskia calycina Desv.
* Thlaspi alpestre L.
* Silene acaulis L. Wats.
* Arenaria verna L. var. hirta
 * Arenaria stricta Michx.
 * Sagina Linnaei Presl (= S. saginoides L.).
 * Calandrinia pygmaea Gray (= Orocobroma Grayi Britt.).
* Dryas octopetala L.
* Ivesia (Horkella) Gordonii Hook.
* Sibbaldia procumbens L.
* Trifolium Parryi A. Gray.
* Astragalus alpinus L.
* Saxifraga Jamesii Torr. (= Telesonix Jamesii Torr.).
* Saxifraga oppositifolia L.
 * caespitosa L.
 * rivularis L.
 * nivalis L.
 * punctata L.
* Sedum rhodanthum A. Gray.
* Epilobium latifolium L.
* Eritrichium arcticoides DC. (= Omphalodes nana Gray var. arcticoides Gray).
* Mertensia alpina Torr.
* Veronica alpina (= V. Wormskjoldii R. & S.).

* Castilleia pallida Kunth. var. septentrionalis Gray (= C. acuminata Pursh).
* Pentstemon Menziesii Hook.
* Pedicularis Parryi A. Gray.
 * scopulorum A. Gray.
 * groenlandica Retz.
* Bryanthus (Thylloodoce) empetriformis Smith.
* Douglasia montana A. Gray.
* Polemonium confertum A. Gray.
 * humile Willd.
 * var. pulchellum Gray.
* Aplopappus (Pyrocoma) Lyallii A. Gray.
* Erigeron uniflorus L.
 * ursinus Eaton.
 * radicatus Hook.
* Antennaria alpina Gaertn.
* Artemisia scopulorum A. Gray.
* Halea nana A. Gray.
* Senecio Fremontii Torr. & Gray.
* Taraxacum officinale Weber.
 * var. scopulorum A. Gray.

The Big Horn Mountains which begin near the middle of the northern boundary of Wyoming run in a northwest and southeast direction one third across that state. The flora of this region does not materially differ from that of the adjacent Rocky Mountain range to the west in Wyoming and northwest in Montana. The alpine plants found at an altitude of 9,000 to 11,300 feet are:

Carex atrata L. Carex nova Bailey. Dryas octopetala L.
 * capitata L. * scirpoidea Michx. * Artemisia scopulorum A. Gray.

Erigeron lanatus Hook.
Geum (Sieversia) Rossii K. Br.
Kalmia glauca var. microphylla
Hook. (= K. microphylla Hook.).
Mertensia alpina Torr.
Myosotis sylvestica var. alpestris
Koch (= M. alpestris Schmidt).

Eritrichium (Omphalodes) Howard A. Gr.
Orthocarpus pilosus Wats.
(= Castilleja pilosa Wats.).
Pedicularis Parryi A. Gray.
Primula Parryi A. Gray.
Anemone narcissiflora L.

Ranunculus Eschscholtzii Schlecht.
Calandrinia pygmaea A. Gray
(= Oreobroma Grayi Britt.).
Silene acaulis L.
Salix chlorophylla Anders.
> glauca L. var. villosa.

The alpine and subalpine floras of the Western slope of Rocky Mountains in southwestern Colorado are at this southern latitude almost the same as those of northern Colorado. Pachystima myrsinites, Erythronium grandiflorum are common. Aquilegia canadensis takes the place of A. caerulea found with such northern ones as Calypso borealis, Listera cordata, Nephrodium (Aspidium) filicos.

c) Black Hills Area.

The flora of the Black Hills of South Dakota is varied. This is due to their phytogeographic location (see page 107) which is midway between the coniferous forest around the Great Lakes, the deciduous forest vegetation of the east and the Rocky Mountain vegetation, while in addition they are surrounded by the vegetation of the prairies and the great plains (see colored map). It consists of plants from the east (see page 240), from the Saskatchewan region, from the prairies and table-lands west of the Missouri River, from the Rocky Mountains and from the region west thereof. In the foothills and the lower part of the Black Hills the flora is essentially the same as the plains in the midst of which these mountains are found. The more elevated portions have a vegetation of more northern origin. Some plants belong to the Rocky Mountains; among them two trees Pinus ponderosa var. scopulorum and Betula occidentalis, the rest of the plants are eastern or transcontinental. The flora of the lower parts of the district resembles, therefore, more the flora of the Interlacustrine Area than that of the Rocky Mountain Region. The foothills and surrounding plains may be omitted from consideration, because the vegetation is essentially that peculiar to the high dry plains of Nebraska, Wyoming and neighboring States. The really mountainous parts of the Black Hills which are related topographically and in part floristically to the Rocky Mountains is the Harney Range. The principal tree is the Rocky Mountain yellow pine Pinus ponderosa var. scopulorum, which is the only tree that makes a forest. As this tree forms the principal facies, the district has been placed in the classification as a part of the Rocky Mountain Region. On the north side of the mountains is the northern white spruce Picea alba (= P. canadensis). It must have come into the district when the climate was much colder than now.

Of the deciduous trees there are: Betula papyrifera, B. occidentalis, Populus tremuloides, Salix Bebbiana (= S. rostrata), S. discolor, S. cordata, while down along Squaw Creek occur Quercus macrocarpa, Ulmus americana. The shrubby plants are Amelanchier alnifolia, Cornus stolonifera, Corylus rostrata, Neillia opulifolia, Ribes setosum, Ribes oxyacanthoides, R. cereum, R. laevigata, Shepherdia canadensis. The following Rocky Mountain plants occur in the

The limestone table-land in the Black Hills is covered with Pinus ponderosa var. scopulorum and Populus tremuloides and such shrubs as Ribes cereum, Shepherdia canadensis, Elaeagnus argentea, Ceanothus Fendleri, Salix Bebbiana. S. discolor, Juniperus communis. The northern Hills have a woody flora in which the pine predominates.

3. Great Basin Region.

Between the towering rim of the Sierra Nevada Mountains on the west, which prevents the moist winds of the Pacific Ocean from crossing, and a lofty eastern rim in part represented by the Wasatch range, that bars out the Gulf winds, lies a great area without any drainage outlet to either ocean, known as the Great Basin. The low south rim permits the hot dry south winds to sweep over the basin. Most of the valleys in this country are utter deserts. There is absolutely no water in them from one end of the year to the other. Small rivulets formed by melting snow run part way down the mountain slopes, but they sink out of sight before reaching the plain. The flora in such a region is, therefore, of a most pronounced arid type and desert shrubs and perennial herbs represent the chief components of the natural vegetation2.

A. Oregon District.

The eastern portion of the states of Washington and Oregon is a great arid plain centering about the Columbia River and this plain owes its aridity

to the fact that the moisture-laden winds of the Pacific are cut off by the Cascade range of mountains. The eastern limit of this plain is the western base of the Bitterroot Mountains toward the north, while the Rocky Mountains form the eastern boundary in the south.

Thus a great wedge-shaped area is formed, its base continuous with the deserts of Nevada and its apex in the north surrounded by the forest which connects the northern end of the Bitterroot Mountains with the northern end of the Cascades. The southern boundary of this district is marked by Stein's Mountains, Goose Lake and Upper Klamath Lake in extreme southern Oregon. The absence of Larrea mexicana (the creosote bush), various Cactaceae delimits these deserts from those of southern Arizona.

Sage brush Formation. The vegetation of this district consists principally of sage brush Artemisia tridentata, which covers the country away from the streams with a gray mantle and constitutes probably nine tenths of the vegetation. Here there is never a sod except in favorable localities along streams where the sedges and native clovers abound. The grasses of many species are all bunch grasses and the clumps are invariably separated by intervals of a few inches to several feet. The entire absence of buffalo grass Buchloe dactyloides and grama grass Bouteloua oligostachya is noteworthy. There are many annual plants and growing with them are tuberous rooted perennials which have stored up during the preceding year's growth a large amount of reserve food.

In the lower portions of all the basin, as well, as in poorly drained areas along the river bottoms, are situated intensely alkaline areas which support no vegetation whatever and are known locally as "sleek deserts".

A few trees occur in this desert. *Pinus albicaulis* makes a scanty growth at highest elevations on Pine Forest range. Stein's Mountains have no pines, but *Juniperus virginiana* is quite abundant. *Pinus ponderosa* var. *scopulorum*, the bull pine, occurs in the spurs of the Blue Mountains. Aside from the pines and juniper the only trees of the district are *Populus tremuloides*, *P. trichocarpa*. Among the shrubby plants which form dense thickets, often over areas of considerable extent, may be mentioned: *Cercocarpus ledifolius*, *Amelanchier alnifolia*, *Ceanothus velutinus*, *Holodiscus dumosus*, *Symphoricarpus oreophilus*, *Potentilla fruticosa*, *Prunus emarginata*, *P. demissa* (Chaparral Formation). Along the moister gulches one always finds a profuse growth of willows which are also sometimes found forming thickets on high, moist, shady slopes. Extensive growth of alder are also found in the same localities).

The yellow pine belt in eastern Washington lies between the altitudes 1,800 and 3,300 feet (550 and 1000 meters). In places *Pinus ponderosa* descends nearly to sea level, as along the Columbia River, but it shows a marked predilection for soils of granitic origin. Where pure the forests of this tree are open in character and marked by a relatively small amount of forest litter. There is a scattered growth of various shrubs such as *Physocarpus*

1) See Griffiths, David: see Bibliography p. 76.
(Opulaster) pauciflorus, Ceanothus sanguineus, Rosa gymnocarpa. At a higher altitude, the under-shrub is a huckleberry Vaccinium macrophyllum. These pine forests are seldom pure except at low elevations. In moister situations at higher altitude the red fir Pseudotsuga Douglasii becomes associated with the pine, until according to PIPER, with increasing altitude the forest becomes similar to that on the mountains of the humid Pacific side of Washington and Oregon.

The grasses of the upland thickets in the Blue Mountains of Oregon are Poa pratensis, Trisetum spicatum, Danthonia californica, Melica subulata, Elymus glauces, Carex Geyerii.

The principal facies of the Sage Formation: consists of the scattered clumps of Artemisia tridentata, associated with A. arbuscula, A. cana (in the mountains). A. tridentata is the black sage of the mesas and foot hills and takes the place of creosote bush Larrea mexicana and the Cactaceae of the deserts to the southward. With it is sometimes associated Artemisia spinescens while Atriplex confertifolia, A. Nuttallii, Grayia spinosa, Eurotia lanata are also elements in the sage formation.

The rolling hills in the Okanogan country are covered with a luxuriant growth of Festuca ovina, Agropyrum spicatum (= A. divergens), Poa Wheeleri, Poa Sandbergii, while elsewhere occur Wyethia amplexicaulis, Balsamorrhiza sagittata, B. Careyana, Bigelovia (Chrysothamnus) graveolens associated with Agropyrum spicatum and in places forming pure associations. Artemisia rigida also occurs in pure associations. — Still another association is composed of Artemisia rigida, A. arbuscula, Eriogonum dichotomum, E. sphaerocephalum, E. thymoides, Tetradymia canescens, Audibertia incana and Gilia pungens. The herbaceous vegetation consists of Gayophyrum ramosissimum, Lygodesmia junceaa, Agropyrum spicatum, Stipa Thurberiana, Festuca microstachya, Poa Sandbergii.

Bunch grass Formation. The bunch grass prairies constitute a strip of varying width lying between the sage brush formation and the yellow pine groves above. The soil is a black, clay loam, free from grit. These prairies are treeless and excepting along streams and by springs or on north hillsides, shrubs are rarely seen according to PIPER 1). Of the herbaceous vegetation the bunch grass Agropyrum spicatum and June grass (Poa Sandbergii) are abundant together with Lupinus ornatus, L. sericeus, L. Wyethii, Balsamorrhiza sagittata, Helianthella Douglasii, Gaillardia aristata, Geranium incisum, Leptotaenia multifida and in moister places Iris missouriensis, Wyethia amplexicaulis.

The grasses in the Blue Mountains of Oregon are in the open places Poa nevadensis, Poa Wheeleri, P. Sandbergii, P. Buckleyana (P. tenuifolia), Festuca ovina, Agropyrum spicatum (= A. divergens), Koeleria cristata, Bromus marginatus, Elymus [Sitanion] longifolium, Elymus con densatus, Deschampsia caespitosa, Stipa viridula with Trifolium plumosum on the bare rocky slopes of the open country.

Camass Meadow Formation. This formation is situated in depressed areas more moist than the upland country. Here grow in the greatest profusion various grasses, interspersed with brilliantly colored flowers, such as Camassia esculenta.

Such a mountain meadow contains Poa Sandbergii, Agropyrum spicatum, Festuca ovina, Poa Wheeleri, Poa nevadensis, Koeleria cristata along with Achillea millefolium, Wyethia amplexicaulis, Arnica alpina, Erigeron aphanactus, Gaillardia aristata, Balsamorhiza incaea, Lupinus sulphureus, Clarkia pulchella, Navarretia Breweri, Gilia aggregata, Eriogonum heracleoides, Geum trifolium, Pentstemon attenuatus, Deschampsia calycina, Polygonum Douglasii, Peucedanum leptocephrum, Calochortus Nuttallii and Sedum Douglasii. — Along Quinn River, the meadows show a rich growth of characteristic grasses and sedges.

Greasewood Formation. As one descends from the open plains into the valley bottoms the soil becomes alkaline and the vegetation changes, the sage brush *Artemisia tridentata* etc. being replaced by the greasewood *Sarcobatus vermiculatus* with *Distichlis spicata*, *Atriplex hastata*, *Bigelovia* (*Chrysothamnus*) *gracilens*, *Suaeda depressa* var. *crecta*, and *diffusa*, iodine weed *Spirostachys occidentalis*, *Sporobolus aroides*.

Stream Bank Formation. Along the streams and by springs willows of several species grow together with *Crataegus brevispina* (= *C. Douglasii*), *Populus tremuloides*, *P. trichocarpa* which form groves. The common undershrubs are *Symphoricarpos racemosa*, *Rosa Nutkana*, *R. pisocarpa*, *Ribes inerme* and *R. irrugum*. Occasionally the birch (*Betula microphylla*) is the most abundant shrub. The herbaceous plants found here are *Castilleja miniatia*, *Clematis hirsutissima* (= *C. Douglasii*), *Heracleum lanatum*, *Lupinus leucophyllus*, *Sidalcea oregana*, *Solidago serotina*, *Urtica Lyallii*, *U. hirsutissima*, *Valeriana ceratophylla*.

B. Nevada District.

The proper flora of the Great Basin occupies the states of Nevada and Utah parts of the states of Idaho and California north of the eastward flowing portion of the Colorado River. A large area of this district lying at elevations up to 5000 feet includes numerous valleys and widely extended plains with no outlet for the drainage. Into these the streams from the mountains flow and terminate in lakes at the lowermost part of the basin formed, or spread out in great flats or playas in such a manner that the waters disappear in the ground, forming what are known as sinks. The soil of the basin in many places, becomes highly charged with salts and supports a flora in which the predominant forms consist of perennial compositous shrubs of which the genus *Artemisia* furnishes three or four species known locally as sage-brush greasewood and desert sage.

No portion of this district, however desert, is destitute entirely of some vegetation, even in the driest season, excepting only the alkali flats, which are usually of quite limited extent. To the absence of trees outside of the mountains of the basin, there seems to be a single exception in the valley of the Truckee River, where *Populus monilifera* (= *P. deltoides*) and *P. trichocarpa* grow in considerable numbers in the river bottom. Ascending the mountain ranges for example Table Mountain 11,200 feet, the botanist finds seven species of trees, viz: *Juniperus virginiana*, *Populus tremuloides*, *Pinus Bal-

fouria, *P. flexilis*, *P. monophylla*, *Juniperus californica* var. *utahensis*, *Cercocarpus ledifolius*.

Juniperus californica var. *utahensis* in places associated with *Streptanthus cordatus*, Pentstemon pumiceus, *Phlox canescentes*. *Berberis Fremontii*, is the most common tree descending into valleys where at an elevation of 5,000 feet, it is often abundant, but less so on mountain sides over which it spreads up to 8,000 feet elevation. — Growing with this juniper above 6,000 feet elevation and extending higher up the mountains is *Pinus monophylla*. *Pinus Balfouriana* occurs on Prospect Mountain near Eureka at an elevation of 7,500 feet, while *Pinus flexilis* grows on Monitor Range from 8,000 feet up to 10,000 feet elevation, associated with *Populus tremuloides* on the banks of the mountain streams. — *Cercocarpus ledifolius* is common at 6,000 to 8,000 feet elevation and next to the juniper and *Pinus monophylla* is the most abundant of the trees of central Nevada. In the Washoe Mountains in common with the rest of the Sierras, there is a heavy growth of several conifers of which *Pinus ponderosa* extends down to the very base or even on to the valley slopes. Some of the high western canyons show a dense growth of *Picea Engelmannii*.

The shrubby or perennial vegetation consists of the omnipresent sagebrush *Artemisia tridentata* mingled in the less alkaline and drier portions of the valleys with *Atriplex Obione* *confertifolia*, A. (O.) canescentes, A. Nuttallii, *Audubertia Ramona* incana, *Sphaerostigma tortuosa*, *Tricardia Watsoni*, *Stipa comata*, *Juniperus californica* var. *utahensis*. *Pinus monophylla* (the last seven extending up to 6,000 feet out of the Truckee Valley), *Grayia spinosa* (= G. polygaloides), *Artemisia spinescens*, *Europia lanata* and *Kochia prostrata*, while *Tetradymia canescens* also occurs with the sage brush or with *Artemisia tridentata* when that species replaces *A. tridentata*, *Purshia tridentata* associated with *Ribes leathanum*; *Prunus Andersoni* is widely distributed above the base of the mountains.

The following most important genera of plants are found between the shrubs: *Astragalus*, *Oenothera*, *Gilia*, *Phacelia*, *Emmenanthe*, *Nama* (Conanths), *Eriogonum*, *Oxythece*, *Chorisarthe*, *Tetradymia*, *Senecio*, *Stephanomertia*, *Glyptopleura*, *Lygodesmia*, *Malacothrix*, *Troloxim*.

For miles and miles the adobe plains in southwest Colorado are covered with *Artemisia tridentata*, with *Sarcobatus vermiculatus*, *Bigelovia graveolens*, *Atriplex canescens* common in scattered spots. Early in June the hills and mesas seem suddenly to burst into bloom, *Peraphyllum ramosissimum* is one of the earliest. *Fendlera rupicola* towers above every other shrub with white flowers. *Amelanchier alnifolia* is also in bloom at this season. *Purshia tridentata* and *Cercocarpus parvifolius* are common. *Quercus undulata* has put forth its early leaves. *Philadelphus microphyllus* is found on rocky hill and abrupt canyon sides.

The spring flowering herbs April 5th to June 1st as found in southern Utah, according to *Parry*, consist at first of evanescent annuals, such as *Phacelia Fremontii*, *P. crassifolia*, *P. mierantha*, *P. rotundifolia*, followed by *Gilia inquispencia*, *G. leptomeria*, *G. demissa*, *G. Bigelovii*, *G. floecosa*, *G. polycrados*, *G. setosissima*. Among other interesting dwarf forms characterizing the early spring flora may be noted: *Thysanocarpus curvipes*, *Malvastrum exile*, *Lupinus Sileri* (= L. Kingii), *Eriophyllum Wallacei*, *E. lanosum*, *Syntrichopappus Fremontii*, *Layia glandulosa*, *Styloclyne micropooides*, *Nemocladus ramosissimus*, *Nama demissa* and *Perostegia drymarioidei*. As an early bulbous plant, *Androstaphyllum breviflorum* grows on gravelly hills succeeded by *Brodiaea (Milla) capitata*. Early in May, *Calochortus floruscens* is conspicuous on hillsides. After the late spring frosts, *Oenothera albicaulis*, *Oe. Parryi*, *Dalea Johnsoni*, *Coleogyne ramosissima*, *Aster tortifolius*, *Audubertia incana*, *Lepidium Fremontii*, *Hymenoclea salisola*, *Franserie dumosa*.

Salixia mexicana. Opuntia rutila, Cereus Engelmanii, Mammillaria phellosperma, Opuntia ehnocarpua appear in flower. The large class of compositous, chenopodiaceous and perennial Eriogonae come forward in the latter part of May 1).

River Bottom and Meadow-Formation. The water courses are marked by the presence of Salix longifolia, S. cordata, Rosa blanda, Shepherdia argentea Prunus demissa and Ribes aureum with Populus tremuloides on the stream banks in the upper canyons.

On the banks of streams in the lower canyons are Ribes irritium, Sambucus glauca, Cornus pubescens (= C. occidentalis) or more rarely Crataegus rivularis, Alnus incana, while on the rich moist hillsides are Wyethia amplexicaulis, Lopanthis urticeaeolius. Geranium Richardsonii. The banks of the Truckee River, as it runs through Truckee Valley, are covered with a dense growth of Populus balsamifera, P. trichocarpa, Salix argophylla, S. lasiolepis, S. padophylla and Alnus rhombifolia, according to Kennedy 2). Populus tremuloides occupies large areas in the upper part of the river while in the more desert country beyond the Virginia Mountains, Populus Fremontii is the common tree. Along the banks grow Allium cuminatum, Artemisia aromatica, Cieuta vagans, Mimulus Langsdorffii. Prunus demissa, Rosa Woodsii and Ribes aureum, Above the valley grow Acer glabrum, Alnus tenuifolia, Amelanchier Cusickii, Ribes cereum.

Along the river bottoms in south-west Colorado grow Crataegus eocoeccia, Salix lasiandra, S. cordata var. Mackenziana. Occasionally clumps of Khamnus californica, also occur with Rhus aromaticus (= R. caeradenis), Shepherdia argentea, Prunus demissa, Ribes aureum, Berberis Fendleri, while Pachystima myrnytis carpets the ground under the taller shrubs. Ceanothus Fendleri is common in open spots on rocky slopes. C. ovatus also occurs. In the basin of the Green River, an extension of the arid Great Basin into the mountains, are groves of Populus angustifolia beneath which trees grow Glycyrrhiza lepidota, Symphoricarpos racemosus, Rosa Fendleri while Salix longifolia, S. amygdafoide, Pirus sambucifolia, Rhus canadensis var. triloba, Ame lanchier alnifolia also are found. — The marshes and margins of the lakes may be green with Scirpus maritimus, Juncus balticus, Equisetum hyemale, Sporobolus (Vilfa) depauperata, Agropyrum repens.

The swamps in the Truckee Valley which are characterized by a dense growth of Typha latifolia, Sagittaria latifolia, Sparganium simplex intergrade with the meadows where are found, according to the soil and the amount of water, Carex ampullacea, C. aquatilis, C. lanuginosa, Eleocharis arenica, Juncus, Scirpus and Trifolium spinulosum.

The following plants are to be classed as aquatic and meadow species 3): Nasturtium (Roripa) lyratum, Selinum Kingii, Scirpus nevdensis, Carex Watsonii, Tillaea angustifolia, Iris Tolmieana (= I. missouriensis), Carex vesicaria, C. aemathorhyncha (= C. filiformis), Gentiana affinis, Epipactis gigantea, Zygadenus Nuttalii, Deschampsia danthonioides, Valeriana edulis, Aster simplex (= A. paniculatus), Gratiola virginiana. — Typha latifolia, Potamogeton natans, P. pectinatus, Alisma plantago, Sagittaria variabilis (= S. latifolia), Eleocharis aecularis, E. palustris, Elatine americana, Panicum crus-galli, Ceratophyllum demersum, Schollera graminea, Sparganium eurycaerpum &c.

Desert Sinks Formation: The plants which are confined to alkaline spots in the desert or to desert sinks are Spirostachys occidentalis, Sarcobatus verniculatus (widely distributed) associated with Salicornia herbacea, Suaeda depressa var. fruticosa, Distichlis spicata and Spartina gracilis which together form the characteristic vegetation.

1) Parry, C. C.: Bot. observ. in southern Utah in 1874. See Bibliography.
3) Watson: loc. cit. p. XXX.
The Black Rock Desert in northwestern Nevada is a "sleek desert", that is, it is barren of vegetation due to the excessive alkalinity of the soil. The first plants in the edge of the desert are iodine weed *Spirostachys occidentalis*, *Suaeda (Donidia) depressa var. erecta*, followed by *Distichlis spicata, Sarcobatus vermiculatus, Atriplex Torreyi* and *Mimulus Bigelovii*.

Mesa Formation: On the mesas which are broad, flat, table-lands bounded at least on one side by a steep cliff rising from lower land, are scattering growths of shrubs such as: *Atriplex confertifolia, Artemisia spinosae, Tetradymia spinosa, Kochia americana, Grayia polygaloides, Aploppus viscidiis, Eurotia lanata.* The mesa plants extend up the side of buttes for a considerable distance and *Kochia, Grayia, Eurotia* with *Tetradymia canescens* extend to the very top, where there are also found *Eriogonum species, Gilia pingens, Galium multiflorum and Lygodesmia spinosa.* On the sandy knolls of the mesas grows *Oryzopsis cuspidata.*

Subalpine and Alpine Formations.

The constituent plants of the subalpine formations in the higher Sierras of the Great Basin are the following:

- *Phleum alpinum.*
- *Carex rigidia.*
- *Luzula (Juncoides) spicata.*
- *Juncus Parryi.*
- *Salix glauca.*
- *Polygonum bistorta* (= P. bistortoides).
P. coarctatum
(= P. spergulariaeforme).
- *Eriogonum hercaldoides.*
 Ranunculus digitatus.
 * nivalis var.
- *Anemone multifida.*
- *Sedum debile.*
- *Parassia fimbriata.*
- *Saxifraga nivalis.*
- *Potentilla fruticosa.*
- *Astragalus Robbensii.*
- *Hookerianus.*
- *Viola Nuttallii.*
- Epilobium ochroidatum.
 * alpinum.
- *Gayophytum racemosum.*
- *Ledum glandulosum.*
- Hydrophyllum capitatum.
 * alpina.
 (= V. Wormskjoldii).
- *Pedicularis (Elephantella) groenlandica.*
- Aster pulchellus.
- Erigeron asperugineus.
 * Breweri.
- Miroseris nutans.
- *Artemisia arbuscula.*
- Arnica longifolia.
 * mollis.
- * cordifolia.
- Senecio lugens.
- *Achillea millefolium and*
 Antennaria dioica.

The alpine region of the Nevada District is characterized by the presence of the following plants:

- *Agrostis canina.*
- *Elymus sitanion* (= Sitanion elymoides).
- *Trisetum subspicatum.*
- *Poa andina.*
 * alpina.
- *Carex atrata.*
- *Carex leporina.*
 * affinis (= C. obtusata).*
- *Lloydia serotina.*
- *Salix reticulata.*
- *Polygonum viviparum.*
- *Eriogonum umbellatum.*
 * microtheem.
- *Oxyria digyna.*
- *Silene acaulis.*
- *Arenaria arctica.*
- *Thalictrum alpinum.*
- *Caltha leptosepala.*
- *Draba nemorosa.*
 * stellata.

2) Species marked by an asterisk are present in other parts of Pacific N. America in the same formations and region.
C. Arizona- New Mexico District.

This district is characterized by the inclusion of such deserts, as the Painted Desert in northern Arizona, the Tularosa Desert in New Mexico and others stretching eastward to join the plains of western Texas and southward into the deserts of Chihuahua in Mexico.

This district lies southeast of the grand Canyon of the Colorado River. It embraces several mountain ranges which may be said on the higher summits to have a typic Rocky Mountain flora, which for purposes of convenience will be treated in connection with the consideration of the flora of the New Mexico-Arizona District.

Looking from a mountain top the traveller is impressed with the wonderful diversification of the desert landscape. Here he sees a vast flat of alkali: there an area of vulcanism where the lava has overflowed square miles of country. Elsewhere are arid hillsides and isolated table-lands, or mesas glowing with every conceivable shade of color. While in the distance rise mountain peaks that are during a large part of the year snow-capped. Elsewhere sand dunes are seen with characteristic wet dune bottoms, while progress across the country is blocked by deep canyons. The physiognomy of the vegetation impresses the botanist as much as the physiography for low mesquite trees abound with low thorny shrubs, yucca-like plants dotted over the arid plains, while the oak and piñon belts of the lower mountain slopes suggest a shrub steppe or a Mediterranean oak or laurineous forest where sclerophyllous trees are the prevailing type.

The plants are modified structurally and seasonally to a desert climate. Their root systems are either deeply placed (Prosopis juliflora), or superficially placed and strongly branched (Cereus giganteus); their leaves are reduced in size; they have water-storing stems; their leaves are leathery or succulent with thick cuticle, sunken stomata and other protective devices, while their rapidity of development after showers of rain is astonishing. We have as a result of this two kinds of desert plants existing side by side, viz., typic desert xerophytes and desert mesophytes which develop during the

short specks of rainy weather. Such are the winter perennials (December—March) with rootstocks and bulbs which develop new shoots and form leaves and flowers under the influence of the rising temperature and moisture and the winter annuals the seeds of which germinate in the wet period and soon pass away. The spinose and succulent forms of the dry fore-summer (April—June), such as cacti, yuccas, woody herbs, shrubs and trees, flower under the influence of the advancing temperature on parts which have stored water earlier in the season. The short humid mid-summer follows with a second burst of bloom of summer annuals and perennials followed by the dry after-summer which sees the ripening of fruits and seeds 1). A numeric statement of the proportion of the various kinds of desert plants is reserved for treatment in a later section under "Colorado Desert Vegetation".

1. The Desert plains, Mesas, Dunes and Gravel Hills.

Desert Plain Formation. The Tularosa Desert may be considered as a typic one for New Mexico. Atriplex canescens and Koeberlinia spinosa form low trees associated with a suffrutescent Suaeda, a tufted Sporobolus and occasional specimens of a Lycium. In low spots and along the margins of clay bottomed washes covered with a crust of alkali appears Spirostachys occidentalis. Toward the middle of the Tularosa Valley the principal facies consists of Atriplex canescens with areas in which Yucca radiosa or Opuntia arborescens are abundant. This formation also extends into the Painted Desert or desert of the Little Colorado River in Arizona. The vegetation is scattered and scanty and consists of such characteristic arid land forms as Atriplex canescens, A. confertifolia, Sarcobatus vermiculatus, Dicoria Brandegei, Oxytacenia acerosa, Tetradyemia canescens, Ephedra sp., Yucca angustifolia and cacti of several genera. With these grow Bouteloua oligostachya, Lupinus capitatus, Mirabilis multiflora, Riddellia tagetina and Zinnia grandiflora. This desert flora reached the Painted Desert by way of the Grand Canyon of the Colorado.

Two plant formations in New Mexico may be distinguished where the sand dunes occur, viz: the sand dune formation and the dune hollow formation.

Dune Formation: The most characteristic plant of the dunes is Rhus trilobata 2 occurring in hemispheric bushes 4 to 8 feet high and binding the sand. Other characteristic woody plants of the dunes are Atriplex (Obione) canescens, two species of Aploppinus (= Chrysothamnus) and Yucca radiosa. — A marked peculiarity of the white sands is that a cotton wood (Populus) is occasionally found in the lower dunes, reaching a foot in diameter, but seldom more than 10 to 15 feet high while the mesquite is absent.

Dune Bottom Formation: The bottoms among the dunes have a characteristic vegetation of a grama grass (Bouteloua), clumps of Ephedra and about the water holes, Distichlis spicata,

Juneus balticus, both in alkaline soil, while in the shallow washes of this desert growth Statice (Limonium) limbatum.

A section from the base of the Sacramento Mountains, southwest through Alamogordo in to the Tularosa Desert shows five strips: (1) A strip of cacti, *Mamillaria* of several species, *Fouquiera splendens*, *Agave Parryi* and *Dasylirion texanum*, (2) the delta slopes from the mountain canyons, characterized by a nearly pure growth of creosote bush *Larrea tridentata* (= *Covillea tridentata*), the soil usually gravelly; (3) the mesquite (*Prosopis*) strip with thickets of *Opuntia fulgida*; (4) the area of *Atriplex canescens* and (5) the White Sands.

Bolson Basins Formation. Such basins have no established surface drainage, so that the rain water gathers at the lowest points forming mud flats, or shallow lakes. The vegetation of the flats consists of halophilous species. Black brush, *Florenisia cernua* and other shrubs, such as *Larrea*, are tolerant of the alkali. Some typical beach plants also occur, as: *Lycium carolinianum*, *Sesuvium portulacastrum*, *Distichlis spicata*, *Salicornia ambigua*, while the characteristic salt basin plants *Spartina junceiformis*, *Sporobolus airoides*, *S. Wrightii*, *Succeda diffusa*, *S. suffrutescens*, *S. depressa*, *Sarcobatus vermiculatus*, *Chenopodium rubrum*, *Atriplex argentea*, *A. expansa*, *A. canescens*, *Eurotia lanata*, *Spirostachys occidentalis*, *Frankenia Jamesii* are abundant. According to Bray.

The Gravel Hills Formation in the neighborhood of Santa Fe, New Mexico, are characterized by the presence of *Pinus edulis*, rarely over six feet in height, and *Juniperus occidentalis* on the ground between which occur *Actinella argentea*, *Pentstemon Fendleri*, *Astragalus cyanus*, *A. diphysus*, *Lesquerella intermedia* (close to the ground) *Linum puberulum*, *Oenothera albicaulis* and others.

The Lava Beds Formation of this desert (malpais of the Mexicans) are characterized by *Juniperus occidentalis*, *Opuntia fulgida*, (sometimes ten or twelve feet high) and the nut pine *Pinus edulis*. Great springs saturated with salt and alkali issue from the southern rim of the lava beds and here tufts of *Succeda* and *Spirostachys* are set close against the lava wall. Elsewhere near the Organ Mountains the plants of alkaline soil are *Bigelowia Rushy*, *Helianthus ciliosa* and species of *Sesuvium*, *Triantema* and *Atriplex*.

Mesa Formation. The table land during the dry season is desolate, but during wet season presents great luxuriance of species in the genera: *Allium*, *Calochortus*, *Brodiaea*, *Bouteloua*, *Aristida*, *Poa*; *Agrostis verticillata*, *Setaria caudata* abound. Vegetation is mostly in patches. Such are *Pectis*, *Gutierrrezia*, *Viguiera*, *Verbesina*, *Hymenatherum*, *Hymenopappus*, *Astragalus*, *Pentstemon*. In the slightly elevated, broken ground abound *Argemone*, *Oenothera*, *Sida*, *Malvastrum*, *Sphaeralcea*. One or more species of *Eriogonum*, will be found everywhere. *Bahia oppositifolia*, *Actinella odorata*, *Dysodia chrysanthemoides*, *D. Cooperi*, *Schkuhria*, *Hoffmannseggia*.

On the mesas in New Mexico occur *Bouteloua oligostachya*, *Hilaria Jamesii*, *Aristida purpurea* as the prevailing grasses with *Sporobolus airoides*, *Oryzopsis mierantha*, *Poa Bigelovii*,

2) **Mac Bride, Thomas H.:** The Alamogordo Desert. 1905.
Triodia (Triecispis) pulchella, Bouteloua polystachya, Sporobolus cryptandrus, Koeleria cristata, Sporobolus (Blepharoneuron) tricholepis, Bouteloua criopoda, Stipa pennata var. neomexicana.

The grasses of the meadows in central New Mexico are: Agrostis verticillata, Agrostis vulgaris, Agropyrum tenerum, Elymus obtusatus, Elymus Macounii, Polypogon monspeliensis and Juneus balteus. —

The wet meadows of Barfoot Park in the Chiricahua Mountains of southeastern Arizona at 5000 feet are characterized by Blumer 1 as carpeted by Trifolium pinetorum, Hypericum formosum, Epilobium neo-mexicanum, Mimulus cardinalis (rare), Ligusticum Porteri, Ranunculus hydrocharoides and the fern Athyrium eucylosorum.

The bacterial flora of the air in the deserts of New Mexico, according to Weinzig, presents a somewhat limited number of species and this is due undoubtedly to the high winds which sweep uninterruptedly over wide stretches of barren country 2.

2. The Coniferous Forest Belts and high Summits.

Much of the forest in Arizona is on the Colorado Plateau and here it reaches its best development in the vicinity of the San Francisco Mountains. From here this magnificent pine forest stretches northward to beyond the Grand Canyon, westward to Bill Williams Mountains, and southward to the rim where the Colorado Plateau breaks down to the southern plains.

Coleogyne Association. The first 2600 feet of descent from the rim the Grand Canyon of the Colorado River is characterized by the presence of trees. Below this the slopes are treeless and the vegetation of a desert character 3.

Coleogyne ramosissima, a rosaceous shrub, extends in an almost pure growth over the canyon terraces at an elevation of about 3600 feet in a soil seemingly well supplied with lime. The absence of many desert shrubs here is presumably connected with the narrowness of the canyon and a rainfall greater than in the open desert.

The Bradshaw Mountains, Mogollon Mountains, Mazatzal Mountains and the White Mountains may be considered southern extension of the Colorado Plateau. Of these mountains the Bradshaw are most poorly supplied with pine. The Mogollon and Mazatzal Mountains have wide strips of pine along their summits. The White Mountains are well timbered with Pinus strobiformis and P. ponderosa.

The altitudinal range of species in these mountains is not clearly defined, for the reason that the area presents a wide diversity of climatic conditions and exposures. The various tree species prefer the north or south slopes of the canyons. For example 4 at the headwaters of East Clearwater a tributary of the Little Colorado all the canyon slopes facing northward are timbered with Pseudotsuga Douglasii and Abies concolor (= Pseudotsuga Facies), while on the opposite sides of the canyon the entire forest is of Pinus ponderosa. Only a few individual red firs Pseudotsuga Douglasii seem to be able to live in the face of the intense mid-

1) Blumer, J. C.: Muhlenbergia IV. 80.

Harshberger, Survey N.-America.
day sun, and the lowest elevation at which this species occurs is 6,970 feet. Elsewhere the same disposition of trees is noticeable. North and west of Black River Pinus ponderosa prefers the western and southern slopes, but in the watershed tributary to Eagle Creek and Blue River its habits appear to be reversed, and it is found principally on the slopes facing the north: in fact it is found where Pseudotsuga Douglasii and Abies concolor would naturally be expected.

A noticeable feature in regard to the timber belts of the San Francisco, the Mogollon and the Black ranges in New Mexico is the striking distribution of the different species. On the San Francisco and Tularosa ranges the heaviest growth of mixed timber stands on the north-facing hillsides, while the southern ones are practically barren, being given up to scrub growths of small oaks and piñon pine, Pinus edulis. On the Mogollon Mountains the alpine species appear in their heaviest growth on the eastern slope, while on the Black range they are only found on the western slope. On the Mogollon Mountains the yellow pine ascends the western slope of the range very nearly to the summit, while on the east slope it does not reach within 500 feet. On the Black Range the conditions are reversed. The main cause of this striking difference is that each range has a gradual incline to the Gila River, the one to the east, the other to the west, and this gradual slope is naturally the more humid, and as humidity is an absolute necessity for the prolific growth of alpine species, wherever the slopes are steep, alpine species become reduced in number and disappear, and are replaced by more arid types such as oak, juniper and piñon pine.

The components of this forest and the piñon timber belt in Arizona are: Pinus ponderosa, Picea Engelmanni, Pinus strobiliformis, Pseudotsuga Douglasii, Abies concolor, Pinus flexilis, Picea Engelmanni var. franciscana, Juniperus pachyphloea, Populus trichocarpa, P. tremuloides, Quercus Gambelii, Q. Emoryi, Cupressus arizonica, Abies rhombifolia, Platana racemosa mentioned in the order of their importance.

The low mountains south of the central range of Arizona are clothed with a different forest vegetation than that about San Francisco Peak, forming scarcely one per cent of the forest area. They are properly to be considered as included in the Mexican phytogeographic province and will be treated in connection with the Mexican flora. It may be well to briefly refer to the peculiarities of their flora at this point. The mountain summits show the presence of Pinus ponderosa, a tree of extensive range. Below this pine grow Pinus edulis, P. eembroides (a southern tree) and Quercus undulata. — The Chiricahua Mountains ¹ have in the spruce belt Picea Engelmanni, Pinus ponderosa, below which in the fir belt are P. arizonica, Abies concolor, while in the pine belt occur P. chihuahuana (entirely unknown north of the Santa Catalina Mountains) P. Mayriana and P. eembroides. Here two species of pine come together: P. flexilis (northern) and P. strobiliformis (southern). At 8000 feet (2440 m) on these mountains we find the well-shaded northern slopes covered with a forest of Pinus strobiliformis, Pseudotsuga Douglasii and Abies concolor associated with which are the heavy gold-crowned tussocks of Dugald dea Hoopesii, Senecio eremophilus, Solidago Bigelovii and Helianthella quinquervis arizonica, while of smaller size near the cool ground are found Cerastium texanum, Fragaria bracteata, Lathyrus graminifolius, Aphyllon

fasciculatum and in the shadiest nooks the tall Pedicularis Grayi with fern-like foliage. A somewhat similar condition is found on the Huaachuca, Santa Rita and Santa Catalina Mountains: Pinus arizonica, P. cembroides, P. chihuahuana occur on the Rincon Mountains while P. ponderosa is extremely rare apparently having reaches its southern limit. The flora of these ranges is clearly of a Mexican character 1).

Robinia neo-mexicana occurs in the Organ Mountains of New Mexico with Rosa Fendleri, Berberis trifoliolata, Dalea (Parosela) formosa, Linum rigidum, Erigeron flagellaris, Dryopetalon runcinatum, Aster ericacefolius, Lesquerella purpurea, Solanum tuberosum, Oxalis vespertilionis, Clematis ligustrina, Heuchera rubescens, Perezia nana, Gaura parviflora (almost) everywhere, G. coccinea, Gossypianthus rigidiflorus, Portulaca lanceolata, and the following ferns 2):

Gymnopteris (Neurogramme) hispida Mett. commonly forming mats over the warmer rocks with Selaginella rupincola Underw.;
Notholaena sinuata Lag. On calcareous and siliceous rocks in dry warm situations;
Notholaena sinuata var. integerrima Hook.;
Notholaena ferruginea Desv. (= N. bonariensis Willd.);
Notholaena Hookeri D. C. Eaton, the commonest fern of the range;
Notholaena dealbata Pursh, on steep limestone cliffs;
Cheilanthes Feei Moore, in crevices of vertical or overhanging rocks;
Cheilanthes tomentosa Link, in bunches at base of loose rocks in dry siliceous soil and but partly protected from the sun;
Cheilanthes tomentosa var. Eatonii Baker;
Cheilanthes Fendleri Hook.;
Cheilanthes Lindheimeri Hook., forming long matted strings of vegetation in the crevices of the large granite boulders which fill the canyons;

Gymnogramma (Gymnopteris) Ehrenbergiana Kl.
Pellaea atropurpurea L. under the edges of rounded granite boulders in dry warm situations;
Pellaea ternifolia Cav.;
Pellaea Wrightiana Hook., common in loose dry soil under the edges of round granite boulders, growing best during the early spring months;
Pellaea intermedia Mett.;
Asplenium resiliens Kunze, only in a few places in dry soil under overhanging rocks;
Asplenium trichomanes L., under the rocks in wet, cool, shady places near running water;
Dryopteris filix mas L. in a cool moist canyon;
Phanerophlebia auriculata Underw., in cool, shady, moist situations in a single canyon;
Cystopteris (Filix) fragilis L. growing in open canyons in wet soil;
Woodsia mexicana Fee, rare on the higher slopes of the Organ Mountains.

Piñon Pine Formation. Ascending the San Francisco range of mountains and also the Mogollon Mountains the first distinctive mountain belt is that of the piñon pine Pinus edulis (5,700—7,000 feet). P. edulis is associated with Juniperus monosperma and J. pachyphloea, Quercus agrifolia, Q. Emoryi, and such shrubs as Berberis Fremontii, Rhus aromatico var. trilobata, Holodiscus discolor with Fucca baccata, Opuntia arborescens, Ephedra antisyphilitica, Mentzelia albicaulis, Pectis angustifolia and along creeks Platanus occidentalis, Populus monilifera, Schrankia uncinata. Near the Grand Canyon of the Colorado and again at Walnut Canyon where the lava rock gives place to lime-

stone these shrubs are joined by *Cowania mexicana*, *Spiraea millefolium*, *Robinia neomexicana* and *Yucca angustifolia* is replaced by *Yucca baccata*. *Juniperus californica* var. *utahensis* also grows at the Grand Canyon. A dense chaparral of *Fallugia paradoxa* forms extensive thickets east of O'Leary Peak and occurs sparingly over most of the piñon belt even extending down into the desert in places¹).

At the brink of the Grand Canyon opposite Point Sublime is a dwarf forest of peculiar aspect, having a uniform height of about 5 meters consisting of *Cercocarpus ledifolius*, *Pinus edulis*, and *Juniperus californica* var. *utahensis*. Mingled in this forest are *Berberis fremontii*, *Spiraea millefolium* and along its edges are extensive fields of *Artemisia tridentata* which reaches here its southern limit, and *Yucca baccata*, with several kinds of cacti. In other directions it gives place to thickets of *Quercus gambelii* and *Robinia neomexicana*. This the piñon belt of the Grand Canyon, differs from that about San Francisco Mountain because of the presence here on the Coconino Plateau of carboniferous limestone, such plants as *Cowania Mexicana*, *Berberis fendleri*, *Spiraea millefolium*, *Yucca baccata*, *Robinia neomexicana* growing at the Grand Canyon, but not in the lava soils of the piñon belt about San Francisco Mountain²).

San Francisco Mountain³) rises from an elevated open somewhat barren table-land which is the continuation of the high plateaus of New Mexico and Utah. It is traversed by a number of profound canyons. It supports some isolated ridges and peaks besides the second region above-named. Upon them occurs: *Pinus ponderosa*, *P. edulis*, *Juniperus monosperma*, *J. pachyphloea*, *Fraxinus velutina* (= *F. pistaciaefolia*), *Quercus gambelii*, *Q. oblongifolia*, occasionally *Juglans rupestris*. Among the smaller trees and shrubs are *Morus celtidifolia* (= *M. microphylla*), *Cercocarpus parvifolius*, *Forestiera neo-mexicana*, *Garrya fremontii*, *Ribes aureum*, *Aretostaphylos pungens* and small oaks *Quercus undulata* (= *Q. grisea*), *Q. hypoleuca*. The level portion of the plateau is destitute of everything larger than shrubs with which occur *Yucca baccata*, *Y. angustifolia* (= *Y. glauca*), *Artemisia* and *Ephedras*.

The piñon belt, in the Lincoln forest reserve, New Mexico, which comprises the country between the Rio Grande del Norte and the Rio Pecos and includes such ranges as the Sacramento Mountains, Sierra Blanca, or White Mountains, Capitan and Jicarilla Mountains, occurs between 5,000 and 6,400 feet. The species of this belt nearly the same but with *Negundo aceroides* and Mexican walnut *Juglans rupestris*. Along Three Rivers, extending out into the desert about 10 miles beyond the lower limit of the pinion belt is a narrow broken fringe of deciduous trees consisting in the main of the same *Juglans rupestris*, *Negundo aceroides* (= *Acer negundo*), *Fraxinus* and *Robinia neomexicana*.

The piñon belt west of the Pecos Valley in Texas covers the lower slopes of the mountains extending on southwest slopes nearly or quite to the tops of most of the peaks, but on the northeast slopes of the Guadalupe, Davis

3) Consult also in addition to the papers mentioned above *Rixon*, Theodore, F.: Forest Conditions in the Gila River forest Reserve, New Mexico, Professional Paper No. 39, Series H. Forestry 13, U.S. Geological Survey 1905, where a description of the forests on the San Francisco, Tularosa, Mogollon and Black Mountains is given with names of species.

and Chisos Mountains it ranges as high as 6000 feet (1830 m). On the steep and slopes of these mountains the difference of zone level on opposite sides is often 2000 or 3000 feet, increasing with the steepness and barrenness of the slope. Some of the most characteristic plants are Pinus edulis, P. cembroides, Juniperus pachyphloea, J. monosperma, J. flaccida, Quercus grisea, Q. Emoryi, Adolphia infesta, Nolina texana, Mimosa biuncifera, Cercocarpus parvifolius, Fallugia paradoxa, Yucca baccata, Agave Wizlizeni, A. applanata).

Upper Coniferous Forest Formation. The characteristic tree of this belt is Pinus ponderosa (Pinus ponderosa Facies) which forms one of the most beautiful forests in existence, above an altitude of 7000 feet (2100 meters) and extends up as high in some of the parks as 8800 feet (2675 meters). As a distinctive species, however, it loses its character at about 8200 feet (2500 meters) where it is invaded and soon after replaced by Pinus flexilis, Pseudotsuga Douglasii and Populus tremuloides; Quercus Gambelii grows in clumps with the bull pine at an elevation of 8000 feet. The herbaceous plants of this belt are Campanula Parryi, Frasera speciosa, Gilia aggregata, G. attenuata, Oxybaphus angustifolius (Alliaria linearis), Oxytropis Lamberti.

This forest belt reaches its highest development about San Francisco Mountains. From here it stretches north to and beyond the Grand Canyon of the Colorado River westward to Bill Williams Mountain and southward to the rim where the Colorado Plateau breaks down to the southern plains.

In the Sacramento, White, Capitan and Jicarilla Mountains the belt of Pinus ponderosa ranges from 6400 to 9000 feet. The principal trees are with the main pine Pseudotsuga Douglasii, Abies concolor, Mexican white pine, Pinus strobusformis and Quercus undulata. Along the streams and canyons are Robinia neomexicana, Acer grandidentatum, Populus angustifolia, and other deciduous species overlapping from the piñon belt.

Growing with the main pine on the Mazatzal Mountains at the higher elevations are scattered specimens of Pinus flexilis, Abies concolor, Pseudotsuga, while Pinus edulis exists at lower elevations. In the White Mountains the same general disposition seems to prevail while Cupressus arizonica lines the canyons. In Texas a pine forest formation exists on the higher Guadalupe and Davis Mountains 2). The chief elements of the formation are Pinus ponderosa on Guadalupe Peak at 9000 feet and on Davis Mountains. Next to this prevalent pine is Pseudotsuga Douglasii, Pinus flexilis, while on the lower slopes are P. edulis, Juniperus pachyphloea, Quercus Emoryi (in the Canyon), Q. Gambelii.

A few of these reach the summits of the highest mountains in the great bend of the Rio Grande River in Western Texas, but scarcely in force to change the Mexican i. e. upper Sonoran character of the flora. This belt

1) Bailey, Vernon: Biological Survey of Texas, 1903.
confined to the Chisos, Davis and Guadalupe Mountain ranges from 6000 feet on northeast slopes to the tops of the ranges. It represents the Transition Zone of Merriam 1. It is the home of the wild potato Solanum tuberosum var. boreale.

That characteristic plants of the above three mountain ranges are displayed in the list:

<table>
<thead>
<tr>
<th></th>
<th>Guadalupe</th>
<th>Davis</th>
<th>Chisos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus ponderosa Dougl.</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>» flexilis James</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Pseudotsuga Douglasii Carr. (= P. mucronata Raf.)</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Acer grandidentatum Nutt.</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Quercus grisea Liebm.</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>» Emoryi Torr.</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>» texana Buckley</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>» undulata Torr.</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Prunus serotina Ehrh. var. acutifolia</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Rhamnus Purshiana DC.</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Amelanchier alnifolia Nutt.</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ceanothus Greggii A. Gray</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Robinia neomexicana A. Gray</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Solanum tuberosum L. var. boreale A. Gray</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

The timber of the Davis Mountains is typic. Omitting the small areas of Pinus ponderosa, the mountains, ridges and mesas are covered with trees whose short trunks and brown crowns produce a park-like appearance.

The grasses of the pine forest are Mühlenbergia Porteri, Panicum bulbosum, Poa Eatoni, Bouteloua oligostachya, Stipa comata, Andropogon birtiflorus, Agropyrum pseudorepens, Aristida arizonica and longiseta. — Everywhere through the forest are beautiful open parks Park Formation: from a few acres to several miles in area. Here are Stipa neomexicana, S. comata, Senecio Douglasii, Aster (Machaeranthera) tanacetifolius, A. (M.) canescens, Hymenopappus cernuum, Astragalus Hosackiae, many Eritrichiums. About the springs grow Iris missouriensis, Epilobium paniculatum, Campanula Scheuchzeri.

Up the small rough canyons formed by erosion creep many lowland plants and down them come many from the highlands producing a varied flora (Canyon Formation), viz: Pentstemon Palmeri, Prunus demissa, Spiraea millefolium, Holodiscus discolor, Cowania mexicana, Fendlera rupicola, Sambucus glaucus, Lonicera involucrata, Lupinus rivularis, Ivesia depauperata, Helianthus Maximilianii. — Spiraea caespitosa, a stout shrub, grows on the rocky margins of these canyons exposed to sweeping storms. In its company grow Eriogonum deflexum, E. microthecum and E. flavum. — Barfoot Park in the Chiricahua Mountains (8000 feet) was characterized

by a scattered growth of Pinus arizonica beneath which beginning in June appear a succession of flowering plants. The season opens with Pentstemon Torreyi and ends in autumn with Gymnolaena multiflora. The deeper soil mountains Commelina dianthifolia, Cerastium sericenum, Achillea lanulosa, Cacalia decomposita, etc. On stony knolls in sunny places grow Allionia pratensis, Anthericum Torreyi, Calogania longifolia (of a royal purple), Phascolus parvulus, P. Wrightii. Verbesina longifolia and Viguera cordifolia with great tubers of stony hardness. At the base or well-protected slopes are found Delphinium scopulorum, Vicia americana, Oenothera Hookeri and Solanum tuberosum boreale.

Subalpine Coniferous Forest Formation. 1) Balsam Fir Belt: Pseudotsuga Douglastii is the distinctive tree of this belt (8200—9200 feet = 2500—2800 meters) associated with Pinus flexilis var. megalocarpa, Abies subalpina and Populus tremuloides. The accompanying species are Actaea spicata, Berberis repens (= B. aquifolium), Ceanothus Fernleri, Gentiana, Geum triflorum, Ribes Rusbyi, Viola canadensis var. scopulorum.

2) Spruce Belt: The characteristic trees of this belt (9200—10,5000 feet = 2800—3200 meters) are Picea Engelmanni and Pinus aristata.

In the ravines in this belt are Potentilla Thurberti, Mertensia paniculata, Pentstemon glaucus var. stenophyllum. Thalictrum Wrightii, Ligusticum scopulorum, Hieracium Fernleri, Frasera speciosa, Habenaria Thurberti, Ribes lacustrae. The additional prominent secondary species of this belt are Aquilegia chrysanth, Lathyrus arizonicus. Pirola chlorantha, P. uniflora, Ribes setosum, Solidago multiradiata, Zygadenus elegans.

3) Sub-Alpine or Timber-line Belt: The trees which reach timber line on the San Francisco Range (11,500 feet = 3500 meters) are Picea Engelmanni and Pinus aristata, which exist as stubbed and prostrate specimens.

The subalpine belt in the Sacramento White, Capitan and Jicaralla Mountains is found between 9,000 and 11,000 feet. The principal tree is Picea Engelmanni, with subordinate amounts of Abies concolor, Pseudotsuga, Mexican white pine, Pinus strobiiformis and aspen, Populus tremuloides generally in groves. In this narrow belt, according to Merriam1) a number of hardy little plants attain their maximum development, decreasing in abundance both above and below. Such are: Gentiana tenella, G. barbellata, Cerastium alpinum var. Behringianum, Corallo rhiza multiflora, Phleum alpinum, Heuchera rubescens, Pedicularis Parry, Draba aerea, Epilobium saximontanum, Luzula spadicea var. parviflora, Potentilla dissecta, Primula Parryi, Veronica alpina (= V. Wormskjoldii), Sedum rhodanthum and Saxifraga debilis. Many of them are circum-polar species found throughout the northern parts of America coming south on the high mountains.

The grasses are Agropyrum violaceum, Agrostis hiemalis (≈ A. scabra'), Bromus Richardsonii, Deschampsia caespitosa. Festuca ovina var. pseudovina, Koeleria cristata, Phleum alpinum, Poa coloradensis, P. Eatoni and Trisetum subspicatum.

4) Alpine Formation. At the summit of San Francisco Mountain only lichens grow. One or two hundred feet below begins the growth of alpine plants. Some of these alpine plants occur on the higher peaks of the Rocky Mountains, the Sierra Nevada and Cascade ranges, and Mount Washington. In brief they inhabit the arctic regions of the globe and extend far south on the higher mountain ranges.

Among these species may be mentioned Sedum rhodanthum, Luzula spadicea var. parviflora, Primula Parryi. Pedicularis Parryi; Androsace septentrionalis, Alsinse (Arenaria) verna, Cerastium

alpinum, C. arvense, Saxifraga debils, S. caespitosa, S. flagellaris, S. nivalis, Silene acaulis, Cystopteris fragilis, Oxyria digyna, Festuca brevifolia (= F. brachyphylla), Sagina Linnaei (= S. saginoides), Stellaria umbellata (Alsine baicalensis), Thlaspi alpestre, Trisetum subsplicatum and Sibbaldia procumbens.

D. Mohave District.

This phytogeographic district comprises the Mohave Desert and adjacent territory including Death Valley and Ralston Desert.

The Mohave Desert lies on the north side of the San Bernardino Range and its continuing spur on the Chuckawalla Mountains which ranges separate it from the Colorado Desert on the south. It is limited in an eastern direction by the Colorado River and in a northeastern direction by the Kavich and Desert Mountain ranges. Its whole surface is cut up by short isolated ranges and "lone mountains" which are surrounded by sloping mesas, or enclose basins whose lowest portions are occupied by dry lakes. Some of these are level expanses of hard plastic clay, smooth and bare as a table-surface and bordered by a narrow strip of nitrophilous vegetation. Receiving the scanty rain water that runs down from the bare hill about them, they at times may be transformed into tenacious mud, or covered at times with a few inches of water 1). Or the surface layers of these desert basins may consist of what prospectors call "self-rising soil", a loose alkaline powder slightly crusted over, or a snowy incrustation of soda salts. — The flora of the Mohave District shows a marked influence of the vegetation of the Nevada, or Great Basin District, and for this reason it has been placed in the classification as a part of the Great Basin phytogeographic region, distinct from that of the flora of the Sonoran deserts to the south. The difference in the character of the two floras is only in part due to climatic causes, but it is largely influenced by the topography of the country. In the case of the Mohave Desert, the migration current from eastern Utah and Nevada would meet with no considerable obstacle until it reached the San Bernardino Range and its continuation. The distinctness of the two desert floras is further emphasized by a consideration of the zonal distribution of their respective floras.

The Larrea belt is presented in both the Mohave and Colorado Deserts. But, however, useful this shrub (Larrea mexicana = Covillea tridentata) may be as the biologic index of larger divisions, it is of less importance in the study of smaller areas. Above the Larrea belt of the two deserts occurs in the Mohave Desert a belt of Yucca brevifolia (3000—4000 feet = 915—1220 m). In its normal limits Juniperus californica is mingled with the yucca, but does not accompany it far above them. The piñon belt is above the yucca belt and is characterized by the presence of Pinus monophylla between 4000 and 6000 feet (1200—1830 m). In the upper end of Antelope Valley, according to PARISH, the orographic confusion there has given rise to a phyto-

geographic anomaly. Here *Pinus sabiniana*, *Quercus Douglastii* and *Q. Wislizeni*, trees of the western slope of the Sierra Nevada throughout central California, come through Tejon Pass and the unusual sight is presented of foot hills clothed with an almost unmixed growth of scrub oaks. Here too are found *Aesculus californica*, *Balsamorrhiza deltoides*, *Gilia tricolor*, *Layia heterotricha* and *Collinsia Torreyi* which have entered through the same gap to the eastern deserts.

The western or elevated part of the Mohave Desert is noted for *Yucca arborescens* and in places this tree is associated with *Juniperus californica*. Eastward the juniper ends and the creosote bush *Larrea mexicana* appears and in lower levels becomes except in the wash, the prevailing bush.

The northeastern element, which preponderates over the southeastern, consists of such genera as: *Actinella*, *Amsonia*, *Atichoserosis*, *Bouteloua*, *Cleome*, *Eurotia*, Forestiera. Glossopetalon (Forselles'sia), *Glyptopleura*, *Kochia*, *Lygodesmia*, *Monoptilon*, *Phellopterus*, *Purshia (= Kunzia)*, *Stanleya*, *Salazaria* and Syntrichopappus while the southeastern element comprises a few genera: *Canotia*, *Colesynne*, *Fallugia*, *Falacanis*). The northeastern genera are those which extend into Nevada, Utah and the Great Basin, and southeastern genera are those whose range is into Arizona, or into northern Mexico.

1. **The lower Desert Formations.**

 Larrea Belt. The most generally distributed shrub of this desert is *Larrea Mexicana (= Covillea tridentata)*, ascending from the lowest elevation that of Death Valley to about 1500 meters on the mountains. Associated with it at about the same elevation grows *Franeseria (Garberia) dumosa*. The upper limit of this belt which *Merriam* calls the "Lower Sonoran Zone", is only a little below the lower limit of timber.

 Mesa Formation. *Larrea* and *Franeseria* are the commonest shrubs of the mesas, but at various localities some one or more of the following species are often abundant according to *Coville*.

 Acamptopappus sphaerocephalus, *Amphiochysis FREMONTII*, *Aster mohavensis*, *Atriplex confertifolia*, *A. hymenelytra*, *Bebbia juncea var. aspera*, *Cassia armata*, *Cereus Engelmannii*, *Echinocactus polyephalus*, *Opuntia basilaris*, *O. echinocarpa*, *Ephedra californica*, *Hymenoclea salsoha*, *Krameria parvifolia*, *Lycium Andersoni*, *Salazaria mexicana*, *Tetradymia comosa*, *Yucca arborescens*, *Y. macrocarpa*. — Some of these plants are confined to the upper altitudes of this belt, viz: *Acamptopappus sphaerocephalus*, *Aster mohavensis*, *Yucca arborescens* while *Hymenoclea salsoha* and *Lycium Andersoni* are common throughout it. The perennials common on the mesas are *Euphorbia polycastra*, *Cladotrix oblongifolia*, *Lepidium Fremontii* and *Oxybaphus laevis*, while as annuals occur *Leptosyne Bigelovii*, *Plantago patagonica* var. *gnaphalodes (= P. Purshii)*, *Sisymbrium canescens*, *Gilia floccosa*, *Chorizanthe rigida*, *Cleome obtusifolia*, *Eschscholtzia minutiflora*, *Encelia eriocephala*, *Atichoserosis platyphylla*.

 Canyon Rocky Slope and Sandhill Formations. Growing in the shade of rocks or in their crevices in the canyons, in the coarse pebbly plains and on the dry sandy hills may be designated the following associations.

1) *Parish*, S. B.: loc. cit. see also page 289—293.

1. Canyon shrubs. Bigelovia teretifolia, Aplopappus (Chrysoma) cuneatus, Brickelia (Colesanthes) atractyloides. Hofmelsteria and such perennials as Arenaria macrandenia, Eucnide urens, Nicotiana trigonophylla while as annuals occur Parietaria debilis, Pterostegia drymarioideae and Phacelia (Macrocalyx) micrantha. — 2. Rocky Slope Association: This also occupies coarse pebbly plains where Larrea mexicana meets with Yucca brevifolia, Opuntia ramosissima, Echinocactus cylindraceus, Yucca baccata, Atriplex canescens; Fouquieria splendens and Opuntia arborescens 1). The plants of the desert sand hills are Coldenia Palmeri, Hilaria (Pleumaphis) Jamesii, Eriogonum inflatum, Triodia (Tricuspis) pulchella, Mammillaria barbata, Chorizanthe rigida, Psathirotes annua.

Alkaline Marsh Formation. The surface of an alkaline marsh is barren of plants, but the margin shows many characteristic plants. At Bennett Wells, Death Valley, according to Coville, there occur first a circumarea a few meters broad of Spirostachys (Allenrolfea) occidentalis; next, a similar circumarea of Juncus Cooperi; and third, an association of Sporobolus airoides and Pluchea sericea about 300 meters broad. Distichlis spicata (= D. maritima) occurs sparingly in the second and third circumareas. The fourth circumarea consists of Prosopis juliflora, Atriplex canescens and occasionally Suaeda suffrutescens. Larrea and Atriplex polycarpa make the next circumarea and Larrea distinguishes the sixth, while on the outer margin nearest the preceeding belt grow Atriplex hymenelytra and in the other direction Fransera dunnosa, Eriogonum inflatum and Hymenolea salso. The flora of clayey soil charged with sodium salts comprises the same Spirostachys, Salicornia and Brizopyrum spicatum.

The Stream Banks comprise the usual formation of common plants, viz. Populus Fremontii, Prosopis pubescens, Salix longifolia (= S. interior), S. nigra var. venulosa, Apocynum cannabinum, Berula angustifolia (= B. erecta), Eleocharis rostellata, Juncus balticus, Nitrophila occidentalis, Selirpus lacustris var. occidentalis. S. Olneyi, S. pungens (= S. americanus), the widely distributed Typha angustifolia and the european annual grass Polypogon monspeliensis.

2. The elevated Tree Formations.

Coniferous Forest Formations. Certain of the desert mountain ranges between the Sierra Nevada and the Colorado River rise to a sufficient altitude to be crowned with coniferous timber. A belt of Pinus monophylla about 1800 feet (600 meters) in width with Juniperns utahensis forms what Merriam calls the Upper Sonoran Zone.

Associated with the above trees are Salvia carnosa, Ceanothus Greggii, Artemisia tridentata, Purshia (Kunzia) glandulosa, Garrya Veatchii, G. flavescens, Ribes lepchanthum, R. brachyanthum, while between the lower limit of Juniperus and the upper limit of Larrea are found Grayia polygaloides (= G. spinosa), Tetradyamia glabrata, T. spinosa, Eurotia Ianata, Ephedra viridis, Coleogyne ramosissima, Dalea (Parosela) polyadenia (in the northern part of the region), Prunus fasciculata and Yucca arborescens. In the Charlestown Mountains above the belt of Pinus monophylla is a forest belt of Pinus ponderosa var. scopulorum and on the eastern slope of the Sierra Nevada Mountains occurs a forest of Pinus Jeffreyi.

1) Loew, Oscar: Surveys west of the one hundredth Meridian in California, Nevada etc. by George M. Wheeler, 1876: 224.
Between timber line and this pine belt is a belt characterized by *Pinus flexilis* and *P. aristata*. In none of these desert mountains does a true timber line exist, but northward the White Mountains of Nevada and southward the San Bernardino Mountains extend above this limit. According to Coville an abnormal condition of affairs exists on the Panamint where owing to the absence of *P. ponderosa* var. *scopulorum*, which reaches its western limit in the Charlestown Mountains, *P. monophylla* grows to an unusually high altitude and *P. flexilis* and *P. aristata* unusually low, so that the bull pine belt appears to be crowded out entirely, although still marked by the presence of *Juncus occidentalis* and *Cercocarpus ledifolius*.

Chapter IV. North American Temperate Zone: Pacific Section.

1. Sitkan Region.

This region extends from Cook Inlet south to the fifty-first degree of north latitude (the northern limit of *Pseudotsuga Douglasii*), west of the continental divide and includes coastal Alaska and British Columbia with the more northern portion of Vancouver Island. In its northern extension, far to the subarctic territory along the southern tributaries of the Yukon River, it mingles with the flora of the glaciers, the arctic plant associations and the timber boundary of the northern coniferous forest the western Pacific floral element has a very interesting complexity, as shown by the illustration of the Davidson Glacier (plate XIV.) It is a region characterized by deep fiords like Norway, but with a far richer forestation. Fogs and heavy rains are frequent and the snow line on the unbroken chain of coastal mountains is at 2,500 and 3,000 feet and numerous large glaciers descend from the snow fields to the shore. The coast is fringed by hundreds of forest-clad islands which form an inland passage from Vancouver Island north to 59° N. lat.

1. Halophytic Formations.

Marine Algal Formation. The algae of the Pacific coast north of Puget Sound extending northward to and including those of Bering Sea and which characterize that region are *Odonthalia aleutica*, *Polysiphonia bipinnata*, *Euthora cristata*, *Rhodymenia pertusa*, *Constantinea rosamarina*, *Fucus evanescens* var. *megacephalus*, *Agarum Turneri*, *Cymathere triplicata*, *Laminaria Bongardiana*, *L. bullata*, *Dictyosiphon foeniculaceus* and *Myelophyclus intestinalis*1). Several shelves of marine vegetation may be distinguished on the Alaskan coast.

Sublittoral Shelf. The marine algae of this shelf are: Costaria Turneri, Porphyra amplissima (on rocks), Iridaea membranacea, Gigartina pacifica (on rocks), Ahnfeltidia plicata (on rocks), *Euthora cristata* (abundant), *Rhodymenia pertusa* (on rocks), *Rhodymenia palmata* (on rocks),

Elittoral Shelf: Macrocystis pyrifera, Nereocystis priapus, Cystophyllum lepidium, Desmarestia viridis, D. acauleata, Agarum Gmelini.

Littoral Shelf: The most abundant seaweed on the northwest coast is Fucus evanescent forma macrocephalus. It is found in all quiet bays and protected places from Puget Sound to Bering Sea, forming the characteristic light brown covering extending some distance above the average tide level. In many places, the plant is not covered by salt water more than twice a month. It is able to thrive from the moisture in the atmosphere. This species and Pyliaiella littoralis extend farthest up the mouths of streams and fresh water bays and there are many other algae in this shelf, viz. the characteristic: Ullothrix flaeva, Phyllitis fascia; on rocks: Coelodesme bulligera, Soranthera ulvoides, Leathesia difformis, Chordaria abietina; Halosaccion spec. Ceratothamnion, Microcaldia borealis, Rhodomela spec. and Lithophyllum Farlowii.

Strand Formation. Little is known of the strand flora of Alaska. The only observations on the beach vegetation obtainable for this account were made by Frederick Funston at Yakutat Bay, where stretching along the beach from Cape Hipsps to the Ankau is a treeless strip of low sand dunes lying between high tide mark and the margin of the forest, a distance of 100 yards. Elsewhere, similar dunes occur. The vegetation of these sand dunes is less dense and rank than that of the forest openings, though in some localities many acres are covered with Fragaria chiloensis. On the grassy dunes near the Malaspina Glacier, this plant is found in immense quantities. The coarse grass of these beaches is Elymus arenarius, associated with Lathyrus maritimus, Arabis hirsuta, Mochringia lateriflora, Castilleja miniata, Ranunculus Nelsoni, Lupinus nootkaensis var. unalaskensis etc.

2. Coniferous Forest Formations.

On a previous page of this book mention has been made of the fact that the forest of the interior of Alaska is of different origin from that of the immediate coast, representing the northwestward extension of the coniferous forest, which stretches uninterruptedly from Labrador westward to Bering Sea. This forest does not concern us at this place. The coast forest of the southeastern portion of Alaska, lying west of the coast ranges of mountains is a dense one. This forest may be considered to be the northern extension of

1) Saunders, de Alton, loc. cit. p. 196.
3) See ante page 208.
the one at Puget Sound, resembling that of Puget Sound and western British Columbia, although *Pseudotsuga Douglasii*, does not reach Alaska, while *Abies grandis*, *Acer grandidentatum* are absent from the Alaska forest and *Thuja gigantea* (= *T. plicata*) common on Prince of Wales Island is rare, if it exists at all north of latitude 56°N. It lacks the pines, with the exception of the inferior *Pinus contorta* which here and there occupies swampy and dry gravelly situations. *Chamaecyparis nootkatensis* is limited in a westward direction by Yakutat Bay with evidence of its existence in a few spots on Prince William Sound. The Oregon alder, *Alnus oregona*, is found abundantly, as far, as the foot of La Perouse Glacier, a little south of Mt. Fairweather, but is entirely absent at Yakutat Bay and farther west. Excepting, then, the more or less sporadic occurrence of the species mentioned the coast forest is composed of two trees: *Picea sitchensis* and coast hemlock *Tsuga Mertensiana* (= *T. heterophylla*).

From the edge of tidewater (see plate XIV) these two trees grow up to the timber line, which varies in elevation from 2,500 to 4,000 feet, everywhere in dense serried masses, covering all the islands and the seaward slopes of the mountains of the mainland, which shut off the moisture from the interior. *Abies subalpina* (= *A. lasiocarpa*) in dwarfed specimens from the interior remains the only timber-line tree at the White Pass. Other woody plants at timber line, dwarfed in size (Krummholz), are *Juniperus communis* var. *nana*, *Salix fulcrata*, *Ribes bracteosum*, *Spiraea betulifolia*, *Potentilla fruticosa*, *Ame-lanchier canadensis* var. *oblongifolia* and *Cladothamnus pirolaeeflors*. The following ericaceous plants also occur here: *Vaccinium caespitosum* var. *arbus-cula*, *V. uliginosum*, *Bryanthus glanduliflorus*, *B. empetriflorus*, *Cassiope Mertensiana*, *C. Stelleriana*, *Ledum palustre* and the ecologically related *Empetrum nigrum*.

Numerically in this forest the coast hemlock, *Tsuga Mertensiana* is the most common species, forming usually 70 to 80 per cent of the mixture (*Tsuga Mertensiana Facies*). The spruce *Picea sitchensis* occasionally preponderates, especially along the water courses (*Picea sitchensis Facies*) and on newly formed moraines until the western limit of the coast hemlock *Tsuga Mertensiana* is reached at Prince William Sound. Farther west, however, the spruce, *Picea sitchensis*, alone forms forest, or open groves, as on the shores of Cook Inlet and Kadiak Island where it meets the vanguard of the interior forest of Alaska derived from the Atlantic coniferous forest stretching across the continent. This is indicated by the presence of *Picea nigra* (= *P. mariana*) in small peat bogs associated with *Empetrum*, *Ledum latifolium*, *Betula glandulosa*. On the northwest side of Cook Inlet are found *Picea alba* (= *P. canadensis*). *Betula papyrifera* (the most abundant tree), *Populus balsamifera*

and *P. tremuloides*). *Chamaecyparis nootkatensis* is scattered through this forest at elevations of about 1,000 feet, although it descends to the waters edge.

Where the mountain streams reach the sea are flats and beaches where the forest is bordered by *Alnus sinuata*, *A. oregana*, *Salix sitchensis* while *Populus trichocarpa* and *P. balsamifera* with *Acer glabrum* form groves in similar situations (with at the mouths of rivers and on rocky coasts) *R. prostratum*, *Juniperus communis* var. *nana*, *Amelanchier botryapilum* var. *oblongifolia*, *Aretostaphylos uva-ursi*, *Empetrum nigrum*, *Loiseleuria procumbens*, *Polypodium vulgare*, *Cryptogramme acrostichoides*, *C. Stelleri*, *Nephrodium spinulosum*, *Aspidium lonchitis*, *Woodia scopulina*, *Lycopodium selago*, *L. annotinum*, *L. sitchense*, *L. clavatum*, *L. complanatum*, *Selaginella rupestris*, *Festuca rubra* var. *arenaria*, *Poa arctica* var. *longata*, *Trisetum subspicatum*, *Agrostis canina*, *Hierochloe alpina*, *Carex Gmelini*, *Draba incana* var. *confusa*, *Saxifraga punctata*, *Heuchera glabra*, *Diapensia lapponica*, *Collomia gracilis*, *Polemonium humile*, *Echinospermum Redowskii* etc.

The following shrubs relieve the monotony of the coniferous forest along the banks of streams: *Viburnum pauciflorum*, *Sorbus* (*Pyrus*) *sambucifolia*, with such herbs as *Thalictrum dioecum*, *Epilobium laetiflorum*, *Heracleum lanatum* var. *vestitum*.

On Baranof Island, near Sitka, the mountain hemlock *Tsuga Pattoniana* (*T. Mertensiana*) found at high altitudes in the coast mountains descends nearly to sea level. — The forests at the head of Lynn Canal, a deep fiord of the coast (see plate XIV at page 587) differ somewhat from that nearer the coast. *Pinus contorta* of the coast passes on the interior plateau into the closely related species, the lodge pole pine *Pinus Murrayana* of the northern Rocky Mountains. *Betula kenaica* is very common at low elevations, and growing with it is *Acer glabrum*. Passing from the humid coast region to the dry interior an entirely different forest is entered. The coast hemlock, *Tsuga Mertensiana* (*T. heterophylla*) and *Picea sitchensis* have disappeared and the largest tree in scattered groves about Lake Bennett and Lake Lindsey is *Abies subalpina* (*A. lasiocarpa*) mingled with *Populus balsamifera* and *Picea alba* (*P. canadensis*).

Occasionally the lowland forest extends up over the moraine-covered bluff of ice and thence inland on the surface of the glaciers about Mt. St. Elias a distance of 4 or 5 miles. The face of the bluff is so completely covered with boulders, earth and vegetation, that it is seldom one has so much as a glimpse of the ice beneath*). Alders form the principal growth, reaching a height of 20 or 30 feet, but on the outer or older portion of the moraine (see plate XIV), there are dense groves of *Picea sitchensis*, some trees three feet in diameter, with a dense undergrowth of *Fatsia* (*Echinopanax*) horrida, salmonberry bushes, huckleberries and a species of *Asplenium*.

The vegetation of this region noted for its luxuriance is probably nowhere more highly developed than in the Queen Charlotte Islands*). Seven species of coniferous trees are found, namely, *Picea sitchensis* (dominant), the

2) TARp, RALPH S.: The National Geographic Magazine XXI: 1—54. Jan. 1910, especially the pictures which show the forest in relation to glaciers.

coast hemlock, *Tsuga Mertensiana*, the mountain hemlock, *Tsuga Patoniana* (at 2,000 feet), *Thuja gigantea*, *Chamaecyparis nootkatensis*, *Pinus contorta* and *Taxus brevifolia*. Three trees are rather rare: *Thuja*, *Chamaecyparis* and *Pinus*. The forest, therefore, is essentially like that of the mainland previously described.

As one tree practically is dominant throughout the entire region, the forest may be said to form a single uniform formation in which the undergrowth is practically the same throughout. The herbs are *Spiranthes decipiens*, *Streptopus*, *Tiarella trifoliata*, *Coptis asplenifolia*, *Pirola* (5 spec.) and *Monotropa*, the shrubs and undershrubs, *Gaultheria* shallon, *Menziesia ferruginea*, *Vaccinium ovalifolium*, *Corbus occidentalis*, *Rubus spectabilis*, *Fatsia horrida*, *Berberis repens* (= *B. aquifolium*), *Lonicera involucrata*, *Ribes bracteosum* and *laxiflorum* occur in the denser portions, while *Alnus rubra*, *Salix Barclayi*, *Sambucus racemosa*, *Viburnum pumiliflorum* occur at the margins, or in the open glades. Remarkable smaller plants of this forest formation are *Corbus canadensis*, *Trientalis arctica*, *Coptis trifolia*, *Moneses uniflora*, *Aquilegia formosa*, *Ranunculus orthorhynchus*, *Viola sarmentosa* (= *V. sempervirens*), *Claytonia sarmentosa*, *Clintonia uniflora*, *Geranium erianthum*, *Dodecatheon Meadia*, *Rosa nutkana* (wood borders) and *gymnocarpa* (climbing), *Fragaria chiloensis*. — On the banks of small streams are found *Saxifraga punctata*, *S. stellaris*, *S. Mertensiana*, *Mimulus Langsdorfi*, *Heuchera glabra* and *Claytonia sibirica*. Scattered through the forest are open treeless spots, the larger of which are swampy where grow *Lysichiton kamtschaticensis*, *Menyanthes*, *Athyrium filix-femina*. In the drier glades grow such grasses as *Deschampsia caespitosa*, *Hierochloë odorata* with *Fritillaria kamtschaticensis*.

Meadow Formation. The only extensive grass lands in southeastern Alaska are those in the river valleys near the coast south of Yakutat, covering an old glacial moraine composed of a fine gravel which slopes gently to the seashore, while along the lower Ankau occurs a strip of several hundred acres well grassed with *Deschampsia caespitosa* and *Elymus mollis*, while along the river banks is a fine growth of *Calamagrostis*, *Langsdorfi* and *Carex cryptostachya*. In general this formation consists of the grasses *Deschampsia (Air)* caespitosa, *Poa pratensis*, *Agrostis canina*, *Calamagrostis neglecta*, *Carex echinata*. Adjoined grow *Fritillaria kamtschaticensis*, *Iris versicolor* and *sibirica*, orchids *Spiranthes* and *Habenaria*, *Rumex salicifolius*, *Ranunculus*. *Aquilegia formosa*, *Parnassia*, *Poterium Sanguisorba*, *Archangelica Gmelini*, *Dodecatheon*, *Collista*, *Boschniakia glabra*, *Pinguicula*, *Arnica cordifolia* and *Menyanthes alata*.

Swamp and Pond Formation. In the swamps are present *Glyceria pauciflora*, *Carex gymnocrates* (= *C. Redowskyana*), *Tofieldia borealis*, *Stellaria (Alpine) borealis*, *Caltha palustris var. sibirica*, *Comarum*, *Hippurus*, *Cicuta* and *Myrica gale*. — *Menyanthes trifoliata* and *Nuphar polysepalum* grow in shallow ponds that are found in some of these opens. The algae of such fresh water ponds 1 are numerous.

1 Saunders, de Alton: The algae of the Expedition. Harriman Alaska Expedition. V. Cryptogamic Botany 1904: 155—211.
Alpine Formation. Above timber line on all of the Alaskan mountains
the barren slopes are characterized by the presence of numerous alpine plants,
frequently occurring in mats.

The mountains of the St. Elias Range in the Disenchantment Bay country are clothed
to an altitude of about 800 feet with a dense growth of Alnus rubra above which the moun-
tain sides are covered with a heavy growth of Deschampsia caespitosa var. longiflora to
an altitude of 2,550 feet associated with Aconitum delphinifolium. Above the grass limit, the
vegetation is more scattering and consists mostly of Salix arctica, Saxifraga bionchialis,
Geranium erianthus, Cassiope Stelleriana, Eriogynia pectinata and Bryantus glanduliflorus. In
this treeless region, there grow besides the plants mentioned above: Agrostis exarata, Phleum
alpinum and Poa alpina 1), Tellima grandiflora, Arabis lyrata, Cerastium alpinum, Valeriana sitchensis,
Potentilla procumbens, P. villosa, Parnassia fimbriata, Artemisia norvegica (very rare), Anten-
naria alpina. Campanula rotundifolia var. alaskana, Petasites frigida, Hieracium triste, Arniea lati-
folia, Romanzoffia sitchensis, Lycopodium alpinum, Cryptogramme aristochoides, Cystopteris fra-
gilis. Elsewhere grow Silene acaulis, Anemone richardsonii, A. naccissiflora, A. parviflora,
Mitella pentandra, Carex pyrenaica, C. nigricans, C. macrochaeta, Luzula spicata, L. parviflora,
L. arnuta, Habenaria unalaschensis, H. dilatata etc.

Fjelde Formation 2). About the upper border of the region of dwarf timber
at 1,050 m are frequently found in the Sitkan Region extensive stretches co-
covered with willows and dwarf birches with bare rocks, moss and lichen
tundra, interspersed with snow field. This is a formation which on account of
its similarity to a corresponding one in Norway is best designated as Fjelde or Fell Field.

Betula glandulosa var. rotundifolia, Alnus viridis (= A. alnobetula), Salix fulerata, S. arctica
var. Pallasii, Juniperus communis var. nana are prominent woody plants. Empetrum nigrum, however,
is the most abundant species associated with the Ericaceae: Bryanthus glanduliflorus, B. empetri-
formis, Bryantus (Phyllococe) taxifolius, Cassiope Stelleriana, C. leycodioides, C. Mertensiana,
C. tetragona, Andromeda polifolia, Kalmia glauca var. microphylla, Aretostaphylos (Aretous)
alpina, Vaccinium caespitosum, V. uliginosum, V. vitis-idaea, V. oxyoecus. Between these plants
grow Linnaea and Dryas, Diapensia, Silene acaulis in mats. Among the surrounding lichens and
mosses, the botanist finds many arctic phanerogamae, Dodecatheon, Primula angustifolia, P. sibi-
rica, Androsace septentrionalis, Eriogynia (Lütkea) pectinata, and in springy places Rubus chamae-
morus. All of these plants are related to those of the alpine regions of the Rocky Mountains
and the Sierra Nevada Mountains as described in Part III, Chapter 3.

2. Columbian Region.

This region comprises the plains of Puget Sound, the Columbia River, the
main valley of the Fraser River, the lake county of northern Idaho and in-
cludes the Olympic Coast and Cascade Mountain ranges. It is a region noted
for the density of its forests consisting of a large number of species which
reach giant proportions. In fact this forest is the densest in North
America, with exception of the redwood forests of northwest California.

1) Funston loc. cit. p. 332; Engler, A.: Die pflanzengeographische Gliederung Nord-
amerikas: 58.

2) Engler loc. cit. p. 59; Warming, Oecology of Plants, 256; also cf. Harvey, Leroy H.:
The floristic Composition of the vascular Flora of Mount Ktaadn, Maine. Mich. Acad. Sci. 1909:
32—47.
In this great coniferous forest, the trunks of trees two or three hundred feet in height are often only separated, according to my observations, by the space of a few feet. The ground shaded throughout the year by the impenetrable canopy of forest, never becomes dry; it is densely covered by a thick carpet of mosses, ferns (see Fig. 6, p. 265) and other plants. The more open portions are choked by an impenetrable growth of undershrubs. The soil which has produced the maximum growth of forest in this region is, outside the river bottoms, a thin porous gravel of glacial origin, rarely more than a few inches deep. The luxuriance of tree growth, therefore, illustrates the influence of a heavy rainfall and temperate climate upon the forest.

A. Puget Sound—Cascade District.

This district comprises all of the flat sound country dominated by characteristic groups of plants, including the mountainous country, of the Cascade Mountains.

1. Before describing the forests a few remarks are necessary upon the Beach-. Salt Marsh- and the Marine Algal-Formation. — This coast is characterized by forms like Dictyoneuron, Postelsia, Laminaria Sinclairii, L. Andersonii and Fucus Harveyanus. The tide-pool vegetation of Port Renfrew, Vancouver Island, is distributed as follows:

High-tide pools. Corallina aculeata, Codium mueronatum, Phyllospadix Scouleri, Amphiroa cretacea, Chelosporum planisculus. Phyllospadix Scouleri (see Fig. 11 on p. 314) occurs in great abundance over the jagged sandstone rocks exposed only at low tide and in most of the numerous tide pools along the shore. Mixed with species of algae it forms a shelf which varies in width with the slant of the shore and the depth of the water, as it grows nowhere in very deep water. Zostera marina is found in the sheltered coves of the inner San Juan Harbor of Puget Sound and in these places it grows from a muddy, or sandy bottom, while epiphytic upon it is Porphyra naiadum.

Low-tide pools. Laminaria and Alaria sp., Iridaea sp., Lessoniopsis littoralis, Corallina vancouveriensis. Nereocystis Luetkeana with its long stem readily adjusts itself to the depth of the water. Clinging to this are Ulva lactea, Enteromorpha intestinalis, E. linza. The various surge and surf plants such as Lessoniopsis, Laminaria, Hedophyllum and Costaria occur only in limited numbers in the low tide pools.

Sand Beach Formation. Along the front border of the large open beaches as on the southwest shore of Vancouver Island, occur Juncus Lescurii, Arenaria major, Potentilla anserina var. grandis, Trifolium heterodon. Farther back on the middle or drift wood beach grow Elymus mollis, Festuca Jonesii, Bromus and many herbs. The upper beach in some places is characterized by Aira caryophyllea, Deschampsia caespitosa, Carex macrocephala and Artemisia Suksdorffii. Upon the small sand beaches at the mouths of ravines, it is difficult to differentiate between the lower and the upper beaches. No one species preponderates.

The Salt Marsh Formation is found on low shores near the mouths of streams where they are occasionally covered by high tides. The most characteristic plants are Distichlis spicata, Salicornia ambiguа, Arenaria peploides, Atriplex littoralis, Carex cryptocarpa etc.

Harshberger, Survey N.-America.
Part IV. Chapter 4.

The Rock Beach Formation of the Washington coast is subjected to the dashing ocean spray and occasionally to inundation by high waves. They are also exposed to strong winds. Here grow, according to Rosenahl, Plantago maritima and major var. asiatica, Hordeum boreale growing in tufts in rock crevices, Festuca rubra var. baikalensis and Agrostis exarata.

Salal Formation. Between the beach formation and the coniferous forest formation on Vancouver Island is a thicket composed of the salal, Gaultheria Shallon, which grows in great uniformity and continuity. Along the edge of the thicket and shaded by the salal branches grow Carex Deweyana, Linnaea borealis, Tridentis europaea var. arctica, Boykinia elata. In the dense growth of the salal occur Epilobium glandulosum, Elymus glaucus, Vicia gigantea, Sanicula Menziesi, while Boschiania strobilacea is parasitic upon its roots. The shrubs that enter this formation are Rosa nutkana, Rubus [3 spec.], Lonicera involucrata, Pirus [Malus] rivularis, Amelanchier alnifolia, and stunted forms of Pinus contorta.

2. Coniferous Forest Formation.

As remarked before, this district is covered with the heaviest continuous forest in North America. This forest extends over the slopes of the Cascade ranges and occupies the entire drift plain surrounding the waters of Puget Sound, as well, as the western part of Oregon (see Fig. 6, Coniferous Forest along Columbia River, p. 265). The highest mountain peaks and the sand dunes of the coast are treeless. The most generally distributed tree is the red, or yellow fir Pseudotsuga Douglasii (= P. taxifolia = P. mucronata) forming about seven eighths of the forest growth. Thuja gigantea (= T. plicata), the coast hemlock Tsuga Mertensiana often covering extensive tracts, are common. Picea sitchensis is of importance in the forests bordering the coast. Abies amabilis covers the upper ridges of the Cascade Mountains with Abies nobilis and Picea Engelmannii: south of Coos Bay, Chamaecyparis Lawsoniana mixed with Pseudotsuga and Picea occurs. — East of the Cascade Mountains the forests are less dense and are confined to the mountain ranges. The great plains watered by the Columbia and Snake rivers are entirely destitute of tree covering and their flora has been treated with the flora of the Great Basin (see ante page 567).

Northwest of the great bend of the Columbia River in northeastern Washington the forest is of open character composed principally of Pseudotsuga Douglasii, Pinus ponderosa, Pinus monticola and Larix occidentalis, as well, as Populus balsamifera, Betula papyrifera. The valleys of the Willamette, Umpqua and Rogue Rivers in Oregon contain an open scattered growth of Quercus Garryana and here Pinus Lambertiana with Quercus (Pasania) densiflora of the California flora mingle so that Rogue River may be taken as the approximate southern boundary of the Columbian Region, its northern boundary being marked by the northern limit of Pseudotsuga Douglasii.

Other trees of this forest may be mentioned: Abies subalpina (A. lasiocarpa), Pinus albicaulis, Larix Lyalli occur only at high elevations. Pinus Murrayana occurs sparingly toward the east. Taxus brevifolia is a common tree on moist land up to an altitude of 3,000 feet. Populus trichocarpa, P. balsamifera, P. tremuloides, Acer macrophyllum, Alnus oregona, Khamnus Purshiana,
Fraxinus oregona, Pinus {Malus} rivularis occur along streams at lower elevations. Acer circinatum is a large shrub or small tree common below 3,000 feet. Cornus Nuttallii, Prunus emarginata, Spiraea Douglasii, S. {Holodiscus} discolor, Philadelphus californicus and Viburnum ellipticum are elements of this forest.

Above 4,000 feet the height of the trees becomes perceptibly shorter and the stem more branched, the trunks more twisted. Above 6,000 feet the trees grow in groups or singly, leaving the principal areas treeless. These areas, when not too long covered by snow, are occupied by a large assemblage of species.

The forest of Vancouver Island is of a mountainous type. Pseudotsuga Douglasii is the chief tree until an elevation of 800 feet is reached. Here it mingles with Pinus monticola, Thuja gigantea and the chief undergrowth consists of Pteris aquilina var. lanuginosa, Gaultheria Shallon with Boschniakia Hookeri parasitic upon its roots. Higher still is found the coast hemlock, Tsuga Mertensiana see adnotation p. 547, as the summit of the mountains is reached the mountain hemlock Tsuga Pattoniana and Abies amabilis appear. The coast species never found in Abies grandis, Picea sitchensis the most abundant tree, Taxus brevifolia and Juniperus virginiana. Pinus contorta in places overhangs the sea. In other places it occurs in bogs. Querucus Garryana grows in situations where the forest is less dense. Arbutus Menziesii occurs on the east coast of the island, while Cornus Nuttallii is also a prominent feature in the landscape. In the low ground grow Acer macrophyllum, A. circinatum, Alnus rubra, Populus tremuloides. P. balsamifera, while bordering ponds are found Prunus mollis, Rhamnus Purshii. The undergrowth consists of Rubus nutkanus, Nuttallia Os-maronia, cerasiformis, Prunus emarginata, Vaccinium caespitosum, V. angustifolium, Gaultheria Shallon, Berberis repens (= B. aquifolium), B. nervosa and Pachystima myrsinites, together with such herbs and ferns as Blechnum spicant, Nephrophodium Polystichum] munitum, Dryopteris spinulosa along streams], Streptopus amplexicaulis, Listera cordata, Lysichiton kamiskeateense, Tiarella trifoliata and Boykinia elata.

The following belts may be recognized at 45° 30' north latitude in the basins of the streams tributary to the Columbia River where it cuts through the Cascade Range.

Belt of Pinus ponderosa (below 3,000 feet). This belt consists of Pinus ponderosa, Pseudotsuga Douglasii, Abies grandis, Thuja gigantea to which if the latitude is 47° 30' should be added the coast hemlock Tsuga Mertensiana.

Belt of Pinus Murrayana (3,000—5,000 feet). This belt consists of Pinus Murrayana, P. monticola, Picea Engelmanni and Taxus brevifolia with the following additional species in latitude 47° 30': Abies nobiles, A. amabilis, Larix occidentalis, Chamaecyparis nootkatensis.

Belt of Abies subalpina (5,000—6,000 feet). Here grow Abies subalpina (= A. lasiocarpa), A. amabilis, A. nobiles, the coast hemlock Tsuga Mertensiana, Chamaecyparis nootkatensis and Larix occidentalis, while in latitude 47° 30" only two trees Abies subalpina and the mountain hemlock Tsuga Pattoniana occupy it.
Belt of Pinus albicaulis (6,000—7,000 feet or to timber line). *Pinus albicaulis, Tsuga Pattoniana, Larix Lyallii* and *Juniperus nana* are found in this belt, but in latitude 47° 30' *Tsuga Pattoniana* is absent.

The forest about Mount Tacoma (Rainier [46° 40' n. L.]) consists of *Pseudotsuga Douglassii*, which ranges from sea level to 5,600 feet with a diameter from 6—9 feet; the coast hemlock, *Tsuga Mertensiana* ranging from sea level to 5,000 feet, with an extreme diameter of 6 feet and a height of 250 feet; *Pinus monticola* (0—6,000 feet, diameter 5 feet, height 150 feet); *Pinus ponderosa* grows between 400 and 6,200 feet, with an extreme diameter of 6 feet and a height of 200 feet; *Pinus Murrayana* ranging from 1,800 to 7,000 feet attaining its maximum growth above 4,000 feet. *Abies nobilis* is found between altitudes of 1,800 and 5,200 feet with a diameter of 6 feet and a height of 225 feet. *Abies amabilis* (800—5,500 feet), *A. concolor* (0—4,200 feet), *Picea Engelmanni* (1,000—6,200 feet), *P. sitchensis* (0—1,800 feet), *Thuja gigantea* (0—5,100 feet with extreme diameter of 12 feet and height of 175 feet), *Chamaecyparis nootkatensis* (2,600—7,400 feet), *Larix occidentalis* (2,200—5,600 feet), *Taxus brevifolia* (0—4,200 feet), are prominent elements of this forest, while *Pinus albicaulis* (5,000—8,200 feet), *Abies subalpina* (A. lasiocarpa) (4,000—7,500 feet) the mountain hemlock *Tsuga Pattoniana* (3,500—7,500 feet and *Larix Lyallii* (north of Mt. Rainier) may be called alpine trees. The deciduous trees of the Mount Tacoma forest are *Fraxinus oregona, Populus tremuloides*, *P. trichocarpa* and *Quercus Garryana*.

To sum up, at an elevation of 4,000 feet, or more, the flanks of Mount Tacoma (Rainier) are clothed with a continuous belt of somber forest, discontinuous only where glaciers and glacial streams have broken the continuity. This forest consists of *Pseudotsuga, Abies amabilis, Pinus monticola, Tsuga Mertensiana, Picea Engelmanni* (a few). About 3,500 feet the character of this forest changes: the mountain hemlock *Tsuga Pattoniana* replaces the coast hemlock; *Abies nobilis* replaces *Pseudotsuga*. At 4,500 *Abies subalpina* appears and the forest from this point upward consists of the mountain hemlock *Tsuga Pattoniana, Chamaecyparis nootkatensis, Abies subalpina, Pinus albicaulis* confined to the crests of ridges. At 6,500 feet elevation the timber ceases. Scraggly firs and hemlocks more or less prostrate are found. Here too the continuous carpet of grasses and flowers stops.

The undergrowth consists of:

Salix fluviatilis Nutt.
 > sitchensis Sanson 1).
Alnus viridis DC. (= A. alnobetula Ehrh. (north of Rainier).
 > Oregona Nutt.
Berberis nervosa Pursh.
 > repens Lindl. (= B. aquifolium Pursh).
 Pachystima myrsinites Raf.
 Rhamnus Purshiana DC.
 Ceanothus velutinus Dougl.
 > sanguineus Pursh.
 Acer circinatum Pursh.
 > glabrum Torr.
 Prunus emarginata var. mollis Brewer,
 (= P. villosa Sudw.).

Puget Sound—Cascade District.

Prunus demissa Walp.
Rosa gymnocarpa Nutt.
 » Nutkana Presl.
 » californica Cham. et Schlecht.
Spiraea Douglasii Hook.
 » (Holodiscus) discolor Pursh.
 » corymbosa Raf.
Sorbus (Pirus) sambucifolia Cham. et Schlecht.
Pyrus (Malus) rivularis Dougl.
Amelanchier alnifolia Nutt.
Rubus nutkanus Moc. (= R. parviflorus Nutt.).
 » spectabilis Pursh.
 » leucodermis Dougl.
 » ursinus Cham. et Schlecht.
 » pedatus Smith.
 » lasiococcus A. Gray.
Purshia (Kunzia) tridentata DC.
Neillia (Opulaster) opulifolia L.
Philadelphus Lewisii Pursh.
Crataegus macracantha Lindl. (North of Rainier).
Ribes sanguineum Pursh.
 » bracteosum Dougl.
 » viscosissimum Pursh.
 » cereum Dougl.
 » cilioum Howell.
 » lacustre var. molle A. Gray.
 » divaricatum Dougl.
Fatsia (Echinopanax) horrida B. et H.

Cornus canadensis L.
 » Nuttallii Aud.
 » pubescens Nutt. (= C. occidentalis T. et G.)
Sambucus melanocarpa A. Gray.
 » racemosa Linn.
 » glauca Nutt.
Viburnum pauciflorum Pylaie.
Symphoricarpus racemosus Michx.
Lonicera ciliosa Poir.
 » involucrata Banks.
Vaccinium parvifolium Smith (= V. myrtilloides A. Gray var. membranaceum Dougl.
 » myrtilloides Hook.
 » myrtillus L. var. microphyllum Hook.
Arctostaphylos tomentosa Dougl.
 » nevadensis A. Gray (North of Rainier).
Gaultheria ovatifolia A. Gray.
Kalmia glauca Ait. (= M. urceolaria Salisb.).
Menziesia ferruginea Smith (= M. urceolaria Salisb.).
Rhododendron albflorum Hook. (= Azaleastrum albflorum Hook.).
Here too occur several whitish or reddish saprophytes: Monotropa hypopitys, Pterospora andromedea and Corallorhiza Mertensiana.

The forest on the Cascade Mountains of southern Oregon, north of the Klamath Gap, which is a barrier of great antiquity and effectiveness in the distribution of plants 1), is overwhelmingly coniferous. This is especially the case east of the Cascades, where broad-leaved species of trees form but a fraction of one per cent of the forest stands, and where two conifers, Pinus ponderosa and P. Murrayana together constitute 88 per cent. West of the Cascades broad-leaved trees occur more plentifully, forming about 6 per cent of the entire forest; and while among the conifers two species Pinus ponderosa and Pseudotsuga particularly predominate, there is also a wider range of ratios among the balance than is found on the eastern side of the range.

1) See ante page 256.

The altitudinal distribution of the trees mentioned is shown in the accompanying table.

<table>
<thead>
<tr>
<th>Tree Species</th>
<th>West of Cascades.</th>
<th>East of Cascades.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus ponderosa</td>
<td>1,800—6,000 feet</td>
<td>4,000—7,000 feet</td>
</tr>
<tr>
<td>● Lambertiana</td>
<td>3,000—5,000</td>
<td>4,800—6,000</td>
</tr>
<tr>
<td>● monticola</td>
<td>5,000—7,500</td>
<td>5,500—6,000</td>
</tr>
<tr>
<td>● albicaulis</td>
<td>6,000—9,300</td>
<td>6,000—9,300</td>
</tr>
<tr>
<td>● Murraya</td>
<td>3,000—8,000</td>
<td>4,200—8,500</td>
</tr>
<tr>
<td>Pseudotsuga Douglasii</td>
<td>2,500—6,800</td>
<td>4,300—7,000</td>
</tr>
<tr>
<td>Abies concolor</td>
<td>3,000—6,000</td>
<td>4,000—7,500</td>
</tr>
<tr>
<td>● nobilis</td>
<td>5,200—8,800</td>
<td>6,000—8,800</td>
</tr>
<tr>
<td>● subalpina</td>
<td>5,800—7,800</td>
<td>5,800—7,800</td>
</tr>
<tr>
<td>Tsuga Mertensiana</td>
<td>5,200—6,000</td>
<td>Close to timber line.</td>
</tr>
<tr>
<td>● Pattoniana</td>
<td>6,000—9,200</td>
<td>6,000—9,200</td>
</tr>
<tr>
<td>Libocedrus decurrens</td>
<td>2,500—5,000 feet</td>
<td>5,000—6,600</td>
</tr>
<tr>
<td>Picea Engelmanni</td>
<td>5,800—8,000</td>
<td>5,600—8,000</td>
</tr>
<tr>
<td>Juniperus occidentalis</td>
<td>1,600—5,200</td>
<td>Lowest elevations to 6,000 feet.</td>
</tr>
</tbody>
</table>

Several facies, or types, are recognizable in this forest formation. As complete data is lacking for each, only the general details of their composition can be given.

Pinus ponderosa Belt. As to annual precipitation and mean ratio of soil humidity, this facies occupies the lowest position. It is the dominant type throughout the upper Klamath Basin, but on the western side of the Cascades it is not well developed. It is rarely pure, but Abies concolor, Pseudotsuga Douglasii, Libocedrus decurrens, Pinus Lambertiana and P. Murraya are associated with the yellow pine, and an undergrowth of Purshia tridentata, Ceanothus velutinus, Aretostaphylos patula and Castanopsis chrysophylla var. minor. It is more of a southern type of forest. Frequently *Pinus Murraya* forms almost pure stands, in two aspects; first, in the "contorta" form of the species found along the edges of marshes, creeks or springy localities; secondly, in the "Murraya" form found as straight slender trees on well drained uplands.

Pseudotsuga Douglasii Belt. This type occupies areas situated at higher elevations than those of the yellow-pine type, hence these areas have considerably greater precipitation and soil humidity. On the western side of the Cascades it is the dominant type. It is never a pure type but Pinus ponderosa, P. Lambertiana, P. monticola, P. Murrayana, with an open undergrowth of Arctostaphylos nevadensis, Ribes cereum, Abies concolor, A. nobilis, coast hemlock Tsuga Mertensiana, Picea Engelmanni and Taxus brevifolia are mixed with it. Several types of this forest are recognizable where Abies concolor, or Pinus ponderosa, or Pinus Murrayana, or Pinus monticola, or Abies nobilis becomes the chief components.

Tsuga Pattoniana Belt. The subalpine belt which lies above 6,200 feet on the western slopes of the Cascade Mountains and 6,500 feet on the eastern is covered with forests of the alpine hemlock type. On small areas this forest is a pure growth of Tsuga Pattoniana (= T. Mertensiana) with an undergrowth of Vaccinium scoparium and V. membranaceum, elsewhere Pinus Murrayana, P. monticola, P. albicaulis, Abies nobilis, A. subalpina (A. Iasiocarpa and Picea Engelmanni occur with Tsuga Pattoniana). The highest limits for the alpine-hemlock type are the timber lines, varying from 8,000 feet on northern slopes of the highest peaks to 9,500 feet on southern declivities.

Along the edge of extreme timber line Tsuga Pattoniana is wanting and Pinus albicaulis reigns supreme. The following examples taken from the southern declivities of Mount Pitt in Oregon are illustrative 1).

<table>
<thead>
<tr>
<th>Timber line</th>
<th>100 per cent</th>
<th>800 feet below timber line</th>
<th>2 per cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus albicaulis</td>
<td>300 feet below timber line:</td>
<td>Pinus albicaulis</td>
<td>Tsuga Pattoniana (= T. Mertensiana)</td>
</tr>
<tr>
<td>Pinus albicaulis</td>
<td>50 » » 50 » »</td>
<td>Abies nobilis</td>
<td>88 » » 10 » »</td>
</tr>
</tbody>
</table>

Gravelly Prairie Formation. Existing as islands in the red fir forests, which are unable to encroach because the gravelly prairie soil serves as an almost perfect barrier to this tree, are the prairies which present the appearance of a sterile pasture with scattered oaks (Quercus Garryana here and there). Until the middle of July these prairies are carpeted with flowers after which they assume an arid appearance.

Sage Formation. This represents an extension of the Great Basin flora into the middle valley of the Fraser River in British Columbia. Where Jackass Mountain intercepts whatever little moisture comes up the valley of that river is an area where Artemisia tridentata becomes frequent.

Associated with it are Artemisia frigida, Bigelovia (Chrysothamnus = Linosyris) graveolens, Plantago patagonica, Crepis occidentalis, C. occidentalis var. nevadensis, Antennaria alpina, A. dimorpha, Myosurus aristatus, Phacelia cimicata (= P. heterophylla), P. Menziesii (= P. linearis), Oxytropis campestris, Astragalus Beckwithii, A. pilifolia, Lithospermum pilosum, Chrysopsis hispida and Arnica foliosa 2).

Pumice Field Formation. About Crater Lake the gentle outer slopes consist of pulverized pumice without any admixture of humus. The vegetation

2) Macoun, John: Geological and Natural History Survey of Canada, Reports of Progress, 1875—76: 121.
consists of herbaceous plants such as *Polygonum shastense* and *Newberryi, Phlox Douglasii, Spraguea, Arenaria pumicola, Arabis platysperma* and *Eriogonum pyrolacfolium*. — On Mount Tacoma (Rainier) the pumice fields are found above the limit of trees and they range from 6,500 feet to 10,000 feet. They are best developed on the east side of the mountain where the avalanches have covered, great areas with more or less finely divided basalt. The conspicuous plants are *Lupinus Lyallii, Spraguea, Polemonium elegans, Aster pulchellus, Hulca nana, Erigeron aureus, Polygonum Newberryi, Poa Suksdorffii, Draba auricola* and *Smelowskia ovalis*. The last three ascend to an altitude of 10,000 feet 1).

Meadow Formation. Where springs break out, as for example at Crater Lake in southern Oregon, little mountain meadows are formed, the vegetation of which consists of a dense turf of grasses and sedges interspersed with *Pedicularis groenlandica, Dodecatheon alpinum, Kalnina glauca, Polygonum bistortoides, Tofieldia occidentalis, Gaultheria myrsinites* and *Vaccinium caespitosum*. The vegetation along the precipitous water courses and in the narrow shaded ravines is somewhat similar to that of the meadows and is often more or less mixed with it. The more striking plants of such localities are *Minimus Lewisii, Veratrum viride, Habenaria gracilis, Aconitum columbianum, Viola glabella* and *Veronica alpina (= V. Wormskjoldii)*. Paradise Valley on the south flank of Mount Tacoma (Rainier) is a large mountain meadow celebrated for its flowers, as are also similar mountain parks.

Bog Formation. *Sphagnum* bogs, according to *Piper*, are quite common throughout western Washington. In them grow such plants as *Ledum latifolium, Kalnina glauca, Salix myrtilloides, Myrica gale, Betula glandulosa* and the herbs *Drosera rotundifolia, Eriophorum russicolurn, Scheuchzeria palustris* and *Juncus oregona*. On the drier hummocks *Tsuga Mertensiana* (= heterophylla) occurs, and in the bogs near the sea coast *Ledum columbianum* and *Myrica californica* replace their two close relatives. Throughout the forest on Vancouver Island bogs also occur and lakes of considerable size are found, the largest of which is Cowichan, over 20 miles long, showing several circum-areas of vegetation, according to *Rosendahl*.

Alpine Formation. Although the phytogeographic district under consideration includes such mountain peaks as Mount Adams (12,470 feet), Mount Baker (10,827 feet), Mount Tacoma (Rainier) (14,526 feet), Mount Saint Helens (10,000 feet), Mount Hood (11,225 feet), Mount Jefferson (see plate XV) and Mount Pitt (9,760 feet), yet the alpine flora of these mountains enumerated by *Piper* 2), comprises 156 species of plants.

Above timber line, which extends on all the northwestern mountains higher on the ridges than in the ravines between, the alpine flora on the highest

Coniferous Forest Formation on Mt. Jefferson.
Cascade Mountains, Oregon. Light areas indicate burnt timber. Dark areas subalpine forest unburned.
(See text p. 601 for component vegetation).
peaks extends up to 10,500 feet (3,200 meters) altitude. The lower portion of this belt, except where there are outcroppings, is covered with a dense carpet of grasses and flowering plants.

Among the more abundant of the former are Festucia viridula, Poa arctica and Agrostis Rossi. Among the conspicuous herbs in the damper places are Ranunculus Suksdorfii, Caltha leptosepala, Dodecatheon Jeffreyi. On the drier slopes Pulsatilla occidentalis raises its tosseled mass of akenes; Lupinus subalpinus forms great patches of blue; Castilleja oreopola makes carpets of dull crimson and Potentilla flabellifolia furnishes abundance of yellow color. Two "heathers" are conspicuous: Blyanthus (Phyllococe) empetriforimis with clusters of rose-purple flowers and Cassiope Mertensiana with clusters of pure white. Along the rills Gentiana calycosa and Mimulus Lewisii form bright colored borders. Saxifraga Tolmiei and Eriogyna (Lütkea)pectinata form dense mats.

In general above 2,400—2,500 meters grow Agrostis humilis, Festucia ovinia var. brevifolia, Eriogonum pyrolaefolium, Carex atrata. Douglasia laevigata, Aster alpinus, A. pulchellus, Erigeron salsuginosus, Antennaria alpina and in moory places Betula glandulosa, Rubus arcticus. Polygonum viviparum and Salix arctica, while at about 3,000 meters are found Carex Breueri, C. pyrenaica and C. Nardina. At 10,000 feet on Mount Tacoma (Rainier) grows Smelowska ovalls and far above this plant even to the rim of the crater lichens occur on the rocks, while on the steam-warmed rocks of the crater are two masses Hyphnum elegans and Philonotis fontana. 1. On the summit of Mount Scott (9,122 feet) are found Pentstemon Davidsonii, Polemonium pulchellum, Erigeron compositus, Eriophyllum lanatum, Oxyria digyna, Saxifraga Tolmiei, Cryptogramme acrostichoides, Carex Breueri, Potentilla glandulosa, Raillardella argentea, Anemone (Pulsatilla) occidentalis, Spraguea umbellata, Polygonum Newberryi, P. shastense, Lupinus minimus, Trisetum subspicatum and Juncus Parryii. 2.

According to Coville loc. cit. upon such rocky peaks as Watchman (8,125 feet) and Castle Crest occur a series of rupestrine plants conspicuous among which are Cryptogramme acrostichoides, Oxyria digyna, Pulsatilla occidentalis. Arabis lyallii, Peucedanum Martindalei, Blyanthus (Phyllococe) glanduliflorus, Pentstemon Davidsonii and Hieracium gracile.

B. Olympic District.

This district includes the Olympic Mountains in northwest Washington and the Coast Mountains of Oregon. The Olympic Mountains culminate in Mount Olympus 8,200 feet in altitude. This district is hardly distinct phytogeographically from the Puget Sound-Cascade mountain district but it differs mainly in negative characteristics viz: (1) the absence of many trees such as Pinus ponderosa, P. Murrayana, P. albicaulis, the mountain hemlock Tsuga Pattoniana, Picca Engelmanni, etc.; (2) in its geographic isolation; (3) in the more uniform constitution of the forest. 3.

Coniferous Forest Formation. Taken as a whole this is the most heavily forested region of the northwest, extending in unbroken formation to the edge

of salt marshes, sand dunes and sea beaches on the Pacific coast side of the
district. The available timber per township runs from 3,000 feet B. M. (≈ board
measure) amid the high mountains to 5,900 feet B. M. in the northwest corner.
What with fallen timber and undergrowth of ferns and shrubs the forest is
almost impenetrable. The principal trees of this forest are Tsuga Mertensiana
(up to 4,500 feet), Pseudotsuga Douglasii with the exception of the area
immediately bordering the Pacific Ocean, while it extends up the mountain
slopes to an altitude of 3,500 feet. Abies amabilis (rarely below 1,500 feet),
Thuja gigantea (low and swampy ground). Chamaecyparis nootkatensis (on
ridges below 3,500 feet), Pinus monticola (about 500 feet on western slopes
frequently in swamps) are important elements of the forest, while Abies subal-
pina (≈ A. lasiocarpa) is found only on the higher parts of the mountains
and rarely below an elevation of 5,000 feet). Below 5,000 feet is the great
northwestern forest in which Acer circinatum, A. macrophyllum (bottom lands),
Arbutus Menziesii and Populus trichocarpa, growing along streams and on
the shores of small lakes, figures as the deciduous element of the forest.

The undergrowth consists of Alnus oregona, Cornus Nuttallii, Pirus (Malus) rivularis, Fatsia
(Echinopanax) horrida and species of Rubus, Vaccinium and Ribes. The herbaceous plants of
this forest are Monotropa uniflora, M. hypopitys, Boschniakia strobilacea, Pyrola aphylla,
Corallorhiza Mertensiana, Listera ovata, Adiantum pedatum, Athy-
rium filix-foemina, Smilacina (Vagnera) racemosa, Allotropa virgata, Goodyera Menziesii, Luzula
comosa, Trillium ovatum, Proserartes oregona (on borders of swamp) Lycopodium elatum,
Streptopus amplexifolius and Neillia opulifolia (in swamps). The herbs in the maple bottoms are
Asarum caudatum, Tolmiea Menziesii, Mitella caulescens, Dicentra formosa, Hydrophyllum virginicum
and the moss Muium Menziesii.

Alpine Formation. Above tree limit, near snow banks, are found Xerophyllum tenax,
Ranunculus Eschscholzii, Viola glabella, Erythronium revolutum, Taxus brevifolia, Proserartes oreg-
ona (≈ Disporum majus), Aetuea arguta, Berberis nervosa, Ribes lacustre var. parvulum,
Ribes laxiflorus, Valeriana stenensis, Mitella trifida, M. Breweri, Menziesia glabella, Rhododendron
(Azaleastrum) albiflorum, Fragaria chiloensis, Pedicularis racemosa and Douglasia nivalis var. dentata.
Clinging to overhanging rocks grow such herbs as Pentstemon Menziesii, Saxifraga occidentalis,
S. punctata, Allium Tolmiei, Arabis hirsuta, Pachystima myrsinites, Bryantus (Phyllococe) empert-
iformis and Cassiope Mertensiana.

3. Californian Region.

The flora of a region with as highly diversified a topography and climate,
as California, must be of a highly diverse character. The study that botanists
have made of its vegetation shows that such is the case. The southern and
southeastern portions of the region are arid in the extreme, and support a
flora of a desert character; the western flanks of the Sierra Nevada Mountains
bear a magnificent forest of coniferous trees, which reach giant proportions,

1) See also Dodwell, Arthur and Rixon, Thodore F.: Forest Conditions in the Olympic
Forestry 4. 1902. p. 16.
while the height of the snow-capped mountains permits a boreal flora to exist in a region otherwise inimic to such plants; the interior valley of California also bears a unique vegetation and the coast range flora is quite distinct from that of any of the nearby phytogeographic districts. As a whole: this part of the Pacific Section makes an interesting transition between the northern wooded and the southern arid territories.

A. Coast Range District.

This extends along the Coast of the Pacific Ocean from Rogue River and the Siskiyou Mountains (42° N. latitude) south to the latitude of Point Conception (34° 30'). Its continuity is broken in the neighborhood of San Francisco Bay, where the interior valley is entered by tidal sea water. We can, therefore, distinguish a northern (Mendocino) area and a southern (Santa Lucia) area. As we have made evident (see ante pages 271—275), the flora of the Coast ranges is interesting in possessing many elements. The true Coast range flora is endemic and much the oldest and most unique. It also lacks the northern genera which may be called boreal-alpine. The northern element from Oregon and Washington is practically co-extensive with the redwood area; the herbaceous undergrowth in the redwood area being northern. The Sonoran element overlaps the southern portion of the Coast Range between San Francisco Bay and Tehachapi Pass. Such a flora merits more than a passing notice.

a) Mendocino Area.

The Coast Range to the north of the Bay of San Francisco is a peculiarly dislocated complex of mountains. Notwithstanding its heavy annual rainfall, the area has a period of drought from about the end of July until about the end of September, but during this period, according to the observations of the writer at Humboldt Bay, the forest is by no means dry, because dense fogs roll in from the Pacific and precipitate considerable moisture¹). The limits of the sea fogs are just about the limits of _Sequoia_ and the higher ridges in consequence above the fog level support only a scattering growth of redwood. In general, the distribution of the tree growth of the northern Coast Mountains is as follows:

(a) Immediately along the coast shore, and outside the redwoods, brush growths and a growth of coniferous trees of various kinds.

(b) The redwood strip, occupying the western slope of the outer backbone of the Coast Range.

(c) Following the redwoods, a separate development of trees, which are found in the redwood strip in conjunction with the redwood; strip of _Pseudotsuga_Douglasii, Quercus_(Pasania)_densiflora, Castanopsis chrysophylla_ etc.

¹) See also CANNON, W. A.; On the Relation of Redwoods and Fog to the general Precipitation in the redwood Belt of California. Torreya, I: 137.
1. Coastal Formations.

Dune Formation. The principal sand dunes of the northwestern coast of California occur at the mouth of the Garcia River, at Point Arena, at Pudding Creek near Fort Bragg, at the mouth of Ten-mile River and according to my observations along Humboldt Bay, which is separated from the ocean by two narrow peninsulas of sand, the mouth partially closed by shifting bars.

The following plants are characteristic of the Californian sand dunes: Abronia latifolia, with heavy prostrate stems and flat leaves; Arctostaphylos uva-ursi in large mats on almost pure sand on the sand spit of Humboldt Bay; Convolvulus soldanella, Festuca rubra var., Poa Douglasii, Tanaacetum camphoratum, Elymus arenarius, Lupinus Chamaissonis, L. arbores (south of Point Reyes), Collinsia bartsiifolia (in drift sand), Corethrogynce californica var. obovata and species of Pinus, Juncus and Salix.¹)

Coast Bluff (Mesa) Formation. The coast bluffs vary in width from one to three miles forming a mesa, or bench, between the shore line and the summit of the first mountain ridge, which is about 1,600 feet high. This ridge marks the western edge of the redwood strip. The coast bluffs are elevated about 50 feet, or more, above the sea, but at Humboldt Bay, according to my observations, it has been eroded almost to sea level, there forming a large and very fertile flood plain. It is subject to heavy summer fogs, enjoys a more equable summer climate and a greater amount of moisture, than is found in the interior and is relatively cool.

The poorer lands are characterized by growths of Pinus muricata and P. contorta, while in Humboldt and Del Norte counties these are replaced by Abies grandis, Picea sitchensis and coast hemlock Tsuga Mertensiana. Perennial grasses are abundant, such as Dauthouia californica, Festuca rubra, Calamagrostis aleutica, Deschampsia spec. etc. in company with such maritime plants as Erigeron glaucus, Mesembryanthemum aequilaterale, Lupinus Michauxii.

White Ash Plain Formation²). On the ridges which separate the smaller coast streams, e. g. the Noyo and Albion Rivers, are found the white-ash prairies, or white plains. They do not cover the whole of a ridge, but predominate near its western extremity, where the sandstone outcrops and the soil is white and powdery almost impervious to water.

¹) First Biennial Report, California State Board of Forestry 1885—86: 133.
³) DAVY, J. BURT: loc. cit. p. 52.
A distinctive flora characterizes these plains composed of Quercus (Pasania) densiflora, Pinus muriicata, P. contorta, Cupressus Goveniana, Castanopsis chrysophylla, Gaultheria shallon, Vaccinium ovatum, Rhododendron californicum, Myrica californica, Ledum glandulosum, Aretostaphylos nummularia and such woody and herbaceous species as Polygala californica, Helianthemum scoparium, Xerophyllum tenax, Hypericum concinnum, Gentiana Menziesii, G. oregona, Lilium maritimum, Panicum unciphyllum (= P. dichotomum), Agrostis Pringlei and Lotus leucophaeus.

Bog Formation. Perhaps owing to the impervious nature of the soil, sphagnum, or peat bogs have formed in the low hollows on the plains. Here grow Ledum glandulosum (the prevailing species), Blechnum spicant, Gaultheria shallon, Myrica californica, Veratrum fimbriatum, Viola sermentosa (= V. sempervirens), Trientalis latifolia, Sisyrinchium californicum, Hosackia gracilis (= Lotus formosissimus), Cornus canadensis, Hypericum anagalloides, Gentiana Menziesii, Drosera rotundifolia, Campanula linnaefolia, Calamagrostis aleutica, C. Bolanderi, C. crassiglumis, species of Agrostis, Juncus, Carex. The bog mosses are three species of Sphagnum, S. cymbifolium, S. mendoceinum and S. subsecundum var. longifolium.

Davy says with reference to the bluff flora. "An analysis of the flora as above listed shows that its most characteristic feature does not consist so much in the presence of endemic species as in the commingling of the adjacent redwood and coast floras, with the addition of species commonly found in thin soils at comparatively high altitude, and of certain peculiarly boreal species, rarely if ever found at other points in the Coast ranges, and when met with elsewhere in the State, usually occurring at very much higher altitudes. The phenomenal feature is, therefore, the occurrence of several species belonging to high altitudes and latitudes, along a narrow coast mesa not more than 200 feet above sea level, and between the thirty-ninth and fortieth degree of north latitude".

The species to make this clearer, may be classified as follows: Plants of dry ridges in the redwood strip are Cupressus Goveniana, Quercus densiflora, Polygala californica, Castanopsis chrysophylla, Xerophyllum tenax, Gaultheria shallon, Vaccinium ovatum, Hypericum concinnum, Helianthemum scoparium, Rhododendron californicum, Myrica californica, Aretostaphylos nummularia and other species.

The plants of moist, shady spots in the redwood strip are Viola sermentosa and Trientalis latifolia.

The boreal species are: Cornus canadensis, Aretostaphylos uva-ursi, Juncus supiniformis, Hypericum anagalloides, Drosera rotundifolia, Blechnum spicant, Ledum glandulosum, Sphagnum cymbifolium, S. mendoceinum, S. subsecundum var. longifolium, Carex vallicola, C. salina var. mutica and C. livida.

The coast bluff species comprise Pinus contorta, P. muriicata, Calamagrostis aleutica, Sisyrinchium californicum, Hosackia gracilis and Gentiana oregona.

The apparently endemic species are: Veratrum fimbriatum, Lilium maritimum, Campa-nula linnaefolia, Carex phyllopanica, C. mendoceinensis, C. gymnodynamia, Agrostis Pringlei, Calamagrostis Bolanderi and C. crassiglumis.

2. Redwood Formations.

South of the Chetco River a continuous strip of redwood (Sequoia sempervirens) begins increasing in width in the river valleys and lowlands from 10 miles wide, in Del Norte County to 18 to 20 miles, ending in Mendocino County. Scattered forests of the species are growing in sheltered spots, as far south
as Salmon Creek Canyon in the Santa Lucia Mountains, 12 miles south of Punta Gorda.

The Redwood Slope Formation is the common type. It occurs on the steep sides of the Coast Range and is a mixture of Sequoia sempervirens, Pseudotsuga Douglasii, Quercus densiflora and Abies grandis with an occasional tree of Arbutus Menziesii, or the coast hemlock Tsuga Mertensiana. The redwood (Sequoia) is predominant in the mixture and the red fir (Pseudotsuga) ranks next with a dense undergrowth of Gualtheria Shallon, Acer macrophyllum, Rhododendron occidentalis, Berberis repens (= B. Aquifolium), Rubus nutkanus, etc. The herbaceous plants of this forest are Calypso borealis, Nephrodium (Polystichum) munitum, Anemone nemorosa, Zygadenus paniculatus, Trillium ovatum, Adiantum pedatum, Viola sermentosa, Cardamine paucicerta, Claytonia perfoliata, Erythronium giganteum, Oxalis oregona, Bromus laevipes, Melica bromoides, Hierochloe macrophylla, Trisetum canescens, etc.

Redwood Flat Formation. The redwood steadily gains on the other species and the forest becomes denser as the slopes become moderate, the altitude lower, the soil deeper and the water supply better. Associated with the redwood are Pseudotsuga, Quercus densiflora, Picea sitchensis, Chamaecyparis Lawsoniana, Thuja gigantea, Tsuga Mertensiana, Abies grandis, Taxus brevifolia, Torreya californica, Pinus contorta, Umbellularia californica, Arbutus Menziesii, Rhamnus Purshiana, Alnus oregona, Cupressus Goveniana 1).

Along the central portion of its range the redwood occupies the ground to the almost entire exclusion of all other trees. Its distinguishing features are the great size of the trees, their amazing vitality, producing a new growth from the charred stumps and the thickness with which they stand together. Nowhere is there such an amount of timber to the acre. The trees vary in height from 180 to 325 feet (55—100 m) and in diameter from nine to twenty (3—7 m). They stand so thickly, that there is not space for a team to pass between them. In Humboldt County some acres in flats along streams will yield as much as 500,000 feet B. M. 2).

3. Interior Upland Range Formations.

These formations include the extensive open ranges lying east of the redwood strip. These ranges are diversified by masses of Pseudotsuga Douglasii, oak woods, chemisal or mixed shrubby vegetation, open grassy slopes (so called prairies), tiny mountain meadows or wide enclosed valleys and with small patches of redwood in canyons, or cool slopes on their landward sides.

Forest Formation. The gulches and steep sides of the canyons, especially their eastern slopes are thickly covered with trees and underbrush. The prevalent trees are Pseudotsuga Douglasii, Quercus californica (6—7 feet in diameter), Quercus Garryana, Q. densiflora (sometimes 130 feet high, 7 feet diameter), Arbutus Menziesii and along the streams Umbellularia californica. Less abundant but by no means uncommon are Pinus ponderosa, Castanopsis chryso-phylla, Acer macrophyllum, Libocedrus decurrens, Cornus Nuttallii, Torreya cali-

1) Fisher, Richard T.: A Study of the Redwoods, U. S. Bureau of Forestry. Bulletin 38, 1903. 2) The unit of board measure (B. M.) is the board foot, which is a board 1 inch thick and 1 foot square.
fornica, Fraxinus oregona with occasional trees of Quercus lobata and Q. chrysolepis.

The eastern and western sides of Red Mountain are peculiar in the presence of groves of Cupressus Macnabiana. The underbrush consists of Corylus rostrata var. californica, Calycanthus occidentalis, Rhhus diversiloba, Rhamnus californica, Rosa gymnocarpa, Gaultheria Shallon, Vaccinium ovatum, V. parvifolium, Rubus vitifolius and in certain places Ceanothus integerrimus, C. incanus and C. velutinus. At Red Mountain grow Lilium pardalinum, Aquilegia truncata, Epipactis gigantea and a fern Pellaea densa.

Chaparral Formation. This formation consists of a thicket of low trees and shrubs. It is bushland or scrub. It coincides with dry stony ground and is composed of such shrubs as Adenostoma fasciculatum, Ceanothus cuneatus, Quercus dumosa, Cercocarpus sp., Garrya Fremontii, Eriodictyon glutinosum (= E. californicum).

The grasses usually found in such localities are Melica californica, M. Harfordii, Elymus multisetus, E. planifolius, E. glaucus, Bromus carinatus and occasionally Festuca ovina 1).

The chaparral formation covers millions of acres of the high slopes on the north sides of the mountains of the Coast Range and rolling hills. Here, as near Ukiah 2), the slopes facing south are grassy with scattering trees of Quercus Douglasii and Aesculus californica with many herbs in the spring.

The composition of the chaparral on the higher mountain slopes as about Lake Clear 3) in the heart of the Coast Range is similar to that already described. Species of Adenostoma, Cercocarpus, Ceanothus and Aretostaphylos abound. There are besides clumps of Garrya Fremontii, scattered individuals of Ceanothus divergens, Quercus dumosa var. hullata and occasionally Rhamnus ilicifolia. Here too are Dicentra chrysanthra, Linum californicum, L. spurgulimum, Galium Andrewsii, Hypericum concinnum, Eriogonum dasyanthemum and Gnaphalium californicum. The bittle-stone, or obsidian supports Chorizanthe Clevelandi, Oxythea hirtiflora, Scutellaria Bolanderi and Quercus Wislizeni. Opens in the chaparral are bright with Hypericum anagalloides, Silene californica, Eriogonum vimineum, Clarkia rhomboidea, Mentzelia micrantha, Eriophyllum caespitosum, Gomphocarpus cordifolius, Phacelia ramosissima, Emmananth penduliflora, Antirrhinum virga, Pentstemon azureus, Mimulus Bolanderi and Verhena prostrata.

4. Mountain Summit Formations.

Several mountains are sufficiently high to show a flora somewhat like that of the Sierra Nevada Mountains in appearance. Such are the San Hedrin Mountains, Mount Hull, Snow Mountain (8,048 feet = 2,453 m), Mount St. John, Mayacamas Mountains and Mount St. Helena (4,343 feet = 1,324 m).

Forest Formation. The trees of Snow Mountain 4) and the elevation to which they reach are as follows: Abies concolor (4,000—6,000 feet = 1,220—1,830), A. nobilis (6,000 feet = 1,525 m), Pinus sabiniana (3,800 feet), Pinus

Part IV. Chapter 4.

ponderosa var. Jeffreyi (5,000 feet and upward), *Pinus Lambertiana* (at high elevations, becoming dwarfed), while the thickets are formed of *Ceanothus ledifolius*, *Quercus chrysolepis* reaching an elevation of 4,000 feet and dwarfing rapidly into its subalpine form var. vaccinifolia, while associated with the above are *Lophanthus urticifolius*, *Gilia aggregata*, *Spraguea umbellata*, *Eriogonum umbellatum*, *E. ovalifolium* and *E. Lobii*.

The arid summit of Mount St. Helena possesses a few species characteristic of the humid coast region, or of the high Sierras and other elevated mountain ranges, such as *Pseudotsuga Douglasii* and *Cornus Nuttallii*, while *Ceanothus velutinus* var. *laevigatus*, *C. prostratus* var. *divergens* and *C. foliosus*, all found on Mount St. Helena, are absent from the inner coast ranges and Diablo.

Chaparral Formation. The vegetation of the summit of Mount St. Helena is distinguished by the prevalence of shrubs of a limited number of species which completely mantle the sides of the mountain above 2,300 to 2,500 feet.

The shrubs are *Artostaphylos manzanita* (with its root-parasite *Boschniaia strobilacea*) *Garrya Fremontii*, *Pickeringia montana*, *Rhamnus californica*, *Ceanothus foliosus*, *Castanopsis chrysophylla*, *Quercus chrysolepis*, Q. *Wisllizeni* with two other low shrubs: *Dendromecon rigidum* and *Eriodictyon californicum*. *Pinus attenuata* is scattered more or less all over the mountain with its parasite *Arceuthobium occidentale*. There is a conspicuous lack of herbaceous species above 3,000 feet and not a sign of an annual. Of herbaceous perennials there were found by [JEPSON] Hypericum concinnum, *Pedicularis densiflora*, *Monardella odoratissima* and *Zygadenus Fremontii*. The total number of plants collected above 3,000 feet and adapted to grow in the arid and gravel-covered areas of the high coast range ridges was twenty-one.

A subalpine *Meadow Formation* is found in the Trinity and inner Coast Range Mountains at an altitude of about 6,500 feet. There are bordered by *Veratrum californicum*, alpine species of *Aster*, *Viola*, *Mimulus* and *Eriogonum spergulinum*, while upon these meadows grow *Ranunculus alismellus*, *Viola blanda*. *Gilia Harkensii*, *Mimulus primuloides*, *Polygonum bistortoides* and *Potentilla gracilis*.

The crevices of rocks on the summit of Snow-Mountain are occupied by *Galium multiflorum* and *Gilia pungens*. The rocky areas are characterized by *Raillardiella Muirii*, *Eriogonum umbellatum*, *E. Lobbi*, *Polygonum Davisiæ*.

5. Mountain Valley Formations.

Nearly all the oblong or round valleys, common in the coast ranges north of San Francisco Bay were the beds of lakes. Clear Lake is a large body of water but Tull Lake is one that has been converted into a marsh covered by tall rushes while Ukiah Valley has been completely converted into dry ground. Each of the geologic formations has its flora.

Here exists a Marsh Meadow Formation: In the small marshes are *Rumex persicarioide*, *Ludwigia (Isnardia) palustris*, *Nuphar advena*, *Brasenia peltata*, *Oenanthe californica*, *Alisma plantago*. The floor of the valleys is virtually a meadow. Here grow bunch grasses, *Lilium pardinum*, *Calochortus lilacinus*, *C. venustus* var. *oculatus*, *Iris macrosiphon*, *Godetia vimenae*, *Ranunculus macranthus*, *Sisyrinchium bellum*.

In the beds of streams grow Eríogonum virgatum, Mentzelia laevicaulis, Chrysopsis orego-
gona, Senecio eurycephalus, Nicotiana attenuata, Verbaseum virgatum, Mimulus pilosa, Trichostema
laxum and Argemone munita (= A. hispida).

Forest Formation. The benches along the edges of the valleys support a growth of
trees among which may be mentioned Quercus Douglassi, Pseudotsuga Douglasii, Quercus
lobata, Arbutus Menziesii, Fraxinus oregona, Quercus californica and Nengo
dum californicum with
thickets of Rosa californica and such lianes as Clematis ligusticifolia and Vitis californica.

b) Santa Lucia Area.

This comprises the coast range country south of San Francisco Bay and
as far south as Point Concepcion. It too is characterized by the presence
of the redwood, but in isolated groves one in the Santa Cruz Mountains
and a smaller one in the Santa Lucia Mountains.

i. Sea Coast Formations.

Marine Algal Formation. Out from the shore in the deeper water of
Monterey Bay \(^1\) occurs an association of seaweeds of gigantic size. Here are
found Macrocystis pyrifera, Iridaea laminarioides and Nereocystis Liuteana
(Macrocystis Association). The tidal pools immediately along shore are charac-
terized by Cladophora scopaeformis, Ulva latissima, Halosaccium hydrophora
and species of Gelidiuim, Prionitis and Nitophyllum (Cladophora Shelf). The
algal shelf uncovered with the retreat of the tides is characterized by the pre-
sence of Fucus fastigiatus, F. Harveyanus F. evanescens, Codium tomentosum
and Halidrys osmundacea (at low tide mark).

Coastal Bluff Formation. In the absence of detailed information on the
flora of this formation in general it may be said that three trees are characteristic
of the coastal bluffs. Cupressus macrocarpa (see the next page Fig. 29) occupies a strip about two
miles long and two hundred yards wide from Cypress Point to the shores of Carmel Bay, with a small grove on Point Lobsos \(^2\).

Pinus insignis (= P. radiata) is also restricted in its distribution being confined,
to the country immediately adjacent to the Bay of Monterey where it forms
a narrow forest a few miles long, back of the grove of Cupressus macrocarpa.

Pinus Torreyana is found only on the border of the high bluff and on the
sides of the ravines extending from it to the sea, north and south of Del Mar
in San Diego County, where it stretches along the coast for a distance of
nearly eight miles, but nowhere penetrates inland more than a mile and a half.
A single grove of this tree also grows on the east end of Santa Rosa Island,
off the California coast \(^3\).

1 \text{HOWE, MARSHALL A.:} A Month on the Shores of Monterey Bay, Erythea I: 63.
3 \text{Pinus murieta;} Garden and Forest X: 232; Sudworth, George B.: Forest Trees of the
Pacific Slope. U. S. Forest Service 1908; \text{JEPPSON, W. L.:} Forest Trees of California 1909;
\text{HUMPHREY, H. B.:} The plant Societies of Monterey Peninsula. The Plant World XII: 152–157;
July 1909.
Redwood Formation. This formation south of San Francisco Bay is not in a continuous strip. Two large groves exist in the Santa Cruz and Santa Lucia Mountains, but the southern limit seems to be in San José Canyon several miles south of Carmel Bay and there is a grove of redwood about thirty five miles still farther south on the south fork of Sur Chiquito, a good sized trout-stream running through narrow canyons from its source to the ocean. All of the typically herbaceous, or undergrowth plants of the redwood forest are characteristically northern.

Fig. 29. Cupressus macrocarpa Hartweg, Monterey Cypress, confined to a narrow strip of coast land, several miles long near Monterey Bay, California. Coastal Bluff Formation. From “Country Life in America”; copyright 1902 by Doubleday, Page & Co.

2. Interior Upland Range Formations.

The information available concerning the vegetation of the southern coast ranges is limited in amount. In lieu of more material bearing on this subject, a description of the floras of Mount Diablo and Mount Hamilton will be given. The flora of these mountains and Mount St. Helena has been compared and the data have been given elsewhere in this book (see ante page 272).

Mount Diablo, 3,848 feet (1173 m) in elevation, is situated thirty miles inland. The vegetation is more rank than on Mount Hamilton forty miles farther south and protected from the ocean by the Santa Cruz Mountains

The chaparral formation consists of Adenostoma fasciculatum, Ceanothus cuneatus, associated with Quercus chrysolepis, Q. wislizeni, Q. douglasii and Pinus sabini ana. The vegetation of this mountain also comprises: Rhamnus illicifolia (in well rounded clumps near the summit), Ribes subvesitum at the summit, R. californicum (near the summit), Clematis lasiantha (climbing over shrubs near the summit), Aploppus Stenotus) lineari folius, a shrub of the south slope, while Streptanthus hispidus (endemic), Phacelia Breweri, Silene ver cun da, Psoralca californica, Sanicula saxatilis, Illicianthella castanea (endemic), Hosackia crassifolia, Campanula exigua, Arabis Breweri, Lathyrus vestitus and Collinsia tinctoria occupy rocky situations on the top of the mountain. The open spaces among the bushes are occupied by Eschscholtzia ambiguus, Delphinium californicum, Arnica discoides, Cam panula exigua and Phacelia cir cinatiformis. Arabis Breweri, Erigeron foli osus grow on south slopes while Pentstemon corymbosus forms mats on the exposed rocks.

The vegetation of Mount Hamilton shows a marked xerophytic character as compared with that on Mount Diablo and Mount St. Helena. The absence of a true forest is noteworthy and the coast range oaks Quercus dumosa, Q. Wislizeni, Q. agrifolia, Q. californica (= Q. Kelloggii) occur more generally on the north slopes with Quercus Douglasii on the western flanks. Pinus ponderosa grows on the summits of high ridges, while Pinus Sabini ana occurs on the highest parts of the mountain. Species of Ceanothus are absent.

Other trees of the mountain are Cercocarpus parvifolius (= C. betulaefolius), Acer macrophyllum, Aesculus californica and Rhus diversiloba. The north slopes show the presence of Hosackia crassifolia, Eriogonum saxatile, Umbellularia californica (in gulches almost to the summit), Erigeron petrophilus (crevices of rock) and Pentstemon bresiliusus.

South slopes are occupied by Eriogonum stellatum, E. trachygonum, Oenothera hirtella and Chlorogalum pomeridianum, while Holodiscus discolor is common along rocks and thickets on the highest ridges. Lewisia rediviva (see Fig. 22 page 338) also occurs on Mt. Diablo and in the Rocky Mountains of the northwest. Arenaria Moehringia) macrophylla is plentiful on rocky slopes.

Abies venusta is a tree confined to the Santa Lucia Mountains and neighboring ranges and canyons. It occurs at least eighteen miles inland from the ocean on crags, rocky ridges, in canyons and along streams. In favorable localities where the chaparral does not occur it mingles with Pinus ponderosa, Pinus Coul teri to form considerable tracts into which Quercus chrysolepis, Q. californica (= Q. Kelloggii, Q. Pasania; densi flora, Pinus attenuata, and Arbutus Menziesii extend. Elsewhere these mountains which rise to elevations of 4,500 to 5,000 feet are largely covered covered with chaparral 1).

B. San Joaquin District.

The central valley of California, situated between the Sierra Nevada Mountains on the east and the Coast ranges on the west, is drained by the Sacramento River running from the north toward the south to join the San Joaquin River which flows from the south toward the north. The stream formed by their confluence empties into San Francisco Bay. The topography and geologic history of this great valley situated almost at Sea level has been previously described (see ante p. 279). It remains to discuss the plant formations of this interesting plain.

Grassy Plain Formation. During the months of March, April and May the San Joaquin Valley was one smooth continuous bed of grasses, sedges and flowering plants for a distance of more than 400 miles. Each species usually dominated its own particular area, almost to the exclusion of others. Acre after acre, mile after mile were thus covered with masses of plants with flowers of bright blue, orange, white, yellow, pink or cream and the effect of the whole, especially during the month of April has been likened by one popular writer "to a huge patch-work quilt thrown on the ground". Flowering plants of the following genera were conspicuous: *Brodiaea*, *Gilia*, *Claytonia*, *Calandrinia*, *Nemophila*, *Castilleja*, *Lupinus*, *Trifolium*, besides numerous labiate and compositous genera 1).

The only breaks in the continuity of these wild bee pastures were along the main streams and their tributaries, which entered at right angles from the mountains on either side and were fringed with trees. On the open flat country grew *Platystemon californicus*, *Eeschscholtzia californica* and species of *Bahia*, *Calandrinia*, *Madia*, *Madaria*, *Baeria*, *Barrelia*, *Chrysopsis*, *Corethrogynne*, *Amssinekia*, *Grindelia*, *Allocarya*, growing in close association of various shades of yellow, blending finely with the purples of species of *Clarkia*, *Orthocarpus* and *Oenothera*. On account of the long period of drought, annuals which spring up quickly were and are still the rule in undisturbed places and the general appearance of uniformity was scarcely modified by the taller species of *Phacelia*, *Pentstemon* and associations of *Salvia carduacea*.

The growth of the months mentioned was stimulated by the winter rains which fall during December, January, February and early March. Following the spring months subsequent to May, the general brown and purple colors of the vegetation were the most marked characteristics of the plain. In October when the dry vegetation had crumbled to dust there was a second outburst of bloom, and *Heloxonium virgata* made its appearance in associations, miles in extent, a single plant bearing as many as 3,000 flowers, five eighths of an inch in diameter. This plant subsequently in November is associated with two or three species of *Eriogonum* and by tufts of *Grindelia* which continue until the spring flowers of January appear 2).

The surface of the Tulare plains, except the alkaline bottoms, contained no shrubs, but a scant herbaceous growth of *Eremocarpus*, and herbs made up principally of annuals such as *Croton californicums*, *C. setigerus* and *Aselepias eosa*.

River Bank Formation. The river banks of the great valley are formed of silt and they separate the river channel from the marshes behind. The following trees and shrubs are characteristic river bank species:

Salix nigra Marsh.
» sessilifolia Nutt. var. Hindisiana Anders.
» lasiandra Benth.
» longifolia Muhl (= S. interior Populus Fremontii Wats. [Rowlee].

Platanus racemosa Nutt.
Juglans californica Wats.
Alnus rhombifolia Nutt.
Cephalanthus occidentalis L.
Vitis californica Benth.
Rosa californica C. & S.

1) This account is written in the past tense, because the composition of the valley flora has been changed by the settlement of the country. The description is true, however for undisturbed sections of this Valley.

Rubus vitifolius C. & S.
Negundo Californicum T. & G. (= Acer
Negundo L. var. californicum
Sargent).

Rhus diversiloba T. & G.
Quercus Wislizeni D.C.

Oak Grove Formation. The bottomland nearer the foot hills is characterized by the presence of groves of Quercus agrifolia from three to eight feet in diameter which break the continuity of the prairie-like levels. Prof. Sargent, in his Silva, writes of this oak: “The valleys and low hills of the California coast owe their greatest charm to this oak tree, which, dotting their covering of vernal green, or their brown summer surface with its low, broad heads of pale, contorted branches, and dense, dark foliage, gives them the appearance of incomparably beautiful parks”.

Tule Marsh Formation. The course of the Sacramento River for a distance of 150 miles from its mouth is bounded by brackish marshes which stretch away from the river ten to fifteen miles on either side. These marshes are generally referred to as tule lands. Here Scirpus lacustris var. occidentalis chokes the marshland associated with Scirpus tatora forming thus almost pure associations covering extensive areas.

The islands separated from each other by a labyrinth of tortuous channels are all of the same character, consisting of pure and exceedingly fine vegetal mold arising from the decay of tule and without trace of sand or gravel. They are all either entirely or in great part below water.

While the vegetation of the grassy plains formation is brown in September and October, that of the river marshes is fresh and green. The color in these marshes in the autumn is dependent on the presence of Verbena hastata, Solidago occidentalis, Aster Douglasii, Stachys albens and Gnaphalium californicum. Annuals here are commonly four to six feet in height and plants eight to twelve inches high in dry soil here double their size, viz: Boisduvalia densiflora var. imbricata. Attention has already been called (see ante p. 280) to the fact that there is a strong resemblance between the flora of this formation and that of the low ground of the lower Mississippi River, but such plants as Lathyrus Jepsonii, Hibiscus californicus, Baccharis Douglasii are peculiar to California, while such herbs as Pluchea camphorata and Hypericum mutilum not only occur near the Mississippi, but in the salt marshes of the Atlantic coast as well.

C. Sierra Nevada District.

This is coincident with the Sierra Nevada Mountains of California extending from the Klamath Gap (50 miles wide) south, as far as Tehachapi Pass which may be taken as the dividing line between the Sierra Nevada Mountains proper and the mountains of southern California, including the San Bernardino Range. — The Siskiyou Mountains and the Mt. Shasta Range may be said to form one division of the Sierra Nevada District and the mountains south of the Pitt River Gap (60 miles in width) between Mount Shasta and Mount Lassen another.

a) Shasta Area.

This area includes the mountainous country about Mount Shasta and the Siskiyou Mountains, which extend westward, until they blend with the Coast Mountains on the West. The effectiveness of the Klamath gap in acting
as a barrier between the Cascade and Sierra Nevada Mountains has been described (see ante p. 256.). It remains to discuss the plant formations of the Shasta Area.

1. Coniferous Forest Formations.

Mount Shasta rises from a forested region and the mountain itself is forest-covered up to an altitude of 7,500 to 8,000 feet. The trees of the lower slopes are those of the surrounding region, but those on the upper slopes are different 1).

Pinus ponderosa Belt. This formation is an open forest belt extending up to an altitude on the south and west sides to about 5,500 feet. *Pinus ponderosa* is the most characteristic tree of this formation and the lower slopes. The only gap in the continuity of this forest is a strip about 8 miles (12.8 km) in length on the cold northeast slopes, where *Pinus Murrayana* grows. On the south and west, the open pine forest of the basal slopes is interrupted by extensive parks of chaparral consisting of *Arctostaphylos patula* and *Ceanothus velutinus*. Northwest of Shasta the forest of *Pinus ponderosa* is interrupted by the open plain of the Shasta Valley: on the south it is practically continuous to the base of Lassen Butte and thence along the flanks of the Sierra for 350 miles (472 km); on the southwest, according to Merriam, it follows the canyon of the Sacramento River to a little below Delta, where, in the bottom of the canyon and warmer slopes it mixes with *Pinus sabiniana*. On the cooler and higher canyon slopes and adjacent foot hills *Pinus ponderosa* continues to the border of the Sacramento Valley. West of Shasta this formation covers all but the highest elevations of the Scott Mountains and reach up a considerable distance over the east arm of the Salmon Mountains where *Pinus ponderosa* is mixed with *Pseudotsuga Douglasii*, *Pinus Lambertiana* and *Libocedrus decurrens*. Still farther west the forest of *Pinus ponderosa* occurs in greater or less extent in the valleys of Russian Creek, north and south forks of Salmon, Trinity and Klamath rivers and at appropriate altitudes on the west arm of Salmon and Trinity Mountains 2).

The forest of *Pinus ponderosa* is nowhere pure over any large area, but is sprinkled with *Pinus Lambertiana*, *Libocedrus decurrens*, *Pseudotsuga Douglasii*, *Abies concolor* var. *Lowiana*, *Pinus attenuata* (a narrow interrupted tongue of which pushes up Panther Creek) *Quercus californica* (= Q. Kelloggii), *Acer macrophyllum*, *A. glabrum*, *A. circinatum*, *Alnus tenuifolia*. The chaparral of this belt consists of *Ceanothus cordulatus*, *C. Integerrimus*, *C. (Cerastes) prostratus*, *C. velutinus*, and *Cercocarpus ledifolius*.

Abies shastensis Belt. This belt 3) is not connected with similar forests elsewhere, because it occupies Mount Shasta above the forest of *Pinus ponderosa*. It forms a belt averaging two or three miles in breadth and 2,000

feet in vertical range completely encircling the mountain, beginning at an altitude of 5,000—5,500 feet and pushing up to 7,500 or 7,800 feet. It is the distinctive forest of Shasta, a forest of tall stately trees, dark somber and free from underbrush, though here and there Arctostaphylos nevadensis forms patches which breaks the monotony of the dark brown surface. Evernia vulpina, a yellow lichen, drapes the lower branches of this tree, while the pendant masses of Alectoria fremontii occur in the denser parts of the forest. As a rule, the Shasta fir Abies shastensis (= A. magnifica var. shastensis) stops where Pinus albicaulis begin, but the fir at its upper limit is of full size except on the steep and relatively warm southwestern slopes, where dwarf specimens occur. The highest point at which this tree grows is at an altitude of 8,900 feet (2710 m). This type of forest is mainly pure, but in places, particularly on the east and northeast sides of Mount Shasta, Pinus monticola is scattered through it and in one place Pinus Murrayana replaces Abies shastensis.

The herbaceous associates of Shasta fir are: Aconitum columbianum, Allium validum, Arnica longifolia, Campanula Wilkinsoniana, Chimaphila Menziesii, C. umbellata, Corallorhiza bigelowii, Delphinium Sonnei, Epilobium brevistylum, E. oregoneae, E. spicatum (= angustifolium), Gentiana simplicex, Habenaria leuocostachys, H. unalaschensis, Heracleum lanatum, Lilium parvum, Lupinus Elmeri, Madia Bolanderi, Pentstemon deustus. P. gracilentus, Pirola pallida, P. pieta, P. secunda, Senecio trigonophyllum, Tofieldia occidentalis and Viola bland. As there is practically no undergrowth, shrubs form an insignificant part of the forest of this formation. The following, however, are present: Alnus sinuata, Arctostaphylos nevadensis, Ribes amictum, R. cereum, Sorbus sambucifolia and Vaccinium occidentale.

Pinus albicaulis Belt. This belt extends from the belt of Abies shastensis to the fields of perpetual snow and timber line. It is an open belt of straggling, irregular trees whose whitened, twisted trunks show every evidence of their storm-beaten environment. Pinus albicaulis in the lower part of the belt often attains a height of 30 or 40 feet and a diameter of two feet. In the higher elevations it is restricted to the ridges, leaving the intervening basins and gulches bare. Finally the trunks become completely prostrate and the branches hug the ground extending upward on the hottest ridges to an extreme limit of 9,800 feet (2987 m). In places this tree is mixed with and occasionally is replaced by mountain hemlock, Tsuga Pattoniana which never reaches as high, because more moisture loving, and it, therefore, reaches its altitudinal limit one thousand feet lower than Pinus albicaulis. The hemlock forest, where it is pure, is dark and somber and the lower limbs of the trees are draped with Alectoria fremontii and Evernia vulpina.

In moist spots particularly along the borders of rivulets Bryanthus empetriformis forms beds with Erinogynia pectinata spreading a faint veil of green over the dark soil. In the drier parts of the forest hardly a plant is seen except now and then a solitary specimen of Chimaphila Menziesii or Pirola pieta. Juniperus nana occurs in this belt as do such woody plants as Ribes cereum and Vaccinium caespitosum. Some of the herbaceous plants accredited to this belt of Pinus albicaulis are: Castilleja a芬is, Crepis intermedia, Cycladenia humilis, Epilobium Pringleanum, Corallorhiza pringlei var. magifica nana, Heracleum phinthum, Heracleum lanatum, Lilium parvum, Lupinus Elmeri, Madia Bolanderi, Pentstemon deustus. P. gracilentus, Pirola pallida, P. pieta, P. secunda, Senecio trigonophyllum, Tofieldia occidentalis and Viola bland. As there is practically no undergrowth, shrubs form an insignificant part of the forest of this formation. The following, however, are present: Alnus sinuata, Arctostaphylos nevadensis, Ribes amictum, R. cereum, Sorbus sambucifolia and Vaccinium occidentale.

2. Alpine Formation.

This belt occupies the pumice and lava between timberline and the upper limit of plant growth. On the warmer southwestern slopes its lower limit may be found at 9,500 to 9,800 feet. The great majority of alpine species stop at or below an altitude of 11,000 feet, but on the relatively warm southwestern slopes Hulsea nana was found at 11,300 feet (3445 m), and Draba Breweri and Polemonium pulchellum, as high as 13,000 feet (3962 m), the extreme limit of plant growth on Mount Shasta.

The species known to occur in the alpine belt of Mount Shasta are:

Achillea borealis.
Agoseris (Troximon; monticola.
Antennaria media.
Arabis platysperma.
Aster shastensis.
Cardamine bellidifolia var. pachyphylla.
Carex Breweri.
Chaenactis nevadensis.
Chrysothamnus Bloomeri.
Cymoptenis terebinthinus.
Dicentra uniflora.
Draba Breweri.
Elymus cinererus.
Erigeron armerifolius.
Erigeron compositus var. trifidus.
Eriogonum polypodium.
Eriogynia pectinata.
Erysimum [Cheiranthus] perennis.
Hieracium albiflorum. [nis.
Hulsea Larseni.
Juncus Parryi.
Ligusticum Grayi.
Lupinus Lysilli.
Oxyria digyna.
Pentstemon Menziesii.
Phaeelia frigida.
Polemonium pulchellum.
Polygonum Newberryi.
Polyonum stansense.
Pulsatilla occidentalis.
Sagina saginoides (= S. Lin-Saxifraga Tolmici. nasci).
Senecio canus.
Sibbaldia procumbens.
Silene Grayi.
Veronica Cusickii.
Viola purpurea.

b) Sierra Area.

The Sierra Nevada Mountains proper begin in the neighborhood of Lassen's Peak and trend approximately south to Tehachapi Bay, where they blend with the mountains of southern California, the San Bernardino and Coast ranges. The flora of this area has long attracted botanists, and it is fairly well known.

1. Foothill and Mountain Formations.

Forest Formations. Beginning at the lowest elevations on the west slopes of the Sierras in proximity to the San Joaquin Valley, the following forest belts can be distinguished: The Foothill belt, may be subdivided into the open foothills (500—2,500 feet) and the chaparral (2,500—4,500 feet). The trees of the foothill forests are Quercus Wisiizeni (500—4,000 feet), Ceanothus cuneatus (1,000—3,500 feet), Arctostaphylos californica (500—3,000 feet).

1: Pumice is spongy volcanic scoria, or lava, usually in loose pieces.
In these foothills appears Quercus Douglasii 500—2,500 feet associated with Rhamnus californica (ranging to 6,000 feet), Rhus diversifolia to 3,500 feet, Senecio Douglasii to 2,500 feet, Lupinus Chamissonis to 1,700 feet, Ceanothus californicus (= C. integerrimus), Ribes velutinum [at about 1,600 feet], Calycanthus occidentalis 1,700—3,500 feet, Erichthion ylnotus 1,700—4,500 feet. The digger or nut pine Pinus sabiniama is the first coniferous tree met in ascending the range from the west and it is scattered singly or in groups of five, six trees. Its extreme upper limit is 4,000 feet. Its range follows closely the limit of the arid belt, it does not extend into the valley plain, but is generally restricted to an elevation between 500 and 2,500 feet. Pinus attenuata (= P. tuberculata) is found at an elevation of from 1,500 to 3,000 feet growing in close groves.

Near the lower border of the chaparral or brush appear Fremontia californica (2,500—4,000 feet), Fraxinus dipetala (2,500—3,500 feet), Ceanothus divaricatus (2,700 to 4,000 feet), Bigelovia arborescens (2,500—4,000 feet), Cercocarpus parvifolius (3,800—4,000 feet), Quercus Breweri (3,500—5,500 feet, preferring northward or northwestward slopes), Quercus dumosa (4,000—4,300 feet, inclined to grow in thickets), Dendromecon rigidum (3,800 feet), and Prunus subcordata (4,300—4,500 feet).

The Pinus ponderosa Formation constitutes a belt of forest ranging from 2,500 feet to 6,500 feet in the northern Sierras.

The trees of this belt are Pinus ponderosa 6—8 feet in diameter, 220 feet in height, P. ponderosa var. Jeffreyi attaining its best development in the north, Pinus Lambertiana 6—12 feet in diameter, 245 feet high, Pseudotsuga Douglasii, Abies concolor, Abies magnifica, Libocedrus decurrens (ascending to 5,000 feet on the warmer hillsides), Taxus brevifolia [along main range of Sierra in shady dells], Torreya californica [in gulches], Populus trichocarpa, Alnus rhombifolia, Castanopsis chrysophylla, Quercus chrysolepis, Q. californica (= Q. Kelloggii), Q. dumosa, Q. densiflora, Cercocarpus parvifolius var. breviflorus, Prunus demissa, P. subcordata, Acer macrophyllum, Rhamnus Purshiana, Cornus Nuttallii and Arbutus Menziesii.

The most remarkable tree of this belt is Sequoia gigantea (= S. Wellingtonia), the California big tree (see plate III at page 200, Calaveras Grove). It extends in widely interrupted groves from the middle fork of the American River to the head of Deer Creek, a distance of about 260 miles, the approximate elevation being from 5,000—8,000 feet). From the American River Grove to the forest on Kings River the species occurs in small isolated groups, but from Kings River southward Sequoia gigantea extends across the broad rugged basins of the Kaweah and Tule rivers in noble forests, a distance of nearly seventy miles, the continuity of this part of the belt being broken only by deep canyons (see pages 199—200). As we advance southward, these forest giants become more and more irrepresibly exuberant. According to my observations in the Calaveras and Tuolomne groves, the growth is not pure, but nevertheless, there are trees which measure over 300 feet in height and a stem

diameter of from 20 to 30 feet. In the Kings River forest a tree was measured by JOHN MUIR with a diameter inside the bark of 35 feet 8 inches, four feet from the ground, and perhaps 5,000 years old, or less). In the northern Sierra Nevada Mountains the trees of this type of forest mix along the upper limits of their range with Abies shastensis (= A. magnifica var. shastensis).

In this forest, according to my observations, occur Chamaebatia foliolosa, Lilium parvum, L. Washingtonianum (with pure white flowers), Dicentra formosæ, Rhododendron (Azalea) occidentalis, Sarcoed sanguinea and under trees of Sequoia in the Calaveras Grove, I noticed Pterospora andromedea and Pleurophora mitriformis. Beneath Pinus Lambertiana in the Yosemite grows Ceanothus integerrimus, associated with C. prostratus, which together form mats on warm ridges. Elsewhere occurs Ceanothus cordulatus in extensive thickets, while Rhododendron occidentale inhabits the banks of cool streams, with Rubus utkanus. — In the southern Sierras, according to ALICE EASTWOOD near Kings River Canyon under the Sequoias along streams is found Athyrium (Asplenium) cyclosorum var. strictum.

In the upper pine forests, according to ENGLER the following species are endemic: Arabis platysperma, Arenaria compacta, Arctostaphylos nevadensis, Artemisia Rothrockii, Aster Andersonii and Bigelovia (Chrysothamnus) Bolanderi.

River Bank and Rocky Slope Formation. The Yosemite Park occupies a natural valley surrounded by precipitous mountain walls. The Merced River that flows through the valley and the rivers of similar valleys in the Sierra Nevada Mountains are fringed by Salix lasiandra var. caudata, S. fluviatilis, Populus trichocarpa, Alnus tenuifolia, Taxus brevifolia (in the canyon) and Prunus demissa, while Selinum capitellatum, Mimulus lutes, Pentstemon Bridgesii occur on the banks of streams throughout the Yosemite Valley. Saxifraga peltata occurs along the borders of Cascade Creek and other streams in the Sierras. — At the altitude of the Yosemite Valley, the plants which characterize the steep canyon walls, rocky places or talus slopes are: Cryptogramma aerostichoides, Cheilanthes gracillima, Pentstemon breviflorus, Sedum spathulifolium, S. obtusatum, S. Rhodiola (= Rh. rosea), Gayophytum ramosissimum, Hieracium Breweri (rocky cliffs), Drapera sylva, Pentstemon azureus, P. lactus, Antennaria argentea and A. luzuloides.

Wet Meadow Formation. The wet meadows of the Kings River Canyon and the Yosemite Valley are characterized by the presence of many perennials.

Allium validum, Lilium pardalimum, Veratrum californicum, Iris missouriensis, Habenaria leucostachys, Epipactis gigantea may be mentioned together with Ranunculus alisaeformis, R. orthorhynchus, R. occidentalis, Aquilegia truncata, Aeonium colombianum (and var. Eisenii), Caltha biiforma, Sidalcea reptans, Hypericum Seouleri, Viola blanda, Geranium Richardsonii, Saxifraga integrifolia, Rosa gratissima, Trifolium microcephalum, Gayophyllum diffusum and pumilum, Pedicularis groenlandica and attolens, Mimulus Bigelovii, primuloides and moschatus, Stachys albans, Heleniastrum rivulare, Setecio aureus, Chamaelis glabra, Nuphar polysepulum (in open pools), Claytonia Chamissonis, C. parvifolia and exigua, Hosackia crassifolia, Potentilla gracilis and Dodecatheon Medea. Alnus viridis and Corylius rostrata fringe the edges of such meadows. The pitcher plant, Darlingtonia californica, grows in marshy places from Mount Shasta to the coast associated with Habenaria leucostachys.

3) ENGLER, A.: Die pflanzengeographische Gliederung Nordamerikas, 64.
2. Formations of the higher Sierra.

Subalpine Forest Belt. This formation, or forest belt, seems at first but a
thinner upper fringe to the magnificent forest composed of *Pinus ponderosa*,
P. Lambertiana and *Sequoia gigantea*. There is, however, no species of tree
common to the two belts, or extending much from one into the other. The
composition of this higher forest belt varies.

In the northern Sierra Nevada Mountains, it occurs above 5,800 feet on the western
slopes and above 7,300 feet on the eastern and trans-sierran slopes. There the Shasta fir
Abies shastensis is the prevailing tree forming fully 85 per cent of the forest associated
with *Pinus Murrayana* (12 per cent, *Pinus monticola* 3 per cent, mountain hemlock, *Tsuga Pattoniana (= T. Mertensiana). 2 per cent, *Pinus albicaulis* with *Populus trichocarpa, P. tremuloides*
Cercocarpus parvifolius, Castanopsis chrysophylla, Arctostaphylos pungens, while *Ceanothus cordulatus* constitutes the underbrush above 7,000 feet.

This forest in the neighborhood of Lake Tahoe and Yosemite Valley consists essen-
tially of three conifers: *Pinus Murrayana, Abies magnifica*, and *Pinus ponderosa var. Jeffreyi*. The other coniferous and broad leaved trees form no considerable part of the
forests. Associated with the species named above are *Pinus monticola, Pinus albicaulis*, mountain
hemlock *Tsuga Pattoniana, Abies concolor, Juniperus occidentalis, Populus tremuloides, Alnus
tenuifolia, Prunus emarginata* and *Acer glabrum*.

On Mount Rose at the western edge of the Nevada Desert above Reno at about 7,000 feet
(2130 m) on this Sierra peak there are forests of *Pseudotsuga Douglasii, Pinus ponderosa, Liboe-
cedrus* deccurrens with such shrubs as *Arctostaphylos nevadensis, A. pungens, Castanopsis chry-
sophylla, Ceanothus prostratus, C. velutinus, Cercocarpus ledifolius and Ribes cereum*, together with
such herbs as *Arabis pedicellata, Erysimum asperum, Gilia aggregata, Monardella odoratissima* and
Pentstemon deustus. At the upper limits of *Pinus ponderosa* 9,000 feet (2743 m) on Mount Rose
is a facies of *Pinus Murrayana* and, scattered on protected north-facing slopes, *Tsuga Pattoniana*
and in protected canyons *Pinus monticola*.

Pinus Murrayana forms the bulk of the subalpine forests near Yosemite Valley.
As a tree, it is widely distributed between 6,000 and 9,300 feet, while the area of its greatest
abundance lies between 6,000 and 8,500 feet. On higher ground, it is associated with *Pinus
ponderosa var. Jeffreyi, Abies magnifica, Pinus monticola* and *Tsuga Pattoniana* here forming
50 per cent of the stand. This tree shows a remarkable edaphic adaptation. It thrives best in
meadow bottoms, but spreads persistently over low rock ridges and stretches of high granite
plateaus, establishing itself everywhere in crevices and pockets. — The range of *Abies magni-
ifica* is between 6,000 and 8,500 feet and the prevailing growth lies between 6,500 and 7,500 feet
where forests of pure growth are frequent on the soil-covered lava rock benches on the eastern,
southern and western slopes of the larger mountain peaks and ranges. *Pinus monticola* is
rather rare but widely distributed between 6,500 and 9,400 feet. It appears as scattered individ-
uals associated with *Abies magnifica, Tsuga Pattoniana* or less frequently with *Pinus Murrayana.
Tsuga Pattoniana (= T. Mertensiana) is a strictly subalpine tree, confined chiefly to
northern slopes at elevations between 6,900 and 9,400 feet. It is generally distributed within
these limits and associated with *Pinus Murrayana* only or with *Pinus monticola, P. Murrayana* and
Abies magnifica; while in its highest range it occurs in small groups by itself or interspersed
with *Pinus albicaulis*.

Pinus albicaulis grows among broken bare rocks and in beds of disintegrated granite at
elevations between 8,000 and 9,500 feet, forming small patches of stunted and storm-beaten trees
with which except at the upper levels, are interspersed groups and single trees of mountain hem-
lock, *Pinus monticola* and *Pinus Murrayana*. At the upper limits of its distribution *Pinus albicaulis*
is the only tree and fixes timber-line. As a tree, it grows on eastern, southern and
western slopes only). The shrubs of this belt are Ceanothus pruinosus, Quercus chrysolepis var. vaccinifolia, and Castanopsis chrysophylla var. minor, abundant at the higher elevations. — Juniperus occidentalis is a tree of high altitudes and exposed situations. It is nowhere abundant, but is frequent as a scattered tree between 7,000 and 8,500 feet elevation on bare granite rock slopes and low summits. On Mount Rose in western Nevada (10,800 feet) from 9,000 to 10,000 feet Pinus albicaulis is associated according to Kennedy (Muhlenbergia III: 30) with Cystopteris fragilis, Agrostis Rossii, Phleum alpinum, Poa Olneya, Poa reflexa, Stipa occidentalis, Salix glauca, Eriogonum Lobii, Sibbaldia procumbens, Lupinus eutoides, L. leucophyllus, Trifolium monanthum (abundant in meadows), Rhodiola integrifolia, Ribes lentum, Antennaria dioica, Senecio triangularis and Solidago multitridata.

To conclude our account of the forest flora of Sierra Nevada Mountains we find on the eastern side a desert region whose lower altitudes lie in a belt marked below by the presence of Larrea Mexican a (= Covillea tridentata) and above by a narrow treeless belt characterized by several shrubs and in many parts by an abundant growth of Yucca arborescens; and next a belt covered by a scant forest of Pinus monophylla (from the desert margin to 8,000 feet) Juniperus californica var. utahensis and Pinus flexilis seldom found lower than 9,000 feet, but from this elevation it pushes upward over the roughest ledges to the extreme limit of tree growth. The foxtail pine, Pinus aristata, is also another denizen of the eastern slopes of the sierras restricted to the southern portion of the range about the head waters of Kings and Kern rivers where it forms extensive forests above 9,000 feet. It ascends to 11,000 feet without seeming to suffer from the climate. Pinus monophylla is, however, commonest tree and covers many mountains from base to summit associated with a sparse growth of the juniper on the lower slopes, thus breaking the continuity of the nut pine forest.

Alpine Lakes and Meadows. Thousands of lakelets exist in the sierras. They occupy the sheltered hollows of glacial valley basins, or are streams dammed by ancient moraines, or they exist in chains on mountain streams, as in Lake Hollow in Tuolume Canyon, where ten such lakes lie together. The outer circumarea is characterized by Spiranthes Romanzoffiana, Sagittaria variabilis, Damasonium californicum, Caltha leptosepala, Veratrum californicum, and species of Isoetes, Narthecium, Habenaria, and Hastingsia. The second circumarea, the lake-bog circumarea, is marked by the presence of Ranunculus Andersonii, R. oxynotus, R. alismaefolius, Dodecatheon alpinum, D. Jeffreyi and Kalmia glauca var. microphylla.

The alpine meadows are smooth, silky lawns representing the basins of lakes which have been converted first into bogs and then into meadows with

2) See Great Basin Region.
a close and fine sod. They abound throughout the alpine and subalpine belts of these mountains.

The vegetation consists of species of Calamagrostis, Gentiana, Solidago, Ivesia, Orthocarpus, Pentstemon, Trifolium and masses of the genera Hypnum, Dieranum, Polytrichum, while mats of Salix glauca var. villosa, Bryanthus Breweri and Vaccinium caespitosum occur in such meadows.

The Hanging Meadow Formation is found aslant upon moraine covered hillsides, trending in the direction of greatest deselivity in the alpine and subalpine belts. The following genera of plants are represented: Lilium, Delphinium, Lupinus, Senecio, Allium, Castilleja, Mimulus, Pentstemon, Aquilegia, Silene, Wyethia, Erigeron, Phlox, Zauschneria, etc. Compare the alpine flora of this belt according to Engler.

The alpine summit of Mount Rose above Truckee Valley in western Nevada is subject to winds of great velocity which in winter blow the snow out of the crevices of the rocks, so that many of the alpine species are exposed to extreme wintry conditions. The alpine belt begins with the prostrate form of Pinus albicaulis (10,000 feet) and here occur the arctic willow, Salix petrophila, Arabis depauperata, Arenaria Nuttallii, Castilleja inconspicua, Cerastium Behringianum, Draba densifolia, Eriogonum rhodanthum, Festuca Kingii, Gillia montana, Oxyria digyna, Pentstemon Davidsonii, Phlox condensata, Poa longipendunculata, Polemonium montrosense, Raillardella nevadensis, Ribes Churchii, Senecio occidentalis and Trisetum subspicatum var. molle.

D. San Bernardino District.

This phytogeographic district comprises that part of the California west of the Colorado and Mohave deserts and includes the San Bernardino and other ranges of mountains as also the coast plain south of a line which follows the Cuyama, or Santa Maria River and the Tehachapi range of mountains, or approximately that part of California, including the detached islands, south of the 35th degree of north latitude. Its southern boundary is marked by the Sonoran Desert Region. A sketch of the origin of the flora and its affinities has been given and a detailed statement with reference to the different floral elements is not necessary at this point (see ante p. 274).

It has been thought expedient to deal with the island flora as distinct from that of the mainland.

a) Insular Territories.

The islands concerned in this sketch are San Miguel, Santa Rosa, Santa Cruz, Ana Capa, forming a northern group, and San Nicholas, Santa Barbara, Santa Catalina and San Clemente, forming a southern group. These islands are remarkable continental islands presenting in their flora many points of divergence from that of the adjacent mainland, for example, the absence of such prevailing genera as Ribes, Lupinus, Astragalus, Potentilla, Horkelia and in the presence of such genera as Lyonothamnus, Cossosoma and Lavatera absolutely peculiar to them. Such locally distributed mainland trees, as Pinus Torreyana, Malacothrix incana and Leptosyne gigantea are on the islands luxuriant and abundant.

1) SHINN, CHARLES H.: The wild Gardens of the Sierra, IX (1896): 343.
San Miguel is the most seaward of the northern group and is of the nature of a table-land its shores rising for the most part abruptly to the height of from 200 to 300 feet. The two greatest elevations are respectively 861 and 850 feet. Unprotected by Point Concepcion its condition is one of perpetually wind-swept and wave-beaten exposure ¹).

The only arborescent species are Heteromeles arbutifolia and Rhus integrifolia (now extinct), Lavatera assurgentiflora existing in an open grassy valley. The bulk of the present vegetation consists of insular species among which the following are endemic: Eschscholtzia maritima, Astragalus miguelensis, Oenothera nitida, Galium miguelense, Phacelia seabrerra and Corethrogynne filaginifolia var. robusta, Eriogonum rubescens, Malacothrix ineana and Abronia villosa.

Several continental species grow on this island but not on the others, viz: Alopappus ericoides, Troximon grandiflorum, Sidalcea malviflora, Gilia mierantha, Plantago hirtella and Scirpus riparius. — The grasses which carpet the island are of the perennial kind and the turf is constituted by two or three species of Elymus and Agropyron sparingly found on the mainland. The presence of these perennial grasses which form a rich pasturage for cattle is attributable to the ocean fogs. Mesembryanthemum crystallinum covers hundreds of acres of higher and somewhat argillaceous land.

Santa Rosa Island, not so mountainous in its topography as Santa Cruz, possess a flora smaller in number of species. The shrubby vegetation and trees confined to the sheltered hillsides and canyons are: Pinus radiata (= P. insignis var. binata), Quercus dumosa, Q. lobata, Q. tomentella, Q. agrifolia, Populus trichocarpa, Salix laevigata, Lyonothamnus aspleniifolius, Heteromeles arbutifolia and Prunus ilicifolia. Pinus Torreyana is represented by about one hundred trees growing on the bluffs of the eastern shore ²).

The trees of Santa Cruz are Acer macrophyllum, Prunus ilicifolia, Cercocarpus parvifolius, Heteromeles arbutifolia, Salix laevigata, S. lasiolepis, S. longifolia, Populus trichocarpa, P. Fremonti var. Wistlizeni, Quercus agrifolia, Q. chrysolepis, Q. Wistlizeni, Q. oblangeifolia, Q. lobata, Q. dumosa, Q. tomentella, Pinus radiata, while as shrubs are found Dendromecon rigidum, species of Rhus, Cercocarpus, Rosa, Lyonothamnus, Ribes, Sambucus, Symphoricarpos and Arctostaphylos.

Santa Catalina is formed by two mountain masses, which reach an elevation between 2,000 and 3,000 feet. Few trees grow on this island, but there are many large shrubs and the flora in general resembles that of Santa Cruz Island. The abundance of Crossosoma californica and Rhus laurina seems to be an important difference (Litt. see BRANDEGEE).

Omitting a consideration of the flora of San Clemente Islands (see ante p. 277), it may be said in general that by far the larger part of the island flora is composed of maritime and coast range plants that delight in ocean breezes, spray and fogs. The great extent of the coast line of the islands affords a large habitat for a maritime flora and many mainland shrubs and bushes do not develop their lower limbs and branches on the islands and,

¹) GREENE, E. L.: see Bibliography p. 80; see ante pages 275—278.
therefore, become tree-like, as for example, *Prunus ilicifolius*, *Cercocarpus*, *Rhms*, *Rhamnus* and *Ceanothus*.

The flora of Guadalupe Island is 100 miles off the coast of Lower California, and rising from an oceanic abyss, is essentially Californian, as distinguished from the Mexican flora to which belongs the vegetation of the intervening peninsula of Lower California and the nearby islands. Trees are numerous over much of the island represented by *Pinus radiata* (= *P. insignis*) which exists in groves on the high narrow ridge at the northeast extremity of the island, *Cupressus guadalupensis*, *Juniperus californica* var. *osteosperma* in irregular groups on the middle of the island, *Quercus tomentella* and a palm: *Erythaca edulis*.

On ascending from the narrow beach to the plateau or table land 3,000 feet high the following plants occur: Senecio Palmeri, *Sphaeralcea sulphurea*, Hosackia ornithopus, *Convulvulus macrostegius*, all endemic species associated with *Brodiaea capitata*. The following list so far as known comprises the plants peculiar to the island, as given by Vasey and Rose:

5. *Lupinus niveus* Wats.
8. *Hosackia ornithopus* Greene.
11. *Galium angulosum* A. Gray.
12. *Diplostaphylium canum* A. Gray.
15. → *Palmeri Rose*.
17. *Barlia Palmeri* A. Gray.
22. *Convulvulus occidentalis* A. Gray.
23. → *macrostegius* Greene.
27. *Mimulus latifolius* A. Gray.
29. *Calmahina Palmeri* A. Gray.
30. *Senecio Palmeri* A. Gray.

b) Mainland Area.

An examination of the vegetation of this area shows it to be distributed into several distinct formations among which the bog and strand formations are limited in extent owing to the topography of the country. Two territories, the coastal and interior, may be distinguished, separated from each other by the Cuyamac, Palomar, Temecula ranges.

1) *Watson*, S.: 1876, 105—121, see Bibliography p. 87; *Greene*, E. L.: Bulletin California Academy Sciences I, 214—228; *Lyon*, W. S.: Bibl. p. 80; compare the subsequent account of the islands of Baja California.

2) "A peculiar species, and by far the most decided shrub of the genus. The three species from this island seem to form a peculiar group by themselves". *Vasey*, George and Rose, J. N.: Contributions U. S. National Herbarium, I: 24.
1. Coastal Territory.

1. Strand Formation.

Between low and high tide marks, the sandy beach is quite bare of vegetation 1). However, the rocks of the hills which project into the ocean at Orange County, California, have a large supply of algal growth in this region. *Fucus serrata*, *F. fastigiata*, *Cladophora rupestris*, *Plumaria elegans* and *Coralina officinalis* are the most common sea weeds found here.

Above flood tide, where there is a beach, it is flat and unbroken by dunes. The growth here is almost entirely herbaceous in character. The few woody forms are low and have a spreading habit. *Oenothera cheiranthifolia* var. *suffruticosa* is the common woody form.

Other characteristic species are: *Abronia maritima*, *A. umbellata*, *Mesembryanthemum aequalilaterale*, *Franseria bipinnatifida* and *Convolvulus soldanella*. It will be noticed that these forms are quite succulent. With the exception of *Franseria*, all have a spreading or creeping habit. The *Abronia* are noteworthy in that they have their leaves placed nearly vertically and the leaf surfaces face in different directions. Grasses, which constitute an important part of many strand formations, are here poorly represented. In addition to its own peculiar plants, the strand formation contains a number of species which are present in the more alkaline portions of the mesa. The forms common to both formations are: *Salicornia ambigua*, *Sesuvium portulacastrum*, *Atriplex californica*, *Sarcobatus Maximilliana* and *Mesembryanthemum crystallinum*. When growing on the coast these forms seem less stiff and hard than when growing inland.

It may be well to contrast those plants confined to the immediate shores of the ocean on the sand of the beach, and those that occur in the tidal marshes, or salt meadows in some places. The following is according to S. B. Parish.

<table>
<thead>
<tr>
<th>Halophilous.</th>
<th>Arenicolous.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astragalus pycnostachys A. Gray.</td>
<td>Abronia maritima Nutt.</td>
</tr>
<tr>
<td>Atriplex hastata L.</td>
<td>» umbellata Lam.</td>
</tr>
<tr>
<td>Batis maritima L.</td>
<td>Amblyopappus pusillus H. & A.</td>
</tr>
<tr>
<td>Jaumea carnosa Less.</td>
<td>Aphanisma blitoides Nutt.</td>
</tr>
<tr>
<td>Juncus acutus L. Var.</td>
<td>Atriplex leucophylla Dietr.</td>
</tr>
<tr>
<td>Lasthenia Coulteri A. Gray.</td>
<td>» microcarpa Dietr.</td>
</tr>
<tr>
<td>Monanthochloë littoralis Engelm.</td>
<td>Calandrinia maritima Nutt.</td>
</tr>
<tr>
<td>Salicornia ambigua Michx.</td>
<td>Convolvulus soldanella L.</td>
</tr>
<tr>
<td>» herbecea L.</td>
<td>Franseria bipinnatifida Nutt.</td>
</tr>
<tr>
<td>» mucronata Bigel. (=S.Bige-lovii Torr.).</td>
<td>Mesembryanthemum aequalilaterale Haw.</td>
</tr>
<tr>
<td>Scirpus riparius J. & C. Presl.</td>
<td>» crystallinum L.</td>
</tr>
<tr>
<td>Spartina glabra Muhl.</td>
<td>» nodiflorum Haw.</td>
</tr>
<tr>
<td>Statice Limonium L. var californica A. Gray.</td>
<td>Oenothera viridescens Lehm.</td>
</tr>
</tbody>
</table>

A small group of plants, according to Parish, enter directly from lower California and inhabit a narrow strip along the coast. Some barely enter this district; a few penetrate some distance within it, and the last one in the accompanying list of such plants disappears at Santa Barbara: Acalypha californica, Agave Shawii, Aretostaphylos diversifolia, Baccharis sarothroides, Beloperone californica, Cercus Emoryi, Ditthyrcra californica, Frankenia Palmeri, Isomeris arborea, Iva Hayesiana, Manillaria dioica, Opuntia prolifera, A. serpentina, Simmondsia californica and Viguiera laciniata.

2. Chaparral Formation.

The most evident characteristic of the coastal territory is the prevalence of oaks. Its rolling hills are covered with open groves of Quercus Engelmannii and Q. agrifolia associated with Rhus laurina. Scrub oak chaparral consists of a growth of Quercus dumosa. Two types of this formation may be distinguished, namely, the foothill and mountain types.

Mountain Facies. The vegetation of the mountain type consists principally of shrubs with a constant admixture of herbaceous forms. With a few exceptions (Libocedrus decurrens, Pseudotsuga macrocarpa, Pinus ponderosa) trees are absent. The scrub level is commonly between 6 and 9 feet in height.

The following are the most common forms and give the chaparral its general characteristics: Aretostaphylos manzanita, Gillia californica. Audibertia stachyoides, Ceanothus sorediatus, C. eune- atus, C. divaricatus, Quercus dumosus, Quercus chrysolepis, Q. Wislizeni, Castilleja parviflora, Cercocarpus ledifolius, Pentstemon heterophyllus and P. spectabilis. Occasionally some of these forms are found in other formations, but they are not common there and tend to take on a different form of growth. A number of other forms are also met with in the mountain scrub but these are not frequent and are not regarded as migrants from other formations. They do not contribute to the general character of the scrub.

In little isolated patches between the dense scrub masses are found the following characteristic herbaceous forms: Chlorogalum pomeridianum, Zygodenus Fremontii, Gomphocarpus tormentosus. Solidago californica, Epilobium paniculatum and Clarkia pulchella. These forms are not found in masses, but as single individuals, or as small clusters of two or three. When the spaces between the scrub are larger, masses of the following are found: Lupinus afinity, L. trunca tus, L. sparsiflorus, L. hirsutissimus, Sainicula arctopoides, Chaenactis aristaeefolia, Salvia columbariae, Eschscholtzia californica and Viola pedunculata. The last three are very common but are not restricted to this formation. Yucca Whipplei with its short vegetative and enormous inflorescence stems is a very common and typic mountain form. Clambering over the scrub are to be found numerous individuals of Vicia americana var. truncata, Vicia linearis, and to a less extend Convululus occidentalis var. tenuisimus and Clematis lasiantha. Even on the top of Mt. Santiago (1,728 meters), the highest peak, these are found in abundance.

Foothill Facies. The foothill type is like the mountain type, characterized by a scrub growth. The extent of the scrub is not so great and its nature, both as to composition and structure, is decidedly different from that of the mountains. The scrub varies between 2 and 6 feet in height. Its habit is spreading and open, a marked contrast to the more erect and close grown mountain form. The mountain scrub is social, this is unsocial. As a rule each plant stands by itself and has more or less clear space about it.

Harshberger, Survey N.-America 40
Frequently two or three plants cluster together, but these clusters are always surrounded by a clear area.

The leaves of the scrub are almost always very small and entire, commonly linear or lanceolate in shape. In texture they are somewhat leathery. Hairs are present in almost all cases, and are found on upper as well as under leaf surfaces. Often the hairs are glandular. The characteristic forms are: *Eriogonum fasciculatum*, *Artemisia californica*, *Audibertia polystachya*, *Rhamnus crocea* and *Adenostoma fasciculata*. The last two, as mentioned, are occasionally found in the mountains, but it is in the foothill formation that they are abundant.

In many cases cactuses make up a third or even half of the scrub. In some instances the hillsides are covered from base to apex with cactuses. On these the growth is quite tall, often as much as 9 feet (2.5 meters) high. On such hills, even herbaceous growth is largely wanting and the scrub is about equally divided between *Opuntia*, *Eriogonum* and *Artemisia*. The cactus growth is composed of two species — *Opuntia Engelmannii* and *O. prolifera*; the former being twice as common as the latter.

In the open areas about the individuals of the scrub is a large herbaceous vegetation. The composition of this varies at different times of the year. In fact there is a quite regular succession of forms, which begins in the early part of the wet season and continues until the early part of the dry season. From July until the end of the year there is but little change in the herbaceous flora of the foothills. Owing to the grayness of the scrub and the small number of herbaceous forms the hills have a dry dead appearance from July until January. Then owing to the sprouting of members of the first set of herbs, a greener aspect is assumed.

The forms of this first series which are entirely or nearly restricted to the foothills are: *Nemophila insignis*, *N. Menziesii*, *Plagiobothrys nothofulvus*, *Gilia dianthoides*, *Calochortus albus* and *Mirabilis multiflora*. *Brodiaea capitata*, *Echinocystis fabacea* and *Eschscholtzia californica*, which are also abundant here at this time are found in several formations. In March, the members of the second series attain their full development. These are *Layia Blepharopappus* platyglossa, *Madia sativa*, *Amsinckia spectabilis*, *Phacelia distans*, *P. tanacetifolia*, *Salvia carduacea*, *S. columbri», *Plantago patagonica* var. nuda and *Hosackia glaber*. During this period, the hills are a blaze of orange owing to the great growth of Cuseuta subinclusa. Almost all of the scrub and often much herbaceous growth is attacked.

During April and early May, the third set of herbs reaches maturity. The characteristic forms are: *Allium serratum*, *Sedum obtusatum*, *Chorizanthe staticoides*, *Cnicus occidentalis* and *Krynitzkia leioarpa*. In late May and June, we find *Phacelia hispida*, *Solanum Xanti*, *Calochortus catalinae* and on the lower parts *Nicotiana Bigelovii*. By the middle of July the majority of herbaceous forms have fruited and, at least in their aerial parts, have withered.

Ferns are found more frequently in the foothill formation than elsewhere. They do not, however, constitute a prominent feature of the formation. They frequently have a xerophilous structure. This is particularly true of *Gymno—

gramma triangularis and Pellaca andromedifolia. The last, hard to point of brittleness, is the only form in which leaves persist throughout the dry season.

3. Canyon Formation.

The most prominent feature of this formation is the presence of trees. With the exception of the few mentioned in the mountains, trees are restricted to this formation. Trees are not found in all parts of the canyons: but in the parts where they do grow they form groves. It is unusual to find isolated specimens. This social habit does not produce tall straight trunks. Usually the trunks are massive and the unbranched stock is comparatively short. The crown is always large and spreading. These canyon groves are formed almost entirely by two species, namely Platanus racemosa and Quercus agrifolia. It is as common to find groves consisting of either Quercus or Platanus as it is to find both together. In the upper and narrower parts of the canyons, Acer macrophyllum and Pseudotsuga macrocarpa are frequent. Quercus chrysolepis, a member of the mountain scrub frequently wanders into the canyons and becomes arborescent.

In the region not occupied by trees, we find numerous shrubs and herbs. The shrubs of the canyon formation are usually taller than those of mountains and foothills and are more regularly branched. The tendency is much more toward a mesophytic than a xerophytic type. The branches are usually straight. The leaves are of medium size and varying shape. They are seldom entire and often compound. The characteristic forms are Eriodictyon tomentosum, Romneya Coulteri, Amorpha californica, Trichostema lanatum, Rosa californica, Mimulus Diplacus glutinosus, Pho tinia arbutifolia, Zauschneria californica, Pentstemon cordifolius. Climbing forms are represented by Vitis californica and Rhus toxicodendron. In canyons which no longer have running water, Opuntia is not uncommon, O. Engelmanii is the common form. It usually takes on the spreading rather than the erect habit and its joints are not more than half the size of the hill forms.

The herbaceous flora of the canyons is a large one but its composition does not vary as often or as regularly as that of the foothills. Many forms are typically mesophytic in nature. In the damper parts Equisetum arvense, E. hiemale, and E. Telmateja, are often to be found. Only one fern grows on the canyon floor, Pteris (Pteridium) aquilina. It is much smaller than when growing in moist open sandy situations.

During the wet season shrubs about 2.5 meters high constitute nearly the entire vegetation of a River Bed Formation. In manner of growth these forms resemble the canyon shrubs. The leaves are, however, always entire and usually smooth. The major portion of this shrub growth is made up of Salix lasirolepis, S. laevigata, Baccharis vininea and Nicotiana glauca. During the wet season, herbs are uncommon and are restricted to the borders of the river beds. After the flow of water ceases (usually in April) many of the mesa herbs spread over the river beds.

2. San Jacinto Territory.

This interior territory differs from the coastal mostly in a negative way, the latter possessing fully one hundred species which do not extend into the former. Among these are eight species of Atriplex, five each of Chorizanthus and Phacelia, four each of Gilia and Antirrhinum, and three each of Astragalus, Calochortus, Cotyledon and Salvia.
In the subjoined table, according to PARISH, the species restricted to the interior or coastal territories are displayed.

<table>
<thead>
<tr>
<th>Interior</th>
<th>Coastal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adiantum capillus-veneris L.</td>
<td>Adiantum emarginatum Hook. (= A. Jordani Muell.).</td>
</tr>
<tr>
<td>Andropogon macrourus Mich.</td>
<td>Andropogon saccharoides Sw.</td>
</tr>
<tr>
<td>Antirrhinum glandulosum Lindl.</td>
<td>Antirrhinum Nevinianum A. Gray.</td>
</tr>
<tr>
<td>Aplopappus linearifolius DC.</td>
<td>Aplopappus ericoides Less.</td>
</tr>
<tr>
<td>Artemisia Parishii A. Gray.</td>
<td>Artemisia Palmeri A. Gray.</td>
</tr>
<tr>
<td>Boykinia (Therofon) rotundifolia Parry.</td>
<td>Boykinia (Therofon) occidentalis T.&G.</td>
</tr>
<tr>
<td>» splendens Doug.</td>
<td>» Dunnii.</td>
</tr>
<tr>
<td>Chorizanthe Fernandina Wats.</td>
<td>Chorizanthe laciniata Torr.</td>
</tr>
<tr>
<td>» Parryi Wats.</td>
<td>» fimbriata Nutt.</td>
</tr>
<tr>
<td>Gilia californica Benth.</td>
<td>Gilia floribunda A. Gray.</td>
</tr>
<tr>
<td>Helianthus Parishii A. Gray.</td>
<td>Helianthus Oliveri A. Gray.</td>
</tr>
<tr>
<td>Monardella Pringlei A. Gray.</td>
<td>Lathyrus splendens Kellogg.</td>
</tr>
<tr>
<td>Opuntia Bernardina Engelm.</td>
<td>Monardella hypoleuca A. Gray.</td>
</tr>
<tr>
<td>Phacelia Davidsonii A. Gray var.</td>
<td>Opuntia prolifera Engelm.</td>
</tr>
<tr>
<td>Zauschneria californica Presl.</td>
<td>Ribes speciosum Pursh.</td>
</tr>
<tr>
<td></td>
<td>Z. californica Presl. var. microphylla A. Gray.</td>
</tr>
</tbody>
</table>

1. Mesa- and Chaparral Formations.

Mesa Formation. Stretching between the western or coastal chain of mountains and the interior or San Bernardino range is a slightly elevated and comparatively level plain, commonly called a mesa. The mesa formation is characterized by an absence of all arborescent and shrubby growth. Although the vegetation is herbaceous, grasses are uncommon and form an insignificant part of the flora.

The principal species are Datura meteloides, Suaeda Torreyana, Salicornia ambiguа, Mesembryanthemum crystallinum, Sesuvium portulacaestrum, Eremocarpus setigerus, Sarcobatus Maximiliani, Asclepias ericarpa, Atriplex patula, A. californica, Heliotropium curassavicum, Euphorbia albo-marginata, Croton tenuis, Grindelia robusta, Centaurea melitensis, Cneurbita foetidissima, Malva borealis, Helianthus annuus, Heterotheca grandiiflora, Erigeron canadensis, Chenopodium ambrosioides, Eurotia lanata, Triesthoma lanceolatum, Nemocaulis Nuttallii, Pterostegia drymarios, Lastarriae chilensis and Eriogonum Thurberi. The more succulent forms are commoner on the more alkaline sections of the mesa and the others on the less alkaline soils. Both types tend to
assume a spreading habit. Elsewhere Adenostoma fasciculatum, Prunus ilicifolia, the bushy Pentstemon antirrhinoïdes, Calochortus Plummerae and Yucca Whipplei abound.

Chaparral Formation. Interior southern California is covered with shrubs and trees scattered in open order over plain, hillside and valley. In places (San Diego County) the chaparral consists of *Quercus Engelmannii* which stretches in belts across the hills with *Quercus agrifolia* in park-like growths. The brush or chaparral is continuous about the base of the San Gabriel Mountains forming thickets far denser and higher than on any area in the neighborhood of the San Bernadino and San Jacinto ranges. In such localities *Artostaphyllos manzanita* and *Ceanothus divaricatus* form an arborescent growth. The common height of the chaparral at middle elevations on the slopes varies from 3 to 4 feet. In the canyons 12 or 14 feet and above the 6,000 feet contour line two feet is a common height. Above the 6,000 foot contour the brush occurs as an undergrowth in the forest.

There is a zonal arrangement of the various species of shrubs. The composition of the chaparral on the southern, eastern and western slopes of San Gabriel Mountains below the 5,000 foot contour is: Adenostoma fasciculatum (65 per cent), *Artostaphyllos manzanita* (3 per cent), A. tomentosa, Baccharis viminea, *Ceanothus crassifolius* (1 per cent), C. cuneatus, C. divaricatus (16 per cent), C. hirsutus, C. integerrimus, C. vestitus, Cercocarpus betulaeolius (15 per cent), C. ledifolius (1 per cent), Chrysoma pinifolia, Eriodictyon californicum, E. tomentosum, Fraxinus dipetala, Fremontia californica, Garrya Veitchii, Prunus ilicifolia, Quercus undulata, Rhamnus ilicifolia, R. rubra, Rhus diversifolia, R. trilobata, Ribes cereum, R. hesperium, Salix lasiandra, S. lasiolepis, Aplopappus interior and Styrax californica.

The composition of the chaparral on the southern, eastern and western slopes of the San Gabriel Mountains above the 5,000 foot contour is: Adenostoma fasciculatum (40 per cent), *Artostaphyllos manzanita* (6 per cent), A. patula (10 per cent), A. tomentosa, Artemisia tridentata, Castanopsis chrysophylla, *Ceanothus divaricatus* (20 per cent), Cercocarpus betulaeolius, C. ledifolius, Fremontia (Fremontodendron) californica, Prunus ilicifolia, Quercus undulata (15 per cent). The chaparral on the northern declivities is very thin and scattered.

In the **San Bernadino Mountains** the height of the chaparral varies from 3 to 10 feet. It covers all the arid and semiarid lands excepting the areas of the piñon pines. On the Mohave Desert side the brush is in open formation. The chaparral above 4,800 feet exists mostly as underbrush in the forest. The chaparral on the southern and western slopes resembles that of San Gabriel Mountains.

The following species occur in the brush thickets of the San Bernadino range on the eastern slopes below the 5,000 foot contour: Adenostoma fasciculatum (5 per cent), *Artostaphyllos glauca*, A. tomentosa, *Ceanothus cuneatus* (2 per cent), C. divaricatus (5 per cent), C. pinetorum, C. vestitus, Cercocarpus betulaeolius (8 per cent), C. ledifolius (10 per cent), *Juniperus californica* (15 per cent), Quercus undulata (3 per cent) and agaves, cacti and yuccas (50 per cent). If a division be made on the eastern slope at the 3,500 foot contour, the composition of the chaparral would stand:

San Jacinto Mountain is completely encircled by the chaparral (Upper Sonoran Zone of Merriam) which extends from its base to altitudes ranging from 3,000 to 7,000 feet; the upper limit is extremely irregular. Below the 5,000 feet contour on the western side, the growth is quite uniform, broken only by thin lines of oaks, cottonwoods and sycamores, which follow the courses of the streams. Above 5,000 feet the chaparral is not uniform.

Below 5,000 feet on the western slopes occur Adenostoma fasciculatum (50 per cent), A. sparsifolium (25 per cent), Arctostaphylos glauca, A. manzanita, Artemisia tridentata, Baccharis viminea, Ceanothus crassifolius, C. cuneatus, C. divaricatus (8 per cent), C. betulaeformis (1 per cent), Chrysoma pinifolia, Encelia farinosa, Erigidietyon californicum, E. tomentosum, Garrya Veatchii, Lycium Andersonii, Pentstemon antirrhinoides, Phluea sericea, Prunus ilicifolia, Quercus undulata (9 per cent), Rhamnus crocea, R. ilicifolius, Rhamnus rubra, Rhus diversiloba, R. ovata, R. trilobata, Ribes sanguineum and Simmondsia californica.

Below the 3,500 contour on the eastern slope of San Jacinto Mountains occur Ceanothus cuneatus, C. pentorum, Larrea mexicana, Dendromecon rigidum, Isomeris arborea, Juniperus californica (60 per cent), Purshia (Kunzia) glandulosa (3 per cent), Quercus undulata (8 per cent). The following herbs are characteristic of this belt: Dicentra chrysanthi, Echinocystis macrocarpa, Eschscholtzia californica, Lathyrus violaceus, Hosackia (Lotus) glaber, Pentstemon antirrhinoides, P. spectabilis, Senecio Douglasii and Erizogonum fasciculatum.

The chaparral 2) as it occurs at the base and surrounding the San Gabriel, San Bernardino and San Jacinto mountains is such by reason of climatic conditions. It does not owe its origin to the destruction of pre-existent forest and subsequent deficient reforestation. The shrubs which compose it are such as are adapted to semiarid environments and if at any time in the past forests covered the chaparral areas, it was at a period so remote that no trace of such forests exist at the present time.

2. Forest Formations.

The forest growth in the San Gabriel, San Bernardino and San Jacinto mountains presents three general types, namely, the semiarid, subhumid and humid.

Semiarid Forest Belt. The principal species of the semiarid type in the San Gabriel Mountains are: Alnus rhombifolia, Cercocarpus betulaeformis, C. ledifolius, Fremontia californica, Juniperus californica, Pinus attenuata, P. Coulteri, P. monophylla (4 per cent), Platanus racemosa, Pseudotsuga macrocarpa (80 per cent), Quercus californica (= Q. Kelloggii), Q. chrysolepis, Q. Wisiizeni and Yucca arborescens. The forest of the semiarid tracts of the San Bernardino Range is essentially composed of stands of Pinus monophylla. — The thin lines and groups of trees of other species which occur

1) Hall, H. M.; See Bibliography p. 76.
2) Leiberg, J. B.; See Bibliogr. p. 76; Barber, John H.; A Glimpse of the San Gabriel forest Reservations, The Forester IV: 240.
on the western and southern slopes in the chaparral formation are due to local conditions of moisture supply, such as streams, springs, etc.

The species which enter into this type of forest are below the 6,500 foot contour and their percentages: Cercocarpus ledifolius (as tree, Juniperus californica (as tree 4 per cent), Juniperus occidentalis (8 per cent), Pinus monophylla (2 per cent) and Yucca (2 per cent), while above the 6,500 foot contour the following trees are found: Abies concolor (10 per cent), Cercocarpus ledifolius (15 per cent), Juniperus occidentalis (25 per cent), Pinus monophylla (38 per cent), Pinus ponderosa (10 per cent), with yuccas and scattering oaks forming two per cent.

The composition of this type of forest in the San Jacinto Mountains is on the eastern slope where the piñon belt (Pinus monophylla Faecies) begins at an elevation of 2,500 feet: Pinus monophylla (99 per cent), Fraxinus velutina (= F. pistaciaefolia), Populus trichocarpa, Quercus californica (Q. Kelloggii), Q. chrysolepis, Salix lasiandra and Yucca arborescens, while on the southern and western slopes are found Pinus monophylla (9 per cent), Pinus quadrifolia (90 per cent), Quercus chrysolepis, Q. Wisioleni. Populus trichocarpa, P. Fremontii and Salix lasiandra. Between the 3,500 foot and the 4,800 foot contour lines the stands attain their maximum density. On the San Jacinto range the growth thins out and soon ceases above the 4,800 foot contour.

Subhumid Forest Belt. The second type of forest covers subhumid tracts. The growth is open and park-like, consisting in the San Gabriel Mountains between the 5,500 foot and the 9,000 foot contours of Abies concolor (25 per cent), Libocedrus decurrens (3 per cent), Pinus attenuata, P. Coulteri, P. flexilis (1 per cent), P. Lambertiana (6 per cent), P. monophylla, P. ponderosa (20 per cent), Pseudotsuga macrocarpa (40 per cent). In the San Bernardino Range the subhumid type is best developed between 5,000 and 9,500 feet and it is of an open character. The composition of the forest between the 3,000 foot and the 6,000 foot contour is formed by: Abies concolor (6 per cent), Pinus ponderosa (61 per cent), Pseudotsuga macrocarpa (14 per cent), Quercus (3 species) and other trees, while between 6,000 and 8,500 feet occur Abies concolor (30 per cent), Libocedrus decurrens (4 per cent), Pinus Coulteri, P. Lambertiana (8 per cent), P. Murrayana (1 per cent), Pinus ponderosa (52 per cent), occur with Pseudotsuga and oaks (Quercus californica, Q. chrysolepis 3 per cent). The oaks thin out and disappear at 8,000 feet, as do the alders, sycamores and willows at short distance above the 6,000 foot contour line.

Pinus ponderosa Belt. In the San Jacinto Mountains the Pinus ponderosa type of forest is developed between 5,000 and 9,000 feet. Between the 6,000 and 8,500 foot contours the following trees are found: Abies concolor (30 per cent), Libocedrus decurrens (8 per cent), Pinus Lambertiana (25 per cent), P. Murrayana (5 per cent), P. ponderosa (30 per cent), Quercus californica (= Q. Kelloggii), Q. chrysolepis and Cercocarpus ledifolius.

This forest is largely free from undergrowth, but we find in the higher valleys Symphoricarpos Parishii, Pentstemon Rothrockii, and in the lower part of the pine belt are Aretostaphyllos Pringlei var. drupacea, Ceanothus integerrimus, Rhamnus californica var. tomentella, Cornus Nuttalii, and others. In the last end of Tahquitz Valley in the San Jacinto Mountains patches of Amorpha hispidula and Garrya Fremontii are not rare beneath the pines. The herbaceous vegetation is more abundant and varied in the pine woods. Here grow Pentstemon labrosus, Monardella lanceolata, Streptanthus campestris, Arabis arcuata, Euphorbia Palmeri, Frasera Parryi, Hosackia nevadensis and Pedicularis semibarbata.
Humid Forest Belt. Lying above the 9,000 foot contour line in the San Gabriel Mountains on a few summits and slopes occur Abies concolor (35 per cent), Pinus flexilis (15 per cent) and Pinus Murrayana. These trees form an open forest, with scanty and low underbrush, which is broken by bare, rocky expanses. This humid type of forest in the San Bernardino Mountains between elevations of 8,500 feet and 11,500 feet is composed of Abies concolor (45 per cent), Libocedrus decurrens (2 per cent), P. Murrayana (35 per cent) and other pines. This belt represents in its relative position, if not wholly in species, the alpine-fir type of the forests north of California.

Between 9,500 and 11,500 feet the following is the composition of the forest: Abies concolor (8 per cent), Pinus flexilis (50 per cent), P. Lambertiana (1 per cent), P. Murrayana (40 per cent), P. ponderosa (1 per cent).

In the San Jacinto range at 9,500 feet the following trees mostly disappear: Abies concolor, Libocedrus decurrens, Pinus Lambertiana, P. ponderosa. The sugar pine, Pinus Lambertiana persists as low, stumpy trees two to three hundred feet above 9,500 feet. At this elevation, Pinus Murrayana and P. flexilis begin to grow. The increase rapidly in numbers and above 9,800 feet, they constitute nearly the entire arboreal growth.

The greater part of this belt corresponding with the Canadian and Hudsonian zones of Merriam is characterized besides the trees previously mentioned by the presence of Carex Hallii, C. nebraskensis, Montia Chamissonis, Poa alpina, Silene Parishii, Stellaria (Alse) crispa and Viola blanda.

3. Meadows, Stream Plants and Alpine Crests.

Meadow Formation. Meadows of various sizes are scattered over the San Jacinto Mountains between the altitudes of 4,000 and 10,000 feet. Wherever the water rises to the surface, the coniferous forest is replaced by a meadow.

The vegetation of the smaller hillside meadows consists largely of true grasses such as Agrostis tennis and Sporobolus gracillimus which predominate with a species of Bromus on the margins.

Associated with the grasses, according to Hall, are, Sisyrinchium bellum, Mimulus primuloides, M. Langsdorffii var. Tilingii and Rumex salicifolius. Wire grass Juncus mexicanus enters largely into the composition of certain meadow floras and where the water rises nearer the surface, appear Agropyrum caninum, Elymus triticoides and Polypogon monspeliensis. In boggy hillsides meadows between 6,000 and 9,000 feet grow Agrostis tenuis, Phleum alpinum, and where the soil contains but a moderate amount of moisture, Elymus glaucus and Bromus marginatus, while Glyceria nervata lines the creeks below 7,500 feet altitude. In Round Valley, at an altitude of 9,000 feet occurs a meadow unlike others, for here under the same edaphic conditions Carex Hallii and C. nebraskensis replace the grasses except Poa alpina.

The streams in Strawberry and Onstatt valleys, San Jacinto range, are lined with a Riparian Formation of Alnus rhombifolia, Salix lasiolepis, S. laevigata, and in the canyons Rhododendron (Azalea) occidentale and Cornus pubescens. Many herbs are found in the moist soil and under deep shade along streams: Lilium Parryi, Habenaria leucomystachys, Epipactis gigantea and Silene amplexicaulis, Aquilegia truncaata, Castilleja miniata, Epilobium glaberrimum and Hosackia oblongifolius.

There exists on San Jacinto Mountain under xerophytic conditions with low temperature and dry soil in the crevices of rocks a Crest Formation where

the moisture drains rapidly away. *Cercocarpus ledifolius, Spiraea (Holodiscus) discolor* var. *dumosa, Philadelphus scabrosus, Aplopappus cuneatus, Ceanothus cordulatus* and *Arctostaphylos patula* grow in such situations besides *Eriogonum saxatile, Silene Parishii, Gilia pungens* and *Hieracium horridum*.

Alpine Formation. The most southern latitude at which the true boreal alpine plants exist in North America is on San Jacinto Mountain, where are found a few characteristic species growing along the banks of perpetual snow in the cool, shaded canyons, which descend the north side of the main peak at altitudes of between 10,000 and 10,800 feet.

The plants of the summit of San Jacinto Peak (10,700—10,805 10,987) feet altitude = 3290 m) are: *Aquilegia trunca (alpine form), Carex Preslii, Castanopsis (Castanea) chrysophylla, Draba corrugata, Heuchera rubescens, Holodiscus discolor* var. *dumosa, Monardella odoratissima, Oxyria digyna, Pedicularis semibarbata, Pinus flexilis, P. Murrayana, Ranunculus Eschscholtzii, Ribes cereum, R. lacustre var. molle, Silene Parishii, Spraguea umbellata, and Trisetum subspicatum*.

We know that on Grayback Peak *Pinus albicaulis* makes its appearance at 11,500 feet and continues alone nearly to the summit 11,725 feet (= 3574 m) above sea-level. The summit of Grayback is flat and consists of porous decomposed granite unfavorable to the growth of plants. San Jacinto is more fortunate having on its precipitous northern face some steep, shaded canyons preserving perpetual snows. Nevertheless, the flora of these high peaks is scantier than their altitude would lead one to expect. A single species *Ranunculus Eschscholtzii* has been found on both peaks, * Arenaria (Alsine) verna* var. *hirta* and *Antennaria alpina* have been collected on Grayback, while from San Jacinto *Carex Preslii* and *Oxyria digyna* have been added to the short list.

Chapter V. **Mexican Subtropic Zone and Mountain Regions.**

Within this zone are several regions which have been included in the temperate zone. The distinction is somewhat difficult to draw between the flora of temperate and tropic climates, because of the fact that many plants range north or south of their usual limits by taking advantage of mountain summits, or river valleys.

1. **Sonoran Desert Region.**

This comprises the desert region lying contiguous to the valleys of the lower Rio Grande and Gila rivers and immediately surrounding the shores of the Gulf of California. The geology, physiography (ante p. 113) and climatology (ante p. 148) have been described previously in detail. Three districts are recognizable and are described below.

1 Hall, H. M.: Loc. cit. page 33.
2 Parish, S. B.: See Bibl. p. 81.
A. Yuman District.

This district includes the Colorado Desert, which occupies a great valley, or depression, 180 miles (280 km) long and 30 to 50 (50—80 km) wide, the valley of the Gila River and the country south of the plateau coincident with the New Mexican-Arizonan deserts previously described (ante p. 574). It includes the delta country of the lower Colorado River. The vegetation of these deserts as noted before (p. 585) is of the most varied components. THORNEER has tabulated the various desert species from the standpoint of habitat and vegetation forms, and if one views the desert landscape consisting of Tumamoc Hill, where the desert laboratory is situated, the mesa-like mountain slopes, the floods plains about Tucson, Arizona, he sees the plants species numerically as follows: trees 15; shrubs 39; woody twiners 5; dwarf shrubs 17; half shrubs 32; perennial herbs 108; biennial herbs 3; long-lived annual herbs 57; winter annuals 122; summer annuals 44; algae 7, a total of 449 distinct species.

Desert Formation. The woody vegetation of the desert in the vicinity of Tucson, Arizona consists of Larrea mexicana (= Covillea tridentata), several species of Opuntia, Ephedra trifurca, Prosopis juliflora, Acacia Greggii, Cercus (Carnegica) giganteus (upon the foothills), Parkinsonia microphylla, P. Torreyana, Fouquieria splendens, and two species of Lycium, such as L. Fremontii.

A large number of species with perennial root-stocks and bulbs push up shoots, leaves and flowers under the stimulus of the rising temperature and moisture supply. Such vegetation awakens in January, blooms early in February and matures fruit in March and April. Such winter perennials are Brodiaea capitata, Anemone sphenophylla, Pentstemon Wrightii, P. Parryi, Hilaria mutica, Cassia Covesii, Franseria deltoidea, Encelia farinosa, Covillea tridentata, Baileya multiradiata, and Calliandra eriophylla. Among the winter annuals near Tucson which spring from germinating seeds in the wet winter season and soon form fruit and seed for the next growth are species of Astragalus, Harpagoneflla Palmieri, Pectocarya linearis, Plantago, Phacelia, Amsinckia, Daucus, Bowlesia, Eremiastrum, Mieroseris, Eschscholtzia mexicana, according to the observations of Mac DOUGAL. The spinose and succulent forms of the early, dry summer are Echinocereus fendleri, Opuntia versicolor, O. spinosior, O. fulgida, O. Bigelowii. The hillsides are yellow with the flowers of Parkinsonia microphylla and P. Torreyanus, while the desert here is characterized also by summer perennials, summer annuals and plants of the dry after summer.

River Bank Formation. The banks of the Agua Fria River and its tributaries in the desert region of central Arizona were in many places covered with large clumps of Prunus demissa, Rhamnus californica, Platanus racemosa, Fraxinus velutina (= F. pistaciaefolia), Juglans californica, covered with vines of Vitis arizona. In many places, the river bed was a complete tangle of Fallugia paradoxa, Baccharis glutinosa and salicina.

Chaparral Formation. A chaparral of oaks extends back to the mountains. It is composed of Quercus undulatus mixed with Arctostaphylos tomentosa, A. nevadensis, A. pungens. Acaea Greggii, Zizyphus lycioides, while underneath were growing Hedcoma Drummondii, Verbena ciliata, Mentzelia Wrightii. Hilaria rigida, Bouteloua racemosa, Muhlenbergia texana, and several species of Eriogonum. Here and there were Yucca baccata and Agave Parryi.

Canyon Formation. The canyons which cut into the Colorado Plateau and are open to the desert below are distinguished by the presence of Quercus Emoryi, Alnus oblongifolia, Platanus racemosa and on the steep slopes Juniperus californica var. utahensis, F. pachyphloca, Pinus monophylla and Canotia holocantha. Higher the canyon sides are lined with Aquilegia chrysantha associated along the banks with Nicotiana attenuata, N. trigonophylla, Minimus luteus, and many perennials. Higher still where the canyon stream is shut in by almost perpendicular walls of rock, grow Minimus cardinalis, Mirabilis multiflora, Heuchera parviflora and Pteris aquilina in large masses.

The Foothill Formation consists of an association of Larrea mexicana (= Covillea tridentata), which grows west of the Colorado river bottom in the gravel hills with Fouquieria splendens, Ohneya tesota, Prosopis juliflora (occasional) and Parkinsonia Torreyana, Agave, Nolina, Dasylirion, Opuntia species and Euteria lanata. If we ascend the foothills, on which grow Juniperus monosperma and Pinus edulis, during the dry season, we encounter Dicoria Brandegei, Oxytenia acerosa ¹), Tetradyinia canescens, Yucca baccata and angustifolia, Mamillaria vivipara, Cereus Engelmannii, Opuntia basilaris, Ephedra antisiphilitica, while in the wet season are found Lupinus capitatus, Mirabilis multiflora, Riddelia tagetina, Zinnia grandiflora, etc.

The natural cattle ranges of the valleys and valley slopes were occupied by Eriochloa polystachya, Chloris elegans, Eragrostis neo-mexicana, Panicum obtusum, Chaetochloa composita, Bouteloua oligostachya, B. polystachya, Andropogon Torreyanus, Hilaria mutica and H. Jamesii associated with Plantago fastigiata, while the most important grasses on the open mesa range are Hilaria mutica, H. Jamesii, H. cenchroides, Bouteloua oligostachya, B. polystachya, B. eriopoda, B. curtipendula, Pappophorum Wrightii and in depressions where the water accumulates after summer rains are Chloris elegans, Eriochloa polystachya, Panicum obtusum, P. colo- num, Andropogon Torreyanus, Eragrostis neo-mexicana. The grasses found on the sandy portions of the river bottoms are: Sporobolus cryptandrus and Chaetochloa composita.

The mountain range presents a characteristic appearance because the higher elevations receive a more liberal supply of moisture. Here without forming a sod are found Andropogon contortus, A. leucopogon, Elyonurus barbiculmis, Bouteloua bromoides, B. oligostachya, B. curtipendula, Triodia mutica, Eragrostis lirigens, Muhlenbergia gracillima, M. Porteri and Epicampes rigens.

Desert Sand Hill Formation. On dry sand hills of the desert grow Coldenia Palmeri, Psathirotes annua, Hyptis Emoryi, Triodia pulchella, Erio- gonum inflatum, Chorizanthe rigida, Mamillaria barbata. On stony declivities are found Larrea, Yucca brevifolia, Atriplex canescens, Opuntia ramosissima and Echinocactus cylindraceus.

The alkali playas, or flats, are characterized by Allenrolfea (Spirostachys) occidentalis and Suaeda, Distichlis spicata, Phragmites phragmites, Juncus Cooperi. In some of the moister places occur Scirpus Olneyi and Tessaria borealis.

To be considered here is a palm Washingtonia (Neowashingtonia) fillifera which grows in groves in the canyons formed by the timberless spur which juts eastward from the San Bernardino Mountains 1 in broad deltas of gravel. The palms grow on clay soil incrusted with alkali, but their roots receive the water which falls, as rain, on the mountains sinks into the earth and percolates down to the foot of the hills. These areas are marked by the presence of plants characteristic of alkaline springs. Besides the palm occur Prosopis juliflora, Distichlis spicata, Epilobium giganteum, Parosela spinosa, Peucephyllum Schottii. Elsewhere on this desert grow Yucca mojavensis, Opuntia Bigelowii, O. echiocarpa, O. basilaris and Audibertia (Rhamna) poly-stachya.

Delta Sand Mound Formation. The arid region of the Colorado Delta extending southward from the Gila River consists principally of long gentle slopes or sandy gravelly plains rising gradually toward the interior and broken here and there by a series of low mountain ranges. Mounds of sand are found held together by the roots of Ephedra, Larrea and other shrubs 2. In addition to the few herbaceous types which arise during the season favorable for their growth, the principal types are perennials with spinose branches and reduced deciduous leaves such as Franseria albicaulis, Lupinus mexicanus, Abronia villosa, Astragalus Vaseyi, Plantago scariosa, Gilia Schottii, Stillingia annua, Asclepias subulata, Hesperocallis montana (with perennial bulbs) and Fouquiera splendens.

The delta consists of an alluvial plain not more than 12 feet (4 m) above the low water mark. The banks of the river are subject to erosion and are constantly shifting. Almost pure associations of willow and poplar, Populus mexicana, cover extensive areas. Large areas are also covered by Pluchea sericea, mesquite Prosopis velutina) and screw-bean (P. pubescens). Phragmites fringe the channel in the upper part of the delta and two or three species of Atriplex are found in sections where the action of the river prevents the establishment of woody perennials of larger size. Typha angustifolia grows in the lower part of the delta where the river is affected by the spring tides in dense masses lining the shore for many miles. The willows extend farthest toward salt water. Beyond these are mud plains covered with salt grass (Distichlis spicata) and Cressa truxillensis with small clumps of Atriplex, Prosopis velutina and P. pubescens.

In other places, according to Mac Dougall, 3 the arrow-weed (Pluchea sericea), quelite (Amaranthus Palmeri), wild hemp (Sesbania macrocarpa), salt-grass and wild rice Uniola Palmeri occur in considerable density. Filling the spaces between the colonies of these plants grow the mesquite and screw-bean Phragmites, Scirpus, cow pumpkin (Cucubita palmata) and others.

B. Sinaloan District.

This district occupies that part of Mexico lying between the Gulf of California and the Sierra Madre Mountains and extending south almost to the twenty fifth degree of latitude, just north of Mazatlan. The prevailing

vegetation is perennial and of slow growth, stunted in aspect. It is not distributed uniformly, but arranged in separate tufts or clumps, gathering into a nearly continuous mantle in wetter spots. The arborescent vegetation is of two types, viz., (1) trees and shrubs allied to those of humid lands, but modified to fit arid conditions; and (2) distinctive forms, evidently the result of desert conditions. The prevailing tree is *Prosopis juliflora* which on the alluvial fan of the Rio Sonora grows with remarkable luxuriance, dominating elsewhere the plains and pushing well up into the canyons. Associated with it are *Olneya tesota*, *Acacia Greggii* and on Tiburon Island in similar associations occurs *Parkinsonia Torreyana*. The ocotilla *Fouquieria splendens* is also abundant in all places, except rocky slopes, while the higher plain slopes show such pulpy stemmed shrubs as *Jatropha cardiophylla*, *J. spathulata* and *Bursera microphylla*.

Along the lower stretches of certain rivers grow *Guaiacum Coulteri* and *Jacquinia pungens* with *Caesalpinia gracilis* on the flanks of gorges in the shelter of more vigorous shrubs, as likewise *Sebastiana bilocularis*. The lower extremities of sand washes, wet only in times of flood, are characterized by *Hymenoelea monogyna* which shrinks to stunted tussocks after a year or more of drought. *Phragmites communis* forms cane brakes also here about all permanent waters 1).

The coasts of Sonora both insular and mainland are skirted by strips of shrubbery maintained by fog moisture. Along the mountainous parts of the coast the strip is narrow and indefinite, but on the plains, it extends inland for several miles. *Celtis pallida*, *Maytenus phyllanthoides* and *Frankenia Palmeri* are characteristic shrubs. *Cercus (Pachycercus) Pecten aboriginum* (see Fig. 9 p. 297), *Larrea (Covillea)* are found in the neighborhood of Guaymas. The salt waters of Guaymas Harbor and other bays along the coast are characterized by *Rhizophora mangle* (see colored map) and *Avicennia nitida* in proximity to such desert plants as *Cereus Thurberi* and *C. (Pachycercus) Pringlei* 2). — On many of the higher plain slopes especially inland there are found pulpy stemmed shrubs and trees such as *Jatropha* and *Bursera*, on others *Yucca*, *Nolina*, *Dasylirion* with agaves in evidence.

The mountainsides near the Gulf of California show the presence of *Acacia Willardiana* with which is associated *Ficus Palmeri* springing from the walls and crests of cliffs along rocky barrancas near a permanent water supply. Interspersed among the larger trees and spreading over the intervening spaces particularly in the drier and more saline spots grow thorny shrubs of the genera *Cassia*, *Microstegium*, *Celtis*, *Randia*, *Steganoperma*, *Krameria*, *Frankenia* and *Acacia*, while considerable tracts are sparsely occupied by *Larrea*. Various cacti are intermixed with the above plants viz., *Cereus giganteus*, *C. Pringlei*, *C. Thurberi*, *C. Schottii*, *Echinocereus*.

cactus Wislizeni, E. Lecontei 'three to six feet high', Opuntia fulgida. At an elevation of 800 feet on the plain in which stands Torres, the most conspicuous vegetation is composed of Olneya tesota, Cereus (Lemaireocereus) Thurberi, C. (Lophocereus) Schottii, Parkinsonia microphylla, Guaiacum Coulteri, Acacia farnesiana, Randia Thurberi and several malpighiaceous and other woody vines which associate themselves with clumps of the trees and shrubs. Maximowiczia sonorae, a cucurbitaceous tendril-bearing plant with enormously thickened root and stem base occurs beneath some supporting shrub. Westward from Torres, according to COVILLE and MAC DOUGAL, the line of hills is approached beyond which the country drops toward the coastal plain.

C. Lower California District.

1. The Peninsular Territory.

Lower, or Baja California is a peninsula situated between the Gulf of California on the east and the Pacific Ocean on the west. Phytogeographically the peninsula may be looked upon as a distinct district, its flora having exceptionally strong affinities with that of Sonora, for out of 732 species, 500 species are North American. At one time the peninsula may have been an island separated from the northern mainland by a wide sheet of water for some distance south of the mouth of the Colorado River mud flats and saline plains exist, south of which come the volcanic and granitic mountains.

This district, which has a wet season (June to September), and a dry season, is quite thickly covered with large bushes, small trees and an abundance of climbing and twining plants. Certain trees increase in size in going southward, viz., Lyrocarpa Xanti, Apopappus spinulosus, Aster spinosus, Bebbia juncea, while Atanisqua emarginata, Schoepfia californica and Maytenus phyllanthoides decrease in size. Prosopis juliflora is also abundant. The extreme southern, or cape region of lower California is characterized by the following cacti: Mamillaria Goodridgii, Cereus pecten aboriginum (see Fig. 9 p. 297), C. Pringlei, C. (Wilcoxia) striatus, C. (Lemaireocereus) gummmosus, C. Schottii, C. Thurberi, Opuntia prolifer, O. rotundifolia 1).

The spring-flowering plants are Abutilon californicum, Caesalpinia placida, Acacia farnesiana, A. Wrightii, Cereus pecten-aboriginum, C. Pringlei, C. Schottii, C. Thurberi, Diodia erassifolia, Plucheia odorata, Buddlea crotonoides, Samolus ebracteatus, Euphorbia Xanti, while Perityle erassifolia, Fouquieria spinosa, species of Justicia, Beloperone, Calliandra, Dalea, Tephreria, and Viguiera flower throughout the entire year. The plants here mentioned come into flower with the advent of the rainy season: Desmodium, Lopezia, Begonia, Oenothera, Mitrocarpum, Stevia, Valeriana, Cyclanthera, Carminatia, Baecharis, Evidens, Verbesina, Heterospermum, Dysodia, Tagetes, Buchnera, Clevelandia, Mirabilis and Dieliptera 2).

The sandy and gravelly lower coastal slopes near San Felipe Bay furnish suitable conditions for Lycium Torreyi, Dalea spinosa, Asclepias subulata (in clumps), Argyrothamnus serrata, Iberovillea tonella, Croton californicus, Lupinus mexicanus and Frankenia Palmeri. The low alkaline pockets reached by the spring tides furnish suitable edaphic surroundings for Spirostachys

1) BRANDEGEE, T. S.: Cactaceae of the cape Region of Baja California. Zoe II: 18; Field Notes on the Plants of Baja California, Zoe II: 145.
2) BRANDEGEE, T. S.: The Distribution of the Flora of the Cape Region of Baja California Zoe III: 223—231.
occidentalis). The sands of the seashore from Todos Santos to San Jose on the Pacific side of the most southern extremity of the peninsula abound in Euphorbia leucophylla and Ipomoea pes-caprae, while elsewhere as beach plants grow Dalea maritima, Perityle crassifolia, Palfoxia arenaria, Rhachidiospermum mexicanum, Hofmeisteria fasciculata and Stegnosperma halimifolia. The lagoons near La Paz are characterized by sub-tropical maritime brackish-water plants, such as Conocarpus erectus, Avicennia nitida, Ipomoea acetasaeofilia, Laguncularia resemosa, Sesuvola Plumieri, Sanolus ebracteatus and Centunculus minimus. At an elevation of 3,000 feet (1000 m), southwestern of San Felipe Bay, the granite slopes support a sparse vegetation of Bursera microphylla, Asclepias albicans, Eriogonum inflatum and species of Mammillaria, Ephedra, Yucca, Agave and Opuntia. Two palms are abundant along streams on the eastern slopes of the higher mountains, viz., Washingtonia sonorae and Erythea arctuata.

The most interesting feature of the district however, consists in the great number of mud volcanoes covering an area of about two square miles on the southern shore of Volcano Lake. These are in an active state and the soil near them is highly charged with saline matter and sulphur. Sesuvium portulacastrum is abundant in places, but extensive areas here are absolutely devoid of vegetation.

San Pedro Martin Mountain, situated about 125 miles southeast of San Diego, is an extensive and elevated plateau, having an elevation of 7—8000 feet and traversed by numerous rocky ridges 2000 or 3000 thousand feet higher. Northern plants, favored by the climate, which is cold in winter and with a rainfall greater than in the lowlands reach the middle portion of Lower California. Trees of good size are found almost over the whole plateau. Pinus ponderosa var. Jeffreyi forma peninsularis is the most common, but on the ridges a few sugar pines (Pinus Lambertiana) and along streams some cedars (Libocedrus decurrens) keep them company. In a few localities Populus tremuloides, Cupressus guadalupensis, Abies concolor can be found, but they are not common and at lower elevations Pinus Parryana is almost the only tree. Oaks, (Q. agrifolia, Q. Wisiízeni, Q. chrysolepis, Q. grisea, Q. dumosa), are plentiful, Garrya, Ceanothus cordulatus and Rhamnus californica are common, with plants of genera which belong to a temperate climate and are found only on the high mountains.

2. The Insular Territories.

The flora of the islands of the coast of lower California is of considerable interest. San Pedro Martin Island has three endemic species: Hofmeisteria laphamioides, Pelucha trifida and Perityle Emoryi. Raza Island is exceptionally rocky, except a few low areas. Upon this island grow Opuntia tunicata, O. echinocarpa, Sesuvium portulacastrum, Salicornia ambigua, Atriplex dilatata and A. insularis. The flora of Carmen Island, one of the largest, is almost identical with that of the peninsula and may be neglected here.

peculiar to Magdalena and Santa Margarita Island are Gongylodorus fruticulosus, Mamillaria Halei, Agave Margaritae, Brickellia hastata, Viguiera subincisa. — Cedros (Cerros) Island is the largest of the Mexican coast islands. Here grow Pentstemon cedrosensis, Mentzelia cordata, Gilia Veatchii, Harfordia fruticosa. On the slopes of the mountain are found such shrubs as Mimulus glutinosus, Sphaeralcea fulva, Ocnohera arborea and Juniperus cerasianus, while the mountain summit is adorned with open groves of Pinus muricata associated with Arctostaphylos bicolor, Eriogonum molle and Senecio cedrosensis. The elephant tree inhabits all parts of the island, but more especially the arroyos or ravines. In all 135 species of plants are known from this island and many of them are peculiar.

The San Benito islands lie seaward some twenty miles west of Cedros Island and consist of three islets. Only a limited number of plants are known from the islands and comparing these with other islands nearby, it is found that the flora of the San Benitos shows a closer relation to that of Guadalupe Island (see ante p. 623), one hundred miles seaward, than to Cedros Island near at hand. The following are the plants recorded:

- Eschscholtzia ramosa Greene.
- Lepidium lasiocarpum Nutt.
- Lavatera venosa Wats.
- Frankenia Palmieri Wats.
- Hossackia maritima Nutt.
- Cotyledon linearis Greene.
- Euphorbia benedicta Greene.
- Calandrinia maritima Nutt.

<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atriplex deltata Greene.</td>
<td>Perityle Greenei Rose.</td>
</tr>
<tr>
<td>Mesembryanth. crystallinum L.</td>
<td>Ambigua A. Gray.</td>
</tr>
<tr>
<td>Encelia conspersa Benth.</td>
<td>Trixis angustifolia DC.</td>
</tr>
<tr>
<td>Viguiera lanata A. Gray.</td>
<td>Lycium californicum Nutt.</td>
</tr>
<tr>
<td>Hemizonia Streetsii A. Gray.</td>
<td>Plantago patagonica Jacq.</td>
</tr>
<tr>
<td></td>
<td>Brodiaea capitata Benth.</td>
</tr>
</tbody>
</table>

2. Western Sierra Madre Region.

The mountains of this region run in a general northwest and southeast direction, but are not a uniform chain, being broken into a confused mass of peaks and ranges separated from each other by deep valleys and impassable canyons and barrancas.

Formations in Central Sierra Madre Mountains. Journeying on the pine clad highlands, the traveller finds nothing to remind him that he is in southern latitudes except an occasional glimpse of an Agave between the rocks and the rarer cactaceous species. Species of Opuntia, Echinocactus and Mamillaria are found here and there, but form no conspicuous feature in the higher altitudes of the sierra.

1. Hills and Table Lands.

Pine-Oak Forest Formation. The hills and table lands are pine covered at an approximate elevation of 7,400 feet. The pine forests form a pure growth of an open character, but here and there are clumps of scrub oak, composed

on Alamos Mountain of *Quercus grisea* (= *Q. undulata*), *Q. Californica* (= *Q. Kelloggii*) and on the oaks *Tillandsia recurvata*.

Low ranges, or the bluffs of dry ravines, or of watered valleys are covered with *Quercus grisea*, (*Q. Emory having been left behind*) associated with *Pinus chihuahuana* and more rarely *P. microphylla*. The most abundant tree of these forests next to *Quercus grisea* is *Pinus arizonica*, ranging through 3,000 feet of elevation from the valleys and canyons of the base to the highest summits, while *Pinus strobus* (= *P. ayacahuite*) is scatteringly distributed along canyons on high cool slopes. *Pinus cembroides* grows on the warmest and most arid slopes and on ledges with meager soil. *Juniperus pachyphloea* has an altitudinal range of 5,000 feet, attaining its full development in rich and watered canyons. On the driest crests of ridges near the summits, *Juniperus tetragona* occurs, while in better soil at still higher altitudes is *Juniperus occidentalis var. conjugens*, and *Pseudotsuga Douglasii* is found in high canyons associated with *Pinus arizonica* and *Abies concolor*.

Above these trees on the cool talus of cliffs grows *Populus tremuloides*. The sides and bottoms of wet canyons are characterized by *Quercus reticulata* with *Q. hypoleuca*, *Q. fulva*. Sparingly scattered over these mountains is *Arbutus salapensis*, while *Arbutus petiolaris* is confined entirely to the northern verge of ridges. Among the oaks the underbrush consists of *Ceanothus Fendleri*, *C. azureus*, *C. parvifolius* (on rocky hills), *Aureostaphylos engelmannii* with *Pinus cembroides*, *Spiraea discolor* var. *dumosa* about the ledges of the summits. At 8000 feet in the Tarahumara country pines cover the higher elevations in an uninterrupted forest and oaks the lower slopes of the mountains. *Pinus oocarpa* grows on the summit of Alamos Mountain.

Park Formation. Many of the valleys are park-like with a grassy sward with agaves interspersed and groups of fresh green trees pointing to places where the ground is wet or moist 2) during the dry season from January to June. Here are found species of *Helianthus* (10–12 feet high), *Salvia, Sambucus* and *Bambusa*, which forms a light green undergrowth, and along the smaller streams occur ash trees, alders, *madroña* and *Euonymus* with *Milium, Aquilegia, Thalictrum* and an *Amaryllis* with carmine red flowers, visited by humming birds. Species of *Viola, Vicia* and *Lupinus* grow in the pine forests at 7,400 feet.

The flora of the canyons and mountain water courses is composed of *Acalypha subviscida*, *Gouania domingensis*, *Vitis arizonica*, *Rhus Palmeri*, *Leucaena lanceolata*, *Sedum alamosanum* and species of *Sicyosperma, Stevia, Brickellia, Baccharis, Melampodium, Zexmenia, Tagetes, Salvia, Muhlenbergia*.

2. Forest Formations in higher elevation.

The Chiricahua, the Huachuca, the Santa Rita, the Rincon and the Santa Catalina Mountains form the northern extension of the Mexican Sierra Nevada Mountains into Arizona, and lying south of the great Colorado Plateau the presence of many Mexican trees unites these mountains, phytogeographically speaking, with the flora of Mexico proper. The greatest elevations are from 9,000 to 10,000 feet and good forest is not common below 7,000 feet.

2) Loomis, Carl: Unknown Mexico I: 408.

Harshberger, Survey N.-America.
Limestone cliffs in the Chiricahua Mountains are characterized by fine specimens of Morus celtidifolia, Quercus undulata, Bumelia spinosa, while along the wash from White River Canyon grew Chilopsis saligna, Salix nigra var. venulosa, S. longifolia var., Platanus Wrightii, Fraxinus velutina, Juglans rupestris. At the entrance to the canyon are Juniperus pachyphloea, J. monosperma, Quercus Emoryi and Alnus oblongifolia. The mountain slopes are characterized by large areas of scrub oak composed of Quercus undulata, Q. hypoleuca, Q. chrysolepis var. vaccinifolia and on the upper slopes among the pine Q. Gambelii and Q. reticulata. Yucca macrocarpa occurs throughout the south and central portions of the Chiricahua Mountains, while Yucca baccata grows on the east slopes and Y. elata on the flanking mesas. At higher elevations are found Pinus cembroides, P. chihuahuana and P. ponderosa. Pinus cembroides, covers with a rather dense forest, the highest slopes of these mountains, Abies concolor, Pseudotsuga Douglasii and Cupressus arizonica are not infrequent in canyons above 5,000 feet while Pinus reflexa grows on the summits. In some of the canyons are found Acer grandidentatum, Negundo aceroides and Prunus serotina. Cercocarpus parvifolius var. paucidentatus and Rhamnus Purshiana var. tomentella are frequent throughout the entire range, while large areas in the valleys are covered with a stunted growth of Prospis juliflora and Koebelina spinosa.

Over fifty-five species of trees are reported from the Chiricahua Mountains as follows:

Condalia obovata Hook.
Koeberlinia spinosa Zucc.
Rhamnus Purshiana DC.
 » Purshiana tomentella Benth.
Acer grandidentatum Nutt. var. (=Acer barbatum var. grandidentatum Sarg.).
Negundo aceroides Moench (= Acer negundo L.).
Sapindus marginatus Willd.
Acacia Berlandieri.
 » Greggii A. Gray.
Prosopis juliflora DC.
Parkinsonia Torreyana Wats.
 » microphylia Torr.
Eysenhardtia orthocarpa Wats.
Prunus serotina Ehrh.
Vauquelinia californica Sarg.
Cercocarpus parvifolius Nutt. var. paucidentatus Watson.
Cereus (Carnegiea) giganteus Engelm.
Opuntia arborescens Engelm.
 » fulgida Engelm.
Sambucus mexicana DC.
Arbutus arizonica Sarg.

Bumelia spinosa Wats. (= B. lanuginosa Michx. var. rigida A. Gray).
Fraxinus velutina Torr. (= F. pistaciaefolia Torr.).
 [Cav.]
Chilopsis saligna Don (= C. linearis Celtis mississippensis Bosc. var. reticulata Sarg.
Morus celtidifolia H. B. K.
Platanus Wrightii Wats.
Juglans rupestris Engelm.
Quercus Gambelii Nutt.
 » undulata Torr.
 » oblongifolia Torr.
 » grisea Liebm.
 » reticulata H. B. K.
 » chrysolepis Liebm. var. vaccinifolia Engelm.
 » Emoryi Torr.
 » hypoleuca Engelm.
 » longifolia Muhl. var.
Populus tremuloides Michx.
 » Fremontii Wats.

Cupressus Arizonica Greene.
Juniperus pachyphloea Torr.
> occidentalis Hook var. mono sperma Engelm.
> virginiana L.
Pinus reflexa Engelm.
> cembroides Zucc.
> arizonica Engelm.
> ponderosa Laws.

In the Santa Rita Mts. occur such herbs as Phacelia crenulata, Castilleja integra, Rumex hymenosepalus with such woody plants as Cereus phoeniceus, Fendlera rupicola while the descending slopes are covered with Astragalus mollissimus, A. missouriensis, A. humistratus, A. cobrensis, A. Shortianus and A. Nuttallianus. The canyons of the Huachuca Mountains have among other plants, the following: Ceanothus integerrimus, Vitis arizonica, Robinia neomexicana, Stevia Plummerae, S. serrata, Erigeron divergens (under bushes), Caesalia decomposita, Euphorbia montana, Guilleminnea densa (= G. illecebroides), Lilium Parryi, while on the canyon sides grow Cereus caespitosus, Opuntia arborescens, Baccharis pteronioides, etc.¹.

3. Chihuahuan Desert Region.

This phytogeographic region is coincident with the central Mexican tableland which stretches at a nearly uniform elevation of 7,500 feet for a distance of about a thousand miles, north and south. But the uniformity of this plain formed by the progressive and long-continued accumulation of detrital material is broken by barrancas, or enormous ravines, sinking hundreds, perhaps even a thousand feet into the ground and measuring several miles across. The climatic conditions, lack of rainfall, etc. render this plain an arid waste, or desert, where xerophytic, succulent plants (see Cactaceae Fig. 30) form the marked feature of the vegetation. Three types of succulent plants form the bulk of the xerophytic vegetation of the Chihuahuan desert region, viz., the cactus type, the yucca type and the agave type.

The country bordering the Rio Grande in Chihuahua and Texas is nearly destitute of trees, except in certain localities, as on the bottom lands of the Rio Grande and Rio Concho. The lowlands are thickly set with Prosopis glandulosa and along the arroyos grow Populus monilifera, or P. angustifolia, Celtis occidentalis, Juglans rupestris, Ungnadia speciosa, Guaicacum Coulteri, Larrea Mexicana and Fouquieria splendens ².

Chaparral Formations. These are best developed in trans-Pecos, Texas, and the same type is found in the northern part of the Mexican plateau. Compared with the Rio Grande chaparral (later to be discussed), the Mimoseae and Caesalpiniaeae form according to Bray less than ten per cent of the species, while Prosopis juliflora becomes a shrubby plant and a greater abundance of the Ephedra, Croton, Eurota and Larrea types is also noteworthy.

¹ Rose, J. N.; List of Plants: see Bibliography p. 78.
² Newberry, J. S; See Bibliography p. 77.
This semiarid region is largely mesquite (*Prosopis*) plains, varying from open grassy land with scattered mesquite to a scrub forest of this tree, in places densely filled with other thorny bushes and cactuses, as along the southern stream valleys and over much of the plains of the lower Rio Grande. Scattered oaks, according to BAILEY 1), and other scrub trees distinguish the more elevated, rougher parts of the region and narrow strips of good timber are found along some of the streams. The bulk of this chaparral consists of *Zizyphus obtusifolius*, *Condalia obovata*, *Koeberlinia spinosa*, *Opuntia Engelmannii*, *O. leptocaulis*, *Parkinsonia aculeata*, *Acacia farnesiana*, with *Tillandsia recurvata* etc.

1) BAILEY, V.: See Bibl. p. 75.
Agave heteracantha forms a very characteristic association of very rough stony slopes in which this Agave grows associated with Dasylirion texanum. — The Cactus Association includes several species of Mamillaria, Cereus (C. stramineus), Echinocactus (E. [Ancestroacactus] longithamatus) and Anhalonium. Such an association indicates extreme exposure to intense light, burning midday and chilling midnight temperatures, and moistureless air and soil. Mixed in with the above associations is Fouquieria with slender, thorny wand-like stems growing in the most arid spots of the desert.

Alkali Playa- and Desert Dune Formation. Typically the Alkali playas occur on the Pecos flats and in the Salt Lake basin (the Howard basin). The prevalent grass according to Havard on the Pecos flats is Sporobolus airoides while on alkaline soils occur Suaeda suffrutescens, S. depressa and Spirostachys occidentalis. The low sand hillocks in the Howard basin are covered with Spirostachys, Larrea mexicana and Frankenia Jamesii. — South of El Paso, according to Coville and Mac Dougall, is a long stretch of sand dunes about forty feet high. The vegetation consists of Poliminthia incana, Yucca radiosa (= Y. elata), Sporobolus cryptandrus and species of Artemisia, Chrysothamnus and Andropogon.

River Valleys and Canyons. At Presidio del Norte, 953 miles from the mouth of the Rio Grande and at an altitude of 2,780 feet (847 m), the sparse tree vegetation is confined to alluvial bottoms and ravines. The trees are Populus Fremontii, Celtis occidentalis, Prosopis juliflora, P. pubescens, Salix longifolia and S. nigra. Shrubs and bushes are common, but in scattered thickets nowhere, according to Havard, forming dense thickets.

In Chihuahua associated with Populus Fremontii var. Wislizeni along water courses and in the mountains down into the arid plain are Salix irrorata, S. taxifolia, Fraxinus velutina, Sambucus mexicana, Juglans rupesstris and Celtis occidentalis var. reticulata. On a few bottoms Prosopis juliflora occurs associated with Celtis pallida in dense clumps, Mimosa biuncifera, Acacia Greggii, Mierorhamnus ericoides, Condalia spathulata and Koeberlinia spinosa. The herbaceous plants of the bottom lands are species of Hoffmanseggia, Sphaeralcea, Lepidium, Tetraclea, Philibertia, Argemone, Oenothera, Martynia, Tribulus and Collomia longiflora with the coarse maton grass, Sporobolus Wrightii. At Eagle Pass the vegetation begins to change into the chaparral formation of the lower Rio Grande. The canyons of the Rio Grande below Presidio are characterized by the presence of Acacia Schottii, Boerhaavia bracteosa, Bouchea linifolia, Mimosa fragrans, Acacia filicula, Salvia Henryi and Nama undulatum. In general throughout these canyons, vegetation is scant, sometimes entirely absent. — Those plants preponderating on mesas and hills are (Mesa Formation): Acacia Greggii, A. constrieta, Mimosa borealis, M. biuncifera, Dalea formosa, Condalia obovata and C. spathulata, Zizyphus obtusifolius, Koeberlinia spinosa, Larrea, Jatropha, Celtis pallida, Lycium carolinianum, L. Berlandieri, L. puberulum, Agave heteracantha, Dasylirion texanum, Yucca angustifolia, Cereus (Peniocereus) Greggii and stramineus, Anhalonium (Arioacarpus) fissuratum, A. (Lophophora) Williamsii and Ephedra antisphyilitica.

At Eagle Pass 495 miles above the mouth of the Rio Grande and elevated 1,460 feet (= 445 m) above sea-level, Dasylirion texanum has disappeared and Yucca baccata becomes dwarfed. Acacia Greggii and A. constrieta of the gravelly mesas at Presidio are here replaced by Acacia amantacea, A. Berlandieri, A. Coulteri, and A. Wrightii. Prosopis pubescens has vanished, but P. juliflora is common and attacked by a parasite, Phoradendron flavescent. Here begin Parkinsonia aculeata and Acacia farnesiana, transitional to the chaparral below, together with Lippia lycioideis (= L. ligustrina), L. graveolens, Salvia ballotaeflora and Porlieria angustifolia.

1) Havard, V.: See Bibliography p. 68.
In the absence of a detailed description\(^1\) of the plants found in these formations, it has been found expedient to mention the plants which grow in this great territory by grouping them into divisions, such as, leguminous plants, cactaceous and compositous plants. All of the plants of these orders, as well as those of the Gramineae and Liliaceae, furnish plants which have adapted themselves to the dry soil and other desert conditions. Many of them, especially the yuccas, agaves and cacti have assumed a morphologic character which is an expression of their desert habitats.

The trees of the desert mountain ranges and dry canyons of Chihuahua are limited to a few species: Pinus chihuahuana, Quercus Emoryi, Q. grisea (= Q. undulata), Q. oblongifolia, Fraxinus cuspidata and Juniperus occidentalis var. conjugens. These species grow on the dry mountain ranges which rise from the plains to an elevation of 6,000 to 8,000 feet.

The Cactaceae\(^2\) are represented by following important species:

\[
\begin{array}{lll}
\text{Melocactus ferox} & \text{Mamillaria scolymoides} & \text{Echinocactus rhodophthalamus} \\
\text{Mamillaria anguinea.} & \text{> bicolor.} & \text{> tricuspidatus} \\
& \text{> centricirrhia.} & (= E. phyllacanthus). \\
& \text{> conoidea.} & \text{> uncinatus.} \\
& \text{> conopsea.} & \text{> ingens.} \\
& \text{> cerebrispina.} & \text{Opuntia rufida.} \\
& \text{> erecta.} & \text{> Schottii.} \\
& \text{> formosa.} & \text{> tunicata.} \\
& \text{> hexacantha.} & \text{> vulgaris.} \\
& \text{> hystrix.} & \text{> leptocaulis.} \\
& \text{> implexicoma.} & \text{Cereus (Echinocereus) pecti-} \\
& \text{> longimamma.} & \text{natus.} \\
& \text{> raphidacantha.} & \text{> geometrizans (s. Fig. 31).} \\
& \text{> Scheidweileriana.} & \\
\end{array}
\]

Among the leguminous plants characteristic of the region are Indigofera Lindheimeriana, Peteria scoparia, Astragalus diphaeus, A. coriaceus, A. leptocearpus, A. parvus, Hosackia puberula, Lupinus canus and Sesbania longifolia, Crotalaria sagittalis, Glycyrrhiza lepidota, Prosopis pubescens and many other species of the genera Petalostemon, Dalea, Tephrosia (= Cracea), Astragalus, Galactia, Rhynchosia, Hoffmannseggia, Parkinsonia, Cassia, Desmanthus, Mimosa, Acacia, Calliandra and Pithecolobium.

The species of the genus Yucca, which reach the size of small trees and are of American desert origin (see ante page 298), find their most luxuriant development and center of distribution in the Chihuahua desert region. The following yuccas are limited to this region: Y. Treculeana, Y. australis, Y. valida, Y. rigida, Y. rostrata, Y. radios, Y. macrocarpa, Hesperaloe funifera\(^3\). Some of the species of Agave of this desert region are Agave plananata, A. asperrima, A. Brau-niana, A. (Manfreda) guttata, A. Humboldtiana, A. Peacockii, A. Smithiana, A. Wislizeni and A. zylonancanthe\(^4\).

2) The names in Hemsley’s Biologia and Schumann’s Monograph have been retained although as previously stated the entire family has been reorganized.
3) **Ramirez, Jose:** La Vegetacion de Mexico. 1899 Page 115; Trelease, The Yuccae. Thirteenth Annual Report (1902) Missouri Botanical Garden, pp. 27—133.
4) **Segura, Jose C. y Cordero, Manuel D.:** Resena sobre el Cultivo de algunas Plantas Industriales. Mexico 1884 El. Maguey pp. 207—277.
The order Compositae is represented in the Chihuahuan desert by numerous endemic species among which may be counted the following:

» unieri-stata.	Pluehea auriculata. »	Helianthella mexicana.
Fleischmannia Schaffneri.	» camphorata.	Verbesina hypoleuca.
Eupatorium amplifolium.	Trigonospermum melampodiodes.	Spilanthes bicolor.
Barroetea setosa.	Trigonoceros microglossum.	» heterophylla.
» diffusa.	Ambrosia confertiflora (= Franseria tenuifolia).	» elegans.
» lanata.	Tragoceros microglossum.	Tridax candissima.
» squamulosa.	Zinnia juniperifolia.	Microspermum nummulariae.
		» turbinata.
		Trixis conferta.
		Senecio praeceps.

At the southern extremity of the Chihuahuan desert region, as shown in the contracted portion in the map, for example in the valleys at Tehuacan, the desert vegetation reigns supreme. Here the soil is rocky, mostly limestone. According to MacDougal 1) the main valley at Tehuacan was north on the eastern side of the main continental ridge and this and the neighboring valleys and slopes are a part of one of the most striking deserts in the world, the xerophilous vegetation offers remarkable features of adaptation and distribution. The abundance of the Cactaceae rivals or surpasses even that of the southern part of Arizona and of Sonora and a half dozen of the species being massive forms, the landscape is highly characterized by them. Cereus (Lemaireocereus) Weberi, the "garambullo" Cereus (Myrtillocactus) geometricizans (see Fig. 31) Cephalocereus (see Fig. 30) macrocephalus, Pilocereus fulviceps, chrysacanthus and Tetetzo, Escontria Chiotilla, Agave marmorata, together with others which reach a height and attain a bulk as great or greater, than Cereus giganteus. Of the half dozen species of Echinocactus (E. grandis, flavescens, robustus), one forms huge mounds of small individuals as much as three yards across, while E. grandis reaches the size of the saguaro, Cereus (Carnegiea) giganteus. In addition to the cacti, euphorbias, agaves and related forms, the tree morning glory (Ipomoea spec.) has a soft, thick trunk for storage purposes.

Three species of *Beaucarnea* (among them *B. oedipus*) known locally as "sotol" have the bases of their stems swollen to the thickness of seven or eight, feet with a height not more than two or three limes this measurement.

On the hills, a gray, dwarf vegetation is encountered, consisting of *Echinocactus ingens* associated with *Yucca aloifolia*, *Dasylirion acrotrichum* (?), composite herbs and discontinuous grassy clumps. In other associations in the vicinity occur, according to Karsten', *Agave horrida*, *Echinocactus ingens* (see Fig. 30 at p. 644) and on a leafless shrub grows *Tillandsia recurvata*. Another association consists of *Cereus Pecten aboriginum* (see Fig. 9, p. 297),

Fig. 31. *Cereus (Myrtilloactus) georetrisanz* Mart. (Garambullo). Chihuahuan Desert Region, Mexico.

Prosopis juliflora and *Cereus (Pachycereus) marginatus*, while on the limestone plateau at Hacienda Carnero, Tehuacan, grow together in association *Echinocactus robustus*, *Manillaria mutabilis* and *Tradescantia navicularis*. Elsewhere, the gray vegetal covering of the soil is found to consist of species of *Agave*, *Dasylirion*, earth inhabiting bromeliads, species of *Sedum* and *Echeveria*, thorn-bearing shrubs, such as, *Mimosa*, *Cassia*, many compositous plants and *Ephedra*. The grassy covering is thin and sparse, beset with species of cactaceous plants.

4. Eastern Sierra Madre Region.

This forms a narrow strip running along the eastern edge of the Mexican tableland extending north of Monterey to the Rio Grande, before reaching which the chain of mountains becomes less distinct and at last identical with the mountains of the tableland. From Presidio on the Rio Grande, the botanist sees a lofty mountain (Sierra Rica, 9,000 feet) in the southeast in the state of Chihuahua. Its summit is covered with *Pinus cembroides* and its slopes with *Quercus undulata* (= *Q. grisca*) and *Arbutus xalapensis*. Three miles below Eagle Pass, according to Harv ard (loc. cit.), the banks of the Rio Escondido, a clear, swift stream, on the Mexican side is shaded with *Carya olivaeformis* (= *Hicoria pecan*), *Morus celtidifolia*, *Celtis occidentalis* over which climb *Vitis candidans*. On the bluffs above are groves of *Quercus virginiana* (= *Q. virginis*) extending along the hill tops into the interior of Coahuila.

For some two hundred miles of its extent the Sierra Madre Oriental is included within the Mexican state of Nuevo Leon and a sketch of the flora of the mountains in this territory will to great extent, in lack of more complete information about the vegetation of the whole chain, express the general physiographic character of the region. The low eastern Sierra Madre Mountains are steep, rough, seamed by numerous canyons and afford a good illustration of the arid conditions which prevail east of the Mexican tableland, where the limestone of the mountains is contorted and twisted, scarcely half concealed beneath a thin covering of soil, which is barely sufficient to support a low, dingy, green growth of agaves, cactuses and desert shrubs.

On the western side near Monterey are found *Pinus cembroides*, associated with *Pinus latisquama* (on the dry calcareous bluffs of guleches), *Quercus undulata*, and *Yucca Treculeana* (in thin forests near the base). On the higher summits is *Pinus teocote*, while on the shaded and cooler higher slopes, especially in the ravines with northern aspect, are groves or belts of *Pseudotsuga Douglasii*, associated in the ravines toward the base with *Cupressus guadalupensis*, while *Juniperus flaccida* and *J. tetragona* var. *oligosperma* occur in canyons near the base. The sunnier, drier slopes are covered with a dense growth of shrubs consisting of *Quercus reticulata*, *Q. undulata* and in rich canyons *Q. reticulata* becomes a tree and grows associated with *Q. Emoryi* and *Q. virginiana*.

The foothills are mainly, according to Pringle, ledges of limestone with the usual growth of cactuses, agaves and a shrubby vegetation consisting of *Lindleya mespiloideas*, *Cercoecarpus parvifolius*, *Cowania plicata*, *Fraxinus Greggii*, *Arbutus xalapensis*, *Aretostaphylos pungens*, *Microphanus ericoides*, *Rhus microphylla*, *Ceanothus Greggii* and *Ephedra aspera*.

The eastern, rain-visited slopes of these mountains south of Monterey mark the northern limit of *Pinus Montezumae*. Belts of *Carya myristicaeformis* are found largely excluding other species. The wet canyons of lower slopes are occupied by a dense growth of *Juglans rupestris*, *Quercus polymorpha* (attaining a size of two feet by sixty), *Quercus virginiana*, with maximum diameter three to five feet, *Platanus mexicana*, *Fraxinus viridis*, *Morus urlicefolia*, *Tilia mexicana*, *Chilopsis saligna*, *Ulmus erassifolia* (on river bottoms), *Prunus americana* var., *Prunus capollin*, *Planera aquatica*, *Bumelia lanuginosa* var. *rigida*, *Cercis reniformis*, *Leuecaena pulverulenta*, *Cornus florida* (one foot by twenty five) and *Staphylea mexicana*. Outside of the canyons, several of the above trees mingle with *Quercus Gramahii* (a small tree most abundant

from the lower to the higher slopes), Q. oblongifolia and Arbutus xalapensis. The upland palmetto Brahea dulcis inhabits the precipitous ledges of limestone. About the base of the mountains, especially on limestone ledges associated with Fraxinus Greggi, Helietta parvifolia, Diospyros texana, occur Amyris madrespi and Sargentia Greggi. Common in rock valleys among the foothills are Acacia farnesiana, A. flexicaulis, Ehretia elliptica, Fithecolobium brevifolium and occasionally Sapindus acuminatus.

In the Guadalcazar Mountains the principal arborescent species are Quercus undulata, Q. polymorpha, Juglans mexicana and Sargentia Greggi. In meager soil, partially covering extensive ledges of lime-rock, grow Neoprinleea integrifolia, while rooting in the fissures is Dahlia dissecta and on the ledges, such ferns as Pellaea pulchella, Notholaena sinuata, N. Aschenborniana and Cheilanthes leucopoda 1).

5. United Cordilleran Region.

This region includes the confused mass of mountain ranges formed by the union of the western and eastern Sierra Madre chains. The topography of this region is rendered more complicated by the fact that a system of volcanoes is disposed transversely to the trend of the Sierra Madre Occidental and Sierra Madre Oriental between the Gulf of Mexico and the Pacific Ocean. High above this central Cordilleran system tower the snow-capped peaks of several volcanoes (see ante p. 113), of which Orlizaba (Citlaltepetl) stands isolated from the others and rises from the tierra caliente to an elevation of 18,250 feet. Several large valleys, such as Mexico and Toluca, are situated at a general elevation of about 7,500 feet and are almost completely hemmed in by mountain masses, which form elevated rims to these valleys filled with lakes. The flora of the valleys and surrounding chains will be presented first, and then, as far as the data will permit, a sketch of the vegetation of the high volcanoes will be given.

1. Valley, Lakes, Dry Ridges.

The soil of the valley of Mexico being a fine, light loam, it has been under a high state of cultivation for many centuries. Little of the original flora is found in the cultivated areas, but the botanist notices some interesting species near the town of Tlalpam 2). The valley of Toluca is the most elevated valley of much extent in Mexico, being 8,500 feet above the level of the sea, one thousand feet higher than the valley of Mexico. In its upper, or southern portion lie Lake Lerma and its marshes fed by mountain brooks, which tumble down from the Sierra de las Cruces. During the summer, parts of this valley are solid with corn, while during the earlier part of the year, wheat occupies the same ground.

Lake Formation. According to my observations, the following aquatic plants are found in the lakes of the valley of Mexico. In Lake Xochimilco, I collected Nymphaea mexicana, N. tussilagifolia, Eichhornia azurea, Marsilia quadrifolia, while on the wet chinampas, or floating marshy

1) Pringle, C. G.: Notes on Mexican Travel: see Bibliography p. 85.
islands were noticed Sagittaria sagittifolia var. mexicana, Cyperus unioloides, Ericaeaulon Benthamii, Polygonum amphibium, Lobelia fulgens, Solidago paniculata, Cnicus lineariolius, Bidens chrysanthemoides and in the ditches Ranunculus eymbalaria, R. orthorhynchus and a species of Arundo, etc. In Lake Lerma in the valley of Toluca grows Nymphaea gracilis.

Dry Ridge- and Pedregal-Formation. The dry hills in the valley of Mexico support a scant vegetation. On the Cerro de Guadalupe, connected with the western mountain chain by a low ridge, Cuesta de Barrientos, I noted Milla biflora (on exposed rocks), Talinum aurantiacum (on rock faces), T. patens 1), Oxalis decaphylla, Mamillaria strobiliformis, Tecoma mollis.

The pedregal, or lava bed was formed by streams of lava that flowed from Serrania de Ajusco down through a distance of twenty-five miles over nearly all the mountain side and over the southern edge of the Valley of Mexico. It consists of sharp ridges alternating with deep crevasses. Doubtless, it was once covered with a scanty forest growth, because on the mountain side at 8—10,000 feet, I noted groves of Pinus leiophylla associated with Quercus reticulata, Q. undulata and beneath these trees three species of Dahlia (D. Merckii, D. coccinea, D. variabilis) with masses upon masses of conspicuous bloom, Canoanthus aureus, Lupinus sylvaticus, Physalis pubescens and parasitic upon the oak roots Conopholis mexicana, while Agave megalacantha is dotted here and there among the other plants. In the pockets in the lava rock occurs between many herbs the curious, composite, woody plant, Senecio praecox with water storing stems 2). Selaginella lepidophylla (a resurrection plant) is abundant on the faces of the lava ridges, associated with Notholaena ferruginea, Cheilanthes myriophylla, Pellaea gracilis. Several grasses also are abundant: Bouteloua prostrata, Microchloa setacea and a sedge, Cyperus sesleroides. — The lava beds (pedregal) at a still higher elevation, 11,000 feet on the Sierra del Ajusco, are characterized by Juniperus tetragona, Pinus Montezumae, associated with smaller plants, growing out of the soil-filled pockets in the lava.

2. Forests and Mountain Meadows.

Coniferous Forest Formation. The pine belt is typically developed on the Sierra del Ajusco between 8,000 and 11,000 feet. Pinus leiophylla which grows in pure forests at about 9,000 feet is replaced higher up by Pinus Montezumae. On the slopes of the mountains above the valley of Toluca, this pine and another unidentified pine form almost pure forests. Alnus acuminata forms the fringe to the forest and the cool wet ravines are characterized by the presence of Abies religiosa. This sub-alpine mountain tree forms the Abies religiosa Belt with at times Pinus Montezumae intermixed. The undergrowth consists of Alnus acuminatus, Buddleia Humboldtiana, Arbutus,

United Cordilleran Region.
Fuchsia microphylla, F. thymifolia, Vaccinium, Ribes, Lonicera. In shady mossy places are found three orchids: Microstilys streptopetalata, M. platyglossa, M. tenuis, and according to my observations at Salazar, Weldenia candida, Thalictrum tomentellum, Pentstemon gentianoides and Pirola secunda ¹).

Meadow Formation. This was examined by me at two places: La Cima and Salazar. The plain of Salazar is spread out in the broad lap of the mountain knobs and is flanked by dense forests of Abies religiosa. Here on the grassy battle field, where in 1810, Hidalgo defeated the Spaniards, grow many sub-alpine species.

In sunny situations, according to E. Stahl ²), are found between the grass clumps Pedicularis orizabae, Arenaria decussata, Arabis laevigata, Oxalis violacea, Geranium elongatum, Astragalus Sea-tonii, Eryngium bromeliacefolium. On August 13th, 1896 in company with Mr. C. G. Pringle and a Mexican assistant, Tranqueleno Duran, I collected the following plants in the grassy meadows at Salazar: Braehypodium mexicanum, Sisyrinchium Schaffneri, Urlea Breweri, Claytonia perfoliata, Arenaria alsinoides, A. decussata, Cerastium viscosum, Ranunculus stoloniferus, R. dichotomus, Potentilla candeica (forming a large part of the turf), Fragaria mexicana, Trifolium involucratum, Astragalus strigulosus var. gracilis, Erodium cicutarium, Oxalis violacea, O. corniculata var. repens, Linum mexicanum, Euphorbia campestris, Viola Grahami, V. flagelliformis, Epilobium Bonplandianum, Angelica Pringlei, Eryngium ranunculoides, E. dilatatum, Salvia fulgens, S. nana, Stachys coccinea, S. repens, Prunella vulgaris, Physalis lobata, Solanum tuberosum (probably wild), Sibthorpiacephalium, Castilleja tenuiflora, C. Schaffneri, Mimulus luteus, Plantago patagonica, P. hirtella, Houstonia Palmeri, Lobelia nana, L. fulgens, Gnaphalium purpureum, Eupatorium popocatepetlense, E. pyrocephalum.

Orizaba. Mount Orizaba has its base buried in the luxuriant forests of the eastern tierra caliente presenting an unbroken series of mountain belts up to the line of perpetual snow, 15,000 feet above sea-level. There is perhaps no other mountain which so thoroughly presents the sequence of floristic belts as the peak of Orizaba. Between 4,000 and 6,000 feet, Quercus reticulata and Q. Orizabae form the forest, but above 8,000 feet, they are comparatively rare, and up to 10,000 feet are scattered through the pine forests. Associated with the oaks are Tilia mexicana, Abies jorullensis, A. castaneousfolia, Fuchsia microphylla, Goenia speciosa, Neottia (Spiranthes) aurantiaca, Ferraria (Tigridia) pavonia, Dracocephalum mexicanum, Chimaphila maculata and species of the genera Gaultheria, Andromeda, and Arbutus spinulosus, the last with a tree known as madroño ³).

Coniferous Forest Formation. The summit of Mount Orizaba rises above a forest of pines which begins with Pinus leiophylla at 6,600 feet and at 9,000 feet consists of Pinus montezumae var. macrophylla, P. teocote and P. pseudostrobus. The lower limit is perhaps regulated

3) Liebmann, Fr.: Vulkan Orizaba. Botanische Zeitung 1844: see Bibliography p. 84; Gadow, Hans: Through southern Mexico; 1908: 41—72.
by the fields of ash and scoria which prohibit the growth of pine species, and not by the absolute amount of temperature which is peculiar to each species of tree. The plants of these pine woods are Ranunculus geoides (11,000 feet), Cerastium orthiales (13,000 feet), C. vulcanicum (11,000 feet), Sambucus mexicana (10,000 feet), Araracua nudicaulis (12,000 feet), Tillandsia punctulata (10,000 feet),! compare the observations of LIEHMANN, made in 1844: At 10,000 feet (3,300 meters) with Pinus teocote in addition to the above occur Pirola rotundifolia, Chimaphila maculata, Woodwardia ciliata (= Cheilanthes marginata), Acrostichum Schiedel (= A. rubiginosum) and A. simplex and certain arborescent Ericaceae: Arbutus floribunda, A. laurina, A. paniculata, A. Menziesii.

The following plant grows on the dry rocky walls: Echeveria (Cotyledon) mueronata and ferns of the genera Asplenium, Nephrodium (Aspidium, Dryopteris), Notholaena, Adiantum, Cheilanthes, Polypodium together with species of Pinguicula, Stevia, Senecio, Baccharis and Valeiana plantaginea.

In the upper timber belt are found Pinus strobus formis (= Ayacahuite) and P. Hartwegii, which range to about 14,000 feet and perhaps two to three hundred feet higher on the adjacent Sierra Negra. At 13,200 feet, these trees form groves, or thickets, 30—40 feet high. The belt of the Mexican mountain fir, Abies religiosa, on this mountain ceases at an elevation of 11,500—12,000 feet. Juniperus tetragona covers the bare rocks of Mount Orizaba at some little distance beyond the actual tree line. On such rocks above tree line, according to LIEHMANN (loc. cit.), are found mosses and lichens of the genera Bartramia, Pohlia, Lecidea, Bryum, Didymodon, Trichostomum and Stereocaulon.

Alpine Formation. At about 12,000 feet, where the exposure and slope is such as to inhibit the growth of trees, for example, along the edges of barrancas, occur grassy stretches characterized by Pedicularis Orizabae, Eryngium proteaciform, Stenanthium frigidum, Cerastium vulcanicum and orthiales, Arenaria leptophylla, Ranunculus geoides, Nasturtium orizabae, Draba tolucensis, Stevia purpurea and arbutifolia, while along the courses of mountain rivulets occur species of Carex Barbarea, Junecus, Luzula etc. Above 13,600 feet, the grass belt becomes the feature of the mountain extending to snow line. A number of plants disappear at the lower edge of this belt, viz., Acaena elongata, Poa annua and Bryum argenteum. The grassy covering consists of Festuca tolucensis and libida, Trisetum elongatum, Deyeuxia recta, Epicampes macroura (= Crypsis stricta), many Agrostis- and Festuca-species. Here exists an Andean genus of Ericaceae (see ante p. 302): Pernettya ciliaris, on dry sandy soil.

The marshy places formed by the melting of snow water are inhabited by Ranunculus reniformis which with a species of Potentilla renders such areas of a yellow color associated with Phleum Haenkemann (= P. alpinum) and species of Veronica, Agrostis and Luzula.

The rocky aiguilles are covered with Berberis (Mahonia) ilicinna and Juniperus tetragona, while the botanist observes here such cryptogams as Parmelia encausta, P. centralis, Evernia furfuracea, Lecidea atro-alba, Lecidea atrovirens, Umbilicaria postulata (10—14,000 feet), U. vellea (13,000—14,000 feet), U. cylindrica and U. proboscidea between 14,000 and 14,800 feet. At this elevation, the landscape is forbidding, for the grasses stand in isolated clumps in serried rows with the light loosely compacted volcanic ash and scoria filling the places between and covering all the vegetation with a grayish mantle. Here and there, however, the monotony of the scene is relieved by some projecting rock mass, the vegetation of which has just been described.

1) SEATON, HENRY, E.: Plants collected on M. Orizaba 1891: see Bibliography p. 86.
The herbaceous plants which extend their growth to an elevation of 12,000 to 15,000 feet on Mount Orizaba are, according to Heilprin:

1) Ranunculus peruvianus, Draba myosodioides, Arenaria bryoides, Potentilla Richardii, Heuchera orizabensis, Peuce danum tolucense, Senecio chrysactis, S. multidentatus, S. orizabensis, Hieracium niveopappum, Lobelia nana, Arestostaphylos pungens, Phacelia pimpinelloides, Mimulus glabrat us, Spir anthes ochracea and Ste nanthium frigidum. The herbs that reach an elevation between 13,000 and 15,000 feet on Orizaba are: Draba tolucensis, Arenaria bryoides, Ac aena elongata, Ribes jorullensis, St evia arbutifolium, Senecio cirsoides (= S. roseus), S. gerberaefolius, S. procumbens, Cnicus nivalis, Per netya ciliaris. Veronica serpyllifolia, Castilleja to lucensis. The last plant to disappear on Orizaba peak is Castilleja tolucensis and a Draba (D. ar toides, or D. popocatepetlensis; both of which, according to Heilprin, follow close to snow line, or nearly to 15,000 feet. On the blocks of rock above 14,600 feet where, according to Liebm ann, the last flowering plant occurs, grow a lichen, Rhizocarpon (Lecidea), geographicum and a moss Grimmia apiculata, while here also occur Tortula ruralis, Parmelia Ehrhartii, Lecidea atro-alba, L. vitrina and above all these, as the last plant, Parmelia elegans.

Popocatepetl. The belt of cactus, nopal, mesquite of the Mexican plateau is replaced higher up on Mount Popocatepetl by a belt of pines (Coniferous Forest Formation) consisting of Pinus Montezumae, Pinus Teocote and P. pseudostrob us at an elevation above 9,000 feet. These long-leaved pines are replaced by short leaved pines. Pinus strobiformis and P. Hartwegii which reach to approximately 13,000 feet, (13,160, according to Heilprin), the trees being of inconsiderable heights. Lupinus vag inatus extends to 13,000 feet. Senecio chrysactis reaches the limit of the pines on all of the loftiest mountain summits forming with the lupine a compact undergrowth to the pines, especially where the latter have been thinned into groves leaving patches of open country in their midst. Here the vegetation is most luxuriant and the eye revels in the brilliancy of colors which are everywhere manifest.

Alpine Formation. Beyond the limit of trees (above 13,000 feet), the vegetation continues over the slopes as a long wiry grass to a point 500 feet higher, although the sands blown about by the winds frequently cover the grass and choke it. The grasses which occur above timber line (13,000 feet) are: Sporobolus Wolfii (just below timber line under the pine trees, Pinus Hartwegii), Stipa mucronata, Muhlenber gia quadridentata, Cinna (Deyeuxia) tolucensis, Trisetum Rosei var. tenerum, Trisetum tolucense, Poa conglomerata, Poa infirma, Festuca amplissima, F. aequi pa leata, F. livida. The last grass and Trisetum Rosei were found by Rose 2) associated together at 13,400 feet, Trisetum Rosei was found alone at 13,500 feet, the exact altitude at which Festuca livida was found on Mount Orizaba. This grass, therefore, holds the distinction of growing at a higher altitude than any other flowering plant on the North American continent, except Festuca livida. Both grow in and under the melting snow, pushing up along the tongues of sand, soon to be buried under a fresh fall of snow.

Ixtaccihuatl. The flora of this mountain is richer than that of Popocatepetl, according to Sonntag and Farrington. The succession of forest belts

is, however, quite similar on the two mountains, the lowest consisting of laurels, pines and cedars, the middle of firs and the highest of pines.

The Coniferous Forest Formation grows more stunted until the limit of arborescent vegetation is reached at 13,123 feet (4,000 m). There, in the Alpine Formation at 13,200 feet, Heilprin found a veritable garden of plants, including Castilleja tolcensis, Echeveria gibbiflora, Ageratum arbutifolium, Chionolaena, Phacelia pimpinelloides, while from the rock-fissures protruded tufts of Asplenium trichomanes var. majus. Other plants accredited to the summit of Ixtacuixuatl are Draba aretoides, Lupinus vaginatus, Oenothera tetraptera and Senecio salignus.

Toluca. This mountain (15,091 feet) ranks fourth in point of altitude within Mexico. It rises by easy slopes and terminates in a vast bowl of a crater, its figure being a truncated cone, much depressed. The rim of the crater is ragged, showing several prominent peaks. Its southern slopes fall away rapidly to the tierra caliente and its middle slopes are covered with evergreen forests. Above the timber line grassy slopes extend up to the rim of the crater. The pine forest on this mountain, as before mentioned, consists of Pinus Montezumae with Abies religiosa in the cool wet ravines. — Above the timber line according to Pringle 1) are found Eryngium proteaeformum, Senecio Halleri (in mats), Castilleja densa (in mats), Festuca livida, F. ovina, Trisetum tolcense, Agrostis virescens, Calanagrostis orizzabae and a variety of Deschampsia caespitosa, while the absence of sedges is noteworthy. On the coldest steeps just under the summit, Muscénium alpinum forms a dense sod in patches several feet broad: Halenia crassiuscula grows sparsely and Draba jorullensis more commonly. Gnaphalium lavandulacencum (= Chionolaena laven-dulifolia) is a shrubby species on the summit ledges.

The oval crater of Toluca, a mile wide and two miles in length from east to west has five small lakes in its bottom. In the soft, bare soil on the margins of the lakes, rosettes of Calandrinia acaulis are common. On wet bottoms Alchemilla pinnata forms little patches of green, Oreomyrrhis andina (= O. andicola) forms mats, while Dissanthelium sclerocladoides grows in scattered tufts an inch or two in height. Draba tolcensis occurs on the moist gravel, while in the shelter of rocks detached from above are found Gnaphalium popoecatspectrum. On the slopes above the lakes grow Plantago linearis and an Erysimum.

The following plants are accredited to Toluca: Draba tolcensis (8—14,000 feet), Erysimum macradenium (12—13,000 feet), Cerastium andinum (13,000 feet), Arenaria bryoides (14—15,000 feet), Geranium potentiilaeofilium (9—10,000 feet), Lupinus bimaculatus (12,000 feet), L. montanus (9—10,000 feet), L. vaginatus (12,000 feet), Ribes jorullensis (10—12,000 feet), Tauschia Coulteri (10,500 feet), Senecio procumbens (10—11,000 feet), Cnicus nivalis (11,400 feet) and Castilleja tolcensis (14,200 feet).

Colima. Twin peaks, known respectively as the Nevado de Colima and the Volcan de Colima, rise from a plateau covered with agaves, opuntias, Argeme melxicana, Asclepias curassavica and other plants to an elevation of approximately (in the case of the Nevado) 14,350 feet. A scattered forest

of \textit{Pinus Montezumae} reaches to the base of the summit rocks of the Nevado and mingling with the pines are oaks (\textit{Quercus}), \textit{Alnus acuminata}, \textit{Salix lasioplepis}, \textit{Arbutus varians}, while here along the borders of brooks grow \textit{Arctostaphylos arguta}, \textit{Clethra mexicana} \footnote{Pringle, C. G.: Notes on Mexican Travel, 1. c. VII. 162, 172; Kerber, E.: see Bibliogr. p. 84; Gadow, Hans: Through southern Mexico 1908: 500—513.}.

The pine forest which surrounds the Nevado is exactly duplicated at the base of the Volcan de Colima. The forest of pines is heavy, ascending to the edge of the lava beds and ridges, while the ashen gray summit of the peak is bare, the tree limit being found at 7,500 feet (2,500 m). Naked rocks and volcanic scoria make a scene of desolation unfit for the growth of trees species. On these lava fields are found species of \textit{Arctostaphylos} and dwarf willows and occasionally a \textit{Yucca}, while on the topmost ridges \textit{Ribes jorullensis} (= \textit{R. ciliatum}) forms thickets with \textit{Valeriana subincisa} with soft, woody stems, six to fifteen feet long, reclining on the shrubs. The summits of mountain spurs are surmounted in places by thickets of \textit{Ceanothus azureus}. — All the summit of the Nevado is covered with volcanic ashes and scoria, which do not offer conditions to plant life. \textit{Lupinus mexicanus} (in great clumps), \textit{Penstemon campanulatus}, \textit{Castilleja lithospermoidea}, \textit{C. tenuiflora}, \textit{Euphorbia campestris} and \textit{Crypsinna strieta} (= \textit{Epicampeis macourea}), a bunch grass, grow in the grassy openings of the mountain top. On the mountain crest beside the peak were found \textit{Vaccinium geminiflorum}, \textit{Draba jorullensis} and on the ledges a prostrate juniper.

Chapter VI. North American Tropic Zone: Section of Mexico and Central America.

It is extremely difficult to give the characters which distinguish the tropics from other adjacent parts of the earth’s surface. In general, the mean annual temperature is greater throughout the year than in other parts, but this alone is not sufficient to distinguish the tropics. In school texts on geography the statement has been made that the tropic zone lies on each side of the equator between the isotherms of 73° Fahrenheit (22,8° C), and the excessive heat and moisture of this zone produce a corresponding luxuriance of vegetation. \textit{Merriam} on the other hand limits the tropic zone by considering the temperature control of the distribution of plants and animals. Tropic species, he thinks, require a total quantity of heat of at least 26,000° F. (14,400° C.); and, since the tropic life region is a broad equatorial belt, it is probable that both its northern and southern boundaries are marked by the isotherm showing a sum of normal positive temperatures of 26,000° F. (14,4000° C.). \textit{Schimper} finds that the characterization of the tropics depends on more complex data. The mean annual temperature of the air oscillates between 20° and 28° and in comparison with northern latitudes is fairly uniform; even the difference of the highest and lowest temperature of the year in the equatorial zone does not vary much from the daily variation amounting on the average to 10—13° C. often much less, for example: 5° C. The general humidity of the air corresponds in general with the rainfall, being greater in the rainy season and
less in the dry. The annual rainfall varies in the tropics between 2 and 5 meters in the mountains and a few centimeters in the deserts. The light intensity also seems, from measurements that have been made, to be greater.

Notwithstanding the difficulty of accurately delimiting the tropics by climatic factors alone, it can be satisfactorily done by means of the plants, which have been influenced in their distribution and evolution by the interaction of the complex physiologic factors briefly mentioned above). — The North American tropics comprise all of Central America, the narrow Atlantic and Pacific coastal plains of Mexico, the Greater Antillean, Bahaman and Bermudian islands with outlying southernmost peninsular Florida. Mexico has a tropic flora which was derived from the main mass of tropic vegetation of the present Central America, but originally from the flora of the disrupted Antillean continent after it was joined to the land mass lying south of the Isthmus of Tehuantepec. When the land bridge appeared, the tropic flora moved north along the Atlantic and Pacific coasts of Mexico some considerable distance. Two regions may be distinguished, therefore; the Jaliscan Region on the Pacific coast and the Gulf Region along the shores of the Gulf of Mexico. Then follow the Guatemalan Region and the Costa Rican Region of Central America.

1. Jaliscan Region.

Lying west of the main mass of the Cordilleras, the botanist might naturally expect to find a vegetation adapted to a dry or rainless climate, but C. G. Pringler informs me that about Ameca, Etzatlan and elsewhere, there is abundant vegetation with plentiful rains further west and little drought in summer south of Culuiacan. Occasionally about Guadalajara, the country may be a desert, as late as May or June, but summer rains always fall there to bring about a good vegetation.

This region in the Mexican state of Michoacan is one of lovely lakes, such as Cuitzeo, Patzcuaro and Chapala (in Jalisco), while the Lerma and Balsas rivers drain a vast territory and empty into the Pacific Ocean. Grassy glades and undulating grassy hills are devoted to grazing, while outcrops of rugged rocks are covered with a scrubby growth of such small trees as *Acacia pinnatula* and *Ipomoea muricata*. Salt marshes fringe the shores of Lake Cuitzeo, while under the ledges which line the shore is found *Malvaviscus acerifolius* and between the shore and the hills grow *Schinus molle*, *Prosopis juliflora* and the grotesque forms of *Ehretia mexicana*. The banks of slow

Harshberger, Survey N.-America.
rivers are marked by *Taxodium mucronatum* and in deep barrancas by this tree and immense wild fig trees. The hills about Lake Patzcuaro are pine clad with oak and pine reaching to the mountain summits beyond, comprising a Forest Formation of such trees as *Pinus Montezumae*, *Quercus reticulata*, *Q. undulata* and *Arbutus varians*. On the ridges near Guadalajara are found *Pinus oocarpa* and *Quercus fulva*. *Vigna strobilophora* is a twining vine with a woody stem climbing to the tops of shrubs and low trees, while *Vitex pyramidata* is a small spreading tree found on rocky bluffs above Tequila 1). *Eriodendron tomentosum* is a large tree which occupies the warmest barrancas.

The tropic portions of southern Michoacan is a mountainous area with scattered plains here and there. The plains are grass covered with irregular patches of scrubby trees and shrubs about their borders with a singular species of Agave on the bare sunbaked cliffs of canyons. The chaparral formation of this coast is found in the valley of the Balsas River and elsewhere. Here is found an abundant growth of various kinds of large cactuses, thorny shrubs and low trees which extend down to this coast. Near Acapulco are bold and rugged headlands with many large cactuses on their seaward faces 2).

The lagoons of the Jaliscan coast are characterized by the mangrove tree, *Rhizophora mangle* and associated species, but the absence of details precludes a more careful statement of floristic conditions.

2. Gulf Region.

The Gulf Region of Mexico comprises three distinct classes of formations: the coast littoral formations, the chaparral formations and the tropic forest formations.

Littoral Formations. Here we have ocean embayments characterized by such sea weeds as *Padina pavonia*, *Dictyota* spec., *Nemalion*, *Halimeda Opuntia* and *Sargassum Montagnei*; species which are usually found in shallow water with a bottom of calcareous sand 3).

According to my observations made at Tampico on the Gulf coast of Mexico, the sand-dune formation conforms to that of the American tropics in general. *Ipomoea pes-caprae* is the characteristic plant of the low dunes of this sandy coast trailing down upon the upper beach. Dunes occur along the north coast of Yucatan. Here occur *Bravaisia tubiflora*, *Croton punctatus* and in the shade of bushes *Beloperone violacea*, *Diciplerta assurgens* and *Euphorbia heterophylla* 4).

The Mangrove Formation is confined to lagoons which are formed primarily by a bar of sand forming across the mouth of some river. *Rhizophora Mangle*, *Avicennia tomentosa* and related species constitute the plants of this formation which extends in favorable places along the entire Gulf coast of Mexico and north coast of Yucatan, where Rhizophora, *Coccoloba*...
and such halophytes as Batis maritima, Lithophila vermiculata (= Gomphrena vermicularis) and Heliotropium curassavicum occur.—

The species of aquatic plants which exist in the lagoons (such as Tamulte and Ocuitzapotlan) either submerged or floating are Vallisneria spiralis, Cabomba aquatica, Ceratophyllum, Potamogeton, Heteranthera graminea, Limnanthemum Humboldtianum, Villarsia Humboldtiana, Marsilia polycarpa, Nymphaea ampla, Eichhornia azurea, Pistia stratiotes, Jussinea natans, Neptunia oleracea, Azolla caroliniana). — The marshes, near such lagoons, are characterized by Typha angustifolia, Acrostichum aureum, Ceratopteris thalictroides, Thalia geniculata, Cyperus artiatus, Arundo and in salt marshes Scirpus maritimus. — The lagoons or morasses are distributed in Tabasco in all situations where depressions of the earth exist. These are frequently dry during the months of March, April and May. It is evident that this change influences the vegetation and in addition to the floating and submerged species, the botanist notes in such dry morasses Lonchocarpus hondurensis, Haematoxylon campechianum, Inga spuria, Dalbergia campechiana, etc.

Chaparral Formation. The chaparral formation extends into southeastern Texas where the character of the vegetation is controlled by a minimum of rainfall, a dry air subject to regularly recurring movements of great velocity and a high percentage of days of intense sunshine related to edaphic factors in which the soil has the loose, shifting, incohesive quality formed by dry weathering and destitute of vegetal mould, if not gravelly, or stony, and where the soil water level is too deep to be available for any but perennial plants with far reaching roots. The chaparral is typically a low, more or less impenetrable bush covering continuously vast areas, and varying in height from two or three feet to ten or fifteen, according to the ecologic conditions. In the lower Rio Grande country, the chaparral is rapidly encroaching on the prairie formations which were formerly more extensive.

On the basis of temperature, there is a distinction of species into those of semitropic and even tropic affinities and those able to endure the freezing winter temperatures of the warm temperate zone. The former occur chiefly in the lower Rio Grande country, the latter constitute the chaparral of the northern half of the plain, spreading also by some species into central Texas. Geologic structure and conditions of soil, according to Bray, act powerfully to determine the facies of the formation upon any given area. Thus, gravelly slopes, denuded of finer sediment, may have a pure facies of straggling Parkinsonia texana, and basalt ridges are thickly covered by a short bushy facies of Acacia Berlandieri. It is noticeable that no less than 30 per cent of the number of species and a far higher percentage of actual individuals belonging to the leguminous suborders Mimosae and Caesalpinae. The Gulf strip of Texas is approximately indicated by the range of Acacia farnesiana and Parkinsonia aculeata, both of these of tropic range.

Bailey adds to these Daubentonía longifolia (= Sesbania Cavanillesii), Lantana camara, Amyris parvifolia, Karwinskia Humboldtiana, Maximowiezia Lindheimeri, Nymphaea elegans, Yucca

1) Ramirez, Dr. José: see Bibliography p. 85.
2) Bray, William, L.: Forest Resources of Texas, p. 33: see Bibliogr. p. 75.
3) Bray, W. L.: Botanical Gazette XXXII. 270—274: see Bibliogr. p. 75.
Treculeana, Tillandsia Baileyi, Jatropha macrorhiza, J. multifida, Malpighia glabra and Solanum triquetrum. Sabal mexicana is found in limited numbers in the Brownsville neighborhood.

The Mesquite Facies or Association of Prosopis juliflora in the Rio Grande plain occupies the level areas of fine compact silty debris. It is often associated with Opuntia Lindheimeri. Similar “mesquite flats” as they are commonly called, are found in similar situations in the hotter portions of Texas but the species also occupy the black prairie soils in some areas. From San Antonio southeastward is a vast mesquite forest with trees ten to fifteen feet tall and in the lower Rio Grande valley individual trees attain a height of thirty-five feet and a diameter of two feet.

The Acacia Farnesiana Facies, according to Bray, prevails on the low moister coast prairie clays. The species is more limited than the mesquite in both moisture and temperature requirements. Its spread has been on the coast prairie as far east as Galveston. — The Acacia amentacea Facies is the prevalent one in the northern half of the Rio Grande plain. Constituting sixty to seventy-five per cent of the shrubby vegetation on many thousands of acres, it is known as the “black chaparral”. The Acacia Wrightii Facies is especially prevalent as an open one on grass plains in the northern part of the Rio Grande region between the Nueces and Medina rivers. The Huajillo Facies (Acacia Berlandieri) occupies the basalt ridges and cones extending east and west along the northern border of the region. Farther southeast, it has been noted on coarse gravelly ridges denuded of finer sediment and the trees scarcely exceed three or four feet in height. Parkinsonia texana, found on the coarse gravelly slopes near Eagle Pass, is an habitually procumbent or straggling shrub which, while occupying the ground fully, is a very diffuse covering. — The more arid parts of the Rio Grande country especially within twenty miles of the river on both the Texan and Mexican sides are occupied by a solid mass of Leucophyllum texanum which on account of a hairy felt covering the leaves gives it a light tone conspicuous to the uninitiated eye.

Mixed Coast Chaparral Formation. From the mouth of the Rio Grande to Corpus Christi, the coast is low, mostly bare and unattractive. The trees which occur here, are Prosopis juliflora, Acacia farnesiana, A. flexicaulis, Parkinsonia aculeata, Diospyros texana, Celtis mississippiensis var. reticulata. The scrubby chaparral extending from the shore inward for several miles, consists mostly of Prosopis juliflora, Diospyros texana, Acacia amentacea, Condalia, Castela, Zanthoxylum, Lippia lycoiodes, Lantana camara, Berberis trifoliolata, while the vines comprise Auedera, Vitis, Serfania, Maximoviciia.

The chaparral, which we have outlined as characteristic for southern Texas, extends southward along the coastal plain of Mexico. It reaches a considerable width, according to my observations, west of Tampico in the low flat, hot country, but owing to absence of information its exact extent cannot be given for other parts of eastern coastal Mexico. Upon reaching Yucatan, however, this formation which forms such a conspicuous part of the vegetation in nearly all the arid regions of the earth (Argentina and Chili, central South Africa, Australia, etc.) spreads out and occupies the country to the exclusion of most other vegetation. The arboreal elements which comprise the scrub which covers most of Yucatan are leguminous, according to HILPRIN and SELER.

1) Bailey, V.: see Bibliogr. p. 75.
In the mountain region forty to sixty miles south of Merida, or beyond Ticul, certain new elements are introduced into the vegetation, which impart to it a somewhat distinctive character; but, broadly speaking, the flora is still that of the northern limestone flats, with its chaparral species as the dominating feature. At several points on the northern flank of the sierra, there are extensive growths of the red gum, the chakah of the Mayas, *Barsera guam-nifera*, destitute of leaves in the dry season, while in the thinner jungle occurs *Bromelia pinguin*.

Tropic Forest Formations. These forest formations cover the area of Mexico, which after the removal of the original native vegetation is devoted to the cultivation of the sugar cane, banana, coffee, rubber tree, mango, orange, papaw, alligator pear, and other tropic economic plants, adapted to a steaming, hot, humid climate. In the neighborhood of Papantla in the state of Vera Cruz in the heart of the tropic forest is the seat of the vanilla industry of Mexico. Tree after tree in this vast forest is covered with the luxuriant vines of the vanilla orchid, *Vanilla planifolia*, indigenous to these wilds. It is with this tropic forest, which the writer has seen at three places (Rascon, Cordoba and Orizaba), that we are now concerned.

The forest composed of numerous species is thick, the undergrowth is dense and trees and shrubs, according to my observations in the Tamasopo Canyon, are bound together by clambering vines to form an almost impenetrable jungle. Each large tree in the descriptive language of Pringle 1) with huge spreading branches and leaning trunk becomes a garden of plants. On its rough mossy surface are found ferns, orchids, bromeliads and cactuses. Not epiphytal plants alone are found in such situations, but almost any herb, or shrub, which grows in the neighboring soil. The most abundant tree of these tropic forests is doubtless *Ficus segoviae* associated with *Quercus germana*, *Dendropanax arboreum*, *Banara mexicana*, *Zanthoxylum Pringlei*, *Clethra Pringlei* and a host of others.

At an altitude of 2,000—3,000 feet in the neighborhood of Orizaba, several species of oak occur: *Quercus* polymorpha, *Q. tomentosa* and *Q. obtusata*, all trees of small dimensions, having small rigid, usually wooly leaves. At 3,000 feet, the oak trees become larger and form dense forests with the following oak species: *Q. jalapensis*, *Q. calophylla (= Q. alamo)*, *Q. polymorpha*, *Q. lanceolata*, *Q. Ghiesbreghtii*. Beneath the shade of the oaks grow various species of *Chamaedorca* and on their roots the scarlet *Monotropa uniflora* (= *M. coecina*) and *Conopholis silvatica* (near *C. americana*). A variety of woody climbers occur, belonging to such genera as Banisteria, Paullinia, Serjania, Smilax, Rubus and Vitis. On the outskirts of the forest grows an elegant *bamboo*, *Arundinia acuminata*. At an elevation of 4—5,000 feet higher on the mountain sides, dense forests exist in which *Quercus Galeottii*, *Q. insignis* and such evergreen species (leafless during the short continuance of the violent northerly winds) enter as important elements. Many elegant epiphytes grow in these forests, such as *Juanulloa parasitica*, *Columnea Schiedea*, various orchids and bromeliads 2). At an altitude ranging from 6—7,000 feet, pines begin

to mingle with the oaks; yet the latter still predominate and constitute the bulk of the forest. Such oaks as Quercus lanceolata, Q. laurifolia, Q. glabrata mingle with Ostrya, Tilia, Salix and Cornus. Above 7,000 feet, the oaks are gradually replaced by pines and elevations of 8—10,000 feet, such species as, Quercus spectata, Q. reticulata, Q. chrysophylla and Q. pulchella are found scattered among the pines.

In this forest region with a temperature of 70° and favored by the long rainy season, the richest vegetation of Mexico exists and orchids reach their maximum with some two or three hundred species, some terrestrial, but mostly epiphytal. At 4,000 feet, according to my observations, I found forest trees the limbs of which had been broken off by the weight of epiphytes consisting of Epidendrums (E. virens), Tillandsias, Cercus triangularis, Phyllocaucus grandis, Polypondium aureum and others. At San Antonio, Hustusco and San Bartolome, oak trees reach their highest development, not only in the number of species but also in their size. Associated here with the oaks, grow trees of the orders Lauraceae, Myrtaeae, Anacardiaceae and Annonaeceae with an undergrowth consisting of tree ferns, Lygodium, Zamia and species of Citrosma, Acaea, Mimosa, Yucca, Triumfetta, Jatropha, Croton, Magnolia, Symlocos, Aralia and Aesculus. Liquidambar styraciflua has a very definitely defined vertical area lying between 3,500 and 5,500 feet. Platanus mexicanus only grows by running water at 4,500 to 5,500 feet at the upper limit of the tropical forest. Piper umbellatum climbs into the trees, according to my observations at Oritza.

In the midst of these forests of tall trees, belonging to the families Leguminosae, Sapotaceae, Malpighiaeae, Meliaeae, according to H. Galeotti, are found growing as epiphytes Stanhopea tigrina, S. saccata, Maxillaria (Lycaste) aromatic, Epidendrum ancepiicaulon, E. rigidum, E. Candelie, Pleurothallis microphylla, Oncidium sphaelatum, O. stramineum, Coelia Baueraiana, Galeotia (Zygoptetalum) grandiflora and Ponera striata.

The tropical forest in Yucatan is not extensive. Heilprin found near Sitilpech on the Camino Real to Valladolid a forest of tropic luxuriance. The large trees Inga xylocarpa and others of it are decked with orchids and epiphytes among which are species of Epidendrum, Cattleya, Tillandsia, Cercus, Oncidium. Among other components of the vegetation may be mentioned Yucca, Furcraea, Cercus grandiflorus, C. flagelliformis associated with C. peruvianus and other species in dense and impenetrable thickets.

Palm Forest Formation. About Rascon on the Tampico branch of the Mexican Central railroad, according to my observations occurs an almost pure formation of a fan palm Erythea edulis (see Fig. 32), forty to fifty feet tall and covering many square miles of level country and mountain ridges, in places associated with a tall and flexuous species of bamboo. Alternating with these palm forests are open meadows, which lead back between hills whose sides are grassy glades and whose summits are covered with oaks. The country is intersected by rivers along which are swamps, meadows, river jungles in endless succession, unexplored by the botanist and unknown.

Central American Regions.

The following region is a distinct one, for the reason that phytogeographically it stands intermediate between the South American phytogeographic

2) Ramirez, Dr. José: La Vegetacion de Mexico. 1899. Pages 15—26 where the details of the orchid distribution in Mexico are given.
sections on the one hand and the Mexican on the other. On account of its deserts, the Mexican tropic territories are easily separated from the Central American countries, which although showing in their flora close affinities to that of South Mexico, yet do not possess an alpine mountain flora, such as occurs in Mexico. Then too, the Central American vegetation includes many South American types, which do not reach southern Mexico 1).

Fig. 32. *Erythea (Brahea) edulis* S. Wats. growing at an altitude of 1,000 feet (300 m) near Rascon, State of San Luis Potosi, Mexico.

3. Guatemalan Region.

This region comprises the political states of Chiapas (Mexico), British Honduras, Guatemala, Honduras, Salvador and northern Nicaragua, and, with a diversified topography, situated in the tropics has a correspondingly rich flora arranged into a number of well characterized plant formations. Lowland plains exist, elevated tablelands occur and several high mountain peaks, described in Chapter I, page 117. —

The Mangrove Formation (*Rhizophora mangle* and associated species) occupies a narrow strip along the Atlantic and Pacific coasts of this region,

especially on the Gulf side along Honduras Bay, Rio Dulce, Caratasca Laguna, the deltas of the Prinzipolca, Cuculaia and Coco rivers and on the Pacific side in the Gulf of Fonseca. The shores of Utila and Ruatan islands are also mangrove fringed. The plants of this formation are essentially the same as for the formation in Mexico.

1. Forest-, Chaparral- and Savannah Formations.

Tropic Rain Forest Formation. Two types of the tropic rain forest exist, one which covers the plains and shows transition to tree savannas and another type, subtropic and tropical, which covers the mountains or sierras of the country. These two types may be considered to constitute one formation which covers a large part of the state of Chiapas in the drainage basin of the Usumacinta River and its tributaries the Rio Lacantun, Rio Chixoy, the northern part of Guatemala extending around the Sea of Yzabal into Honduras where it covers an irregular territory located in the basins of the Rio Motagua, Rio Ulua, on the Sierra de Omoa, Sierra del Espiritu Santo and along the north coast in a broad strip between the parallels of 84° 30' and 87° 45' W. longitude. This formation covers almost completely the country in eastern Honduras situated between the 84° and 86° W. longitude and 12° 30' and 15° 30' N. latitude, while it extends also into northern Nicaragua. In Guatemala on the Pacific coast, it forms a narrow strip inside of the coastal savannas. Along the Sierra de Olancho and Sierra de Misoco, two broad tongues of this formation enter the oak and pine forest formation.

The forest of the tierra caliente is one of much richness. In Honduras, according to Morris, nothing so impresses the traveller as the profusion and diversity of palms including an abundance of Oreodoxa oleracea and Euterpe edulis, both West Indian palms of which we have no other evidence of their occurring in Central America. Other prominent genera are Attalea (A. Cohné at San Pedro, Honduras, see plate V at p. 304) Bactris, Geonoma, Thrinax, Sabal, Acrocomia, Acanthorhiza, Desmoncus and Chamaedorea, several of them like the last being represented by a number of species. Swietenia mahagoni, wild Theobroma cauno, Cedrela odorata, Gualacum officinale, Acras sapota, Leucaena esculenta, Castillia elastica, Haematoxylon campechianum, Ceiba pentandra, Morus tinctoria enter into the composition of this forest. A useful indicator of climate is the Taxixoe, Perymenium Tuerekheimii, a tree which is confined in Alta Vera Paz to elevations between 700 and 1800 meters and which occurs in tropic and subtropic rain forests. On the Pacific slopes, it occurs up to an elevation of 1600 meters because the Pacific climate is less moist than that of Alta Vera Paz. Elsewhere this tree is found, as at San Pedro, at an elevation of 2100 meters. — Liquidambar styraciflua is also useful as an index of climatic conditions for in Alta Vera Paz, Baja Vera Paz and in Zacapa, it grows at elevations ranging from 800—1,900 meters. These two trees are characteristic ones for the tierra templada.

Orchids are represented by the genera Oncidium and Epidendrum, Gongora, Chysis, Maxillaria, Catasetum, Mormodes, Coryanthes and Dicræa; the most common are Schomburgkia tibicinis and Epidendrum bicornutum growing in the greatest profusion, even within reach of the salt spray from the sea. Each tree has its branches loaded with orchids and bromellads and its trunk festooned with climbing aroids, ferns and mosses.

1) Hemsley, W. B.: Biologia Centralli-Americana. IV: 151—152.
Cohune Ridge Formation. Between the pine ridges and the rivers are what are called cohune ridges in consequence of the predominance of the noble cohune palm, Attalea cohune (see plate V at p. 304). The distribution of this palm is affected by the near presence of running water, for it often monopolizes the banks of rivers and is not so generally represented farther away. It is found vegetating in clumps, small and large together, over which are masses of thick, woody creepers. Associated with this tree is the mahogany, Swietenia mahagoni. Ferns are abundant in the shady depths of this forest though there appears to be only one tree fern, Alsophila.

Pine Ridge Formation. The tree which occupies almost exclusively the dry gravely soil of the broken ridges is Pinus caribaea (= P. heterophylla = P. cubensis), a species which has the northern limits of its distribution in South Carolina. Except in the narrow valleys, the forest of this pine is a fine one. One hundred and one trees have been counted to the acre and the growth is tall and straight. In some places, the pine ridge plants give place to groves of oak, probably Quercus virginiana, and some of these oaks attain great size. This pine ridge formation, according to Sapper, occurs in British Honduras on the central Monkey River, in Guatemala southeast of Lake Peten, on the shore of the Sea of Yzabal. In Honduras, the pine ridges occur in isolated localities such as at Trujillo on the north coast, while stretching from the Brus Lagoon on the north shore to the Rio Grande (Nicaragua) in latitude 13° is a broad continuous strip characterized by the dominance of the plants of this formation alone. This strip reaches its greatest width on the Coco River (Nicaragua) extending from the littoral forest on the east to the tropic rain forest at S. Geronimo on the west. In general the littoral forest bounds the forests of Pinus cubensis on the east and northeast, but in several places the tropic rain forest is interposed. On the Pacific slope this formation is not represented.

Pine- and Oak Forest Formation. This formation in large part covers the south central part of Guatemala equally on each side of the 15° north latitude, extending into the province of Huehuetenango quite to the 16° north latitude with an eastern arm following the Rio Motagua beyond the Sea of Yzabal. Southeastward, this formation extends into San Salvador, north of the Savanna Chaparral formation. The whole of the central part of Honduras, as far east, as west longitude 85° 30' is occupied by the oak-pine forest, except where its continuity is broken by savannas, chaparrales, tropic rain forests and the like. In general, this formation occupies a country with a pronounced dry climate conditioned by the direction of the mountain chains which influence the distribution of rain. The drier the local climate, the more does the pine predominate over the oak, and conversely, but in Honduras the pines seem to be more widely distributed than in Guatemala.

The rainfall in the region of oaks and pines is between one and two meters yearly, but this amount may be modified by local conditions. On the Pacific slopes of the mountains 500 m
may he considered the lowest elevation at which the pine trees grow 1), whereas in the north the lowest limit of the pine timber is about 100 m above sealevel. In many situations in the savannas, the air temperature is sufficient to permit the growth of pines, which appear in single groups, or in large groves (savannas with pines).

Dry Tropic Forest Formation. Along and in the neighborhood of the Pacific coast, whither the moist air currents from the ocean occasionally impinge even in the dry season, occur primeval forests, which reach only the thickness of the tropic rain forests in the north, where the forest trees assemble themselves along the banks of rivers, or rapidly flowing streams. These dry forests differentiate themselves from the tropic rain forest in the north by the presence of numerous trees with a periodic leaf-fall, through the extreme scarcity of lianas, epiphytes and palms, and through the absence of tree ferns 2).

The relative poverty of undergrowth is a marked feature, and where it is found, it consists largely of succulent plants. Many times the sole undergrowth consists of bromeliaceous plants (typically in Salvador where these forests have their most pronounced distribution than in southern Honduras). In places, this forest formation merges with the savanna formation, thus constituting along the line of tension, a tree savanna.

Where the rainfall is greater this forest formation grades into the wet forests of the plains where, as in southern Salvador, it is impossible to clearly demarcate them. The boundary line, however, is well marked where the primeval tropic rain forest comes in contact with savannas, or pine ridges, elsewhere the lines of contact are more difficult to establish on account of the dovetailing of one formation into another.

The Chaparral Formation, consisting of a dry forest of small-leaved trees of short stature with thorns is widely distributed in considerable areas throughout the Guatemalan Region.

The chaparral vegetation consists of species of Acacia, Crescentia, numerous cacti (Opuntia, Mamillaria, Cereus) and in high elevations species of Agave.

There is an arid region supporting purely xerophytic vegetation in the central part of the country beginning at Gualan, 80 miles (129 km) from Puerto Barrios in the valley of the Motagua extending to El Rancho 130 miles (209 km) from Puerto Barrios, according to W. A. KELLERMANN, thence westward and north-westward through Salama. Tree cacti of the Cereus, Opuntia and Peireskia types are the characteristic forms together with Leguminosae, Sclerocarya mahagoni, Ficus trees etc. The grasses and other vegetation seem to be absolutely dead during the dry season, but when the rains begin in the spring everything becomes intensely green. At Zacapa, the vegetation is of a pronounced xerophytic type, tree cacti are abundant and Acacia- and Mimosa bushes are common together with numerous short-stemmed, matted grasses.

2) SAPPER, K.: Beiträge zur physischen Geographie von Honduras p. 149.
Savanna Formation. In Peten in the northern part of Guatemala are
great grass covered areas called sabanas by the natives. Small groups of
Coyol palm, Acrocomia vinifera, and other trees dot over the surface of these
savannas. In general, the savannas are in the middle of the lowlands between
the Caribbean coast and the mountains. The coast rains are well known, but
as the winds go over the interior plains without ascending, these plateaux are
therefore in a partially dry belt, so that for several months in the dry season
no rains occur.

Consulting the maps of Sapper, it is found that the savannas dotted over
with trees are located inside of the littoral forest along the whole Pacific coast
of Guatemala, extending into Salvador and Nicaragua with finger-like exten-
sions into the interior of the country along the valleys of the principal streams.
Here the vegetation of this formation mingles with that of the oak-pine
forests. Elsewhere the savannas occur in the interior, but never covering a
large amount of territory.

Another type of savanna called "pajales" exists in regions of relative dryness, where except
the small strips of timber along streams and the small clumps of bushes and isolated pine woods
cover the mountains and valleys in some parts of Alta Vera Paz. It lies, as other savanna is-
lands on the leeward side of mountains, thus cut off from an abundant rain supply.

Sabina Formation. Little information is available concerning this formation except a
short note by Sapper that the sabinas, Taxodium mucronatum, forms pure growths in
Huehuetenango, where it reaches its most eastern distribution.

2. Plant Formations on Central American Volcanoes.

The summit of Volcan de Agua (about 12,400 or 13,500 feet), is clothed
with grass and a few pines, together with alpine shrubs (Vacciineae, Lupinus etc.)
up to the summit; but Volcan de Fuego, the highest peak of Guatemala
(12,655 feet) owing perhaps to the looseness of the scoriae, is nearly barren.
The sparse vegetation here consists of ferns, lycopods, etc. fixed in the cre-
vices of the rocks. Lower on both volcanoes, the pine trees become larger
and more numerous, down to an elevation of about 10,200 feet, where they
cease suddenly and give way to a dense mixed forest of which Cheirostemon
is one of the most characteristic trees. Large evergreen oaks are prevalent
at 7,000 to 8,000 feet). The Volcan de Atitlan (11,564 or 12,000 feet)
somewhat resembles the Volcan de Agua and Volcan de Fuego, but the zones
of vegetation are not so clearly marked. Above 3,500 feet, where coffee
cultivation encroaches, a rich forest prevails on the southern slope through a
large portion of which is a beautiful undergrowth of small palms. The summit
of this mountain is nearly bare because the volcanic ash prevents plants from
getting a foothold there, but a few plants are to be found in the crevices of
the rocks fostered by streams issuing therefrom.

The Volcan Santa Maria (12,457 feet) in the Department of Quezaltenango is likewise clothed with forest vegetation which reaches the summit. The eruption of 1902 completely destroyed the vegetation on the south and southwest side where a new crater of immense size was formed.

Above 2,700 meters, the trees of the tropic rain forest appear no more, but the forest forming a Mixed Mountain Forest Formation consists of broad-leaved and coniferous trees, such as oaks, alders, pines, spruces and cypresses. The undergrowth consists of species of Vaccinium and shrubs of myrtle form. Many stems in this forest are decidedly mossy with a growth of epiphytic mosses. Mountain meadows occasionally interrupt the continuity of this forest formation as at Chancel and Rosario (3,100 meters).

Above the tree limit, as on Tacana (13,364 feet = 4073 m) and Tajumulco (13,814 feet) the botanist finds a Treeless Grassland Formation, grassy stretches characterized by low flowering plants mostly found at the top of precipices, the sides of waterfalls, or wherever the sun can reach the ground. At places where large wet surfaces of lava have no covering of soil, they are carpeted over with thick beds of mosses and ferns. The upper limit of flowering plants or the border of the eternal snows is never reached on any of the volcanoes of Central America. The summits of Atitlan and Volcan de Fuego are without vegetation, while the peak of Pacaya is covered by a sparse flora. Between 3,700 and 3,800 m is the upper limit of the coniferous forests. Single twisted specimens of sterile pines ascend on the moist southeast declivities of Volcan Tacana and Tajumulco to 3,980 meters, while the tree limit is much less elevated on the north and northwest slopes of the mountains.

4. Costa Rican Region.

This southern floral region of the Central American Tropic Section, comprising southern Nicaragua, Costa Rica and Panama, exhibits a close relationship with the South American Tropic flora. The composition of the Panama flora as far as investigated is decidedly South American. For example, according to Hemsley 1), the Dilleniaceae and Anonaceae thin out northward. The eastern South American order Lecythidaceae is represented by four genera and seven species, one of which reaches Nicaragua, its northern limit. Podocarpus with two species (P. taxifolia and P. salicifolia) replaces Pinus in the mountains of Costa Rica. The southern limits of such northern types as Liquidambar, Sabiaceae and Juglandaceae are reached in Costa Rica. Arbutus and Arctostaphylos are replaced by South American genera of the Vacciniae in the mountains.

The Nicaraguan Hylaea of Polakowsky 2) which includes the forests of the basin of the Rio San Juan and the southern shores of Lake Nicaragua can be taken, as the boundary country separating the cis-equatorial flora from that of Guatemala and Mexico. It may be said to represent the line which delimits the North American flora proper from that of South America. Therefore, we have here to consider this region only as an annex to the foregoing regions.

1) Hemsley, W. B.: Biologia Centralli-Americana IV: 313.
Such types as Pinus, the Cactaceae, the Piperaceae are little represented in the flora of Costa Rica and still less in Panama. The flora of the highlands of Costa Rica shows affinities with that of Mexico and may be considered to be a southern extension of Mexican types mingled with those of a different region. The primeval forests on the eastern slopes of the Cordilleras consist of plants represented in the flora of Columbia and Venezuela, while that on the Pacific coast of Costa Rica is essentially the same as in Panama¹). The flora of Chiriqui is essentially the same as that of eastern tropic South America, except in the higher regions between 8,000 and 9,000 feet where, as we have seen, a certain number of species occur which are either common to Mexico and Guatemala, or peculiar. The characteristic species which enter into the Chiriqui flora, as well, as the whole of the Costa Rican phytogeographic region, approach most nearly to those of Brazil, Guiana and the coasts of Venezuela and Columbia. Species in common with West Indian ones are also found. The Chiriqui flora has very little in common with Guatemala and Mexico and still less with Ecuador and the Andean highlands²). Lastly, we have no knowledge of any species of Yucca, Nolina, Dasylirion, or Beschorneria south of Guatemala; and records of these genera, as well as for Furcraea and Agave, are very few for the territory south of Mexico. The last two genera probably enter the Costa Rican region, yet the evidence of such distribution is scanty. The following formations contain examples of the mixed character of the South American type of the Rain Forest Formation with the North American one of oaks and alpine elements.

Hylaea Formation. The entire territory drained by the San Juan River in Nicaragua is covered with tropic forests of extreme density and impenetrableness. The trees are very tall and from eight to fourteen feet in diameter, not placed so closely as in our northern forests, but the spaces between are covered with shrubs and vines and numerous other plants together with parasites and epiphytes (ferns, bromeliads, mosses) which cover the branches and trunks of the trees³). On account of the unusually luxuriant character of the vegetation, POLAKOWSKY⁴) suggests the name Hylaea for this type of forest growth and this name Pittier applies also to the entire Atlantic forest of Costa Rica, attributing to it a South American character.

The Atlantic slope with more constant humidity of air is characterized by vast, dense, evergreen, virgin forests (Tropic Rain Forest Formation). The tangle of vegetation is so great that the interior of the country can be

¹) POLAKOWSKY, H.: Petermanns Mitteilungen 1877; see Bibliogr. p. 85.
reached only by way of the rivers. Owing to the mountainous character of the country, over half of its area lies between 900 and 2,100 meters above the sea and is almost wholly covered with virgin forest. This forest here and there ascends still higher, reaching the upper limit of the oak region about 2,700 meters above the sea.

The forest in the canal territory is of mixed growth, though the undergrowth contains a large element of low-growing species. The larger trees are Ceiba pentandra (≡ Eriodendron anfractusum), Hura crepitans, Cedrela, Erythrina and a few others. As one gets further into the forest, Castilloa becomes quite common. Although there are few features to differentiate this territory botanically from other places in the same latitude, yet aroids and other climbing species are especially abundant¹). As epiphytes growing upon the trees of this forest can be mentioned Epidendrum rigidum, E. ciliare, E. radicans, E. piliferum, Odontoglossum Schleiferianum, Comparetia falcata, Peperonia tenerrima and Polypodium Friedrichsthalianum.

Nowhere is the vegetation of these tropic forests more luxuriant than on the banks of the rivers. Wild fig-trees form great bowers over the streams, evergreen Pithecolobiums emit a fine perfume, bamboos display their feathery tops and groves of the vegetable-ivory palm are at places conspicuous. Many plants and orders of the lowlands begin to disappear between 2,000 and 3,500 feet in Panama; while tree ferns, grasses and showy orchids are conspicuous elements of the flora. The monocotyledonous undergrowth, the palms, cyclanthaceous plants, aroids and the genus Heliconia decrease considerably, while epiphytal orchids abound in the greatest variety. The Verbenaceae, Piperaceae, Papilionaceae, Compositae are as strongly represented as in the lower levels; while various Melastomaceae, Lauraceae, Tiliaceae, Clusiaceae, Apocynaceae and Vaccinaceae are peculiar²).

Oak Forest Formation. At about 7,000 feet on Volcan de los Vatos Costa Rica, oaks predominate and Podocarpus taxifolia, P. salicifolia, Drimys Winteri, Weinmannia sp. occur. The sides of Volcan de Barba at 6,000 to 9,000 feet are covered with magnificent forests, consisting of oaks, Cedrela odorata, Eugenia lepidota, and laurels. The oaks are abundant above 7,000 feet. Here occur Quercus virens (≡ Q. virginiana = Q. retusa), Q. costaricensis, Q. granulata; species which become stunted at the summit of the volcano at 10,000 feet.

Towards the upper limits of the tropic forest, below the oak forest in Costa Rica, such palms as Chamaedorea, Geonoma, Euterpe longepetiolata, Bactris (Guillemia) utilis and Carludovica microphylla are seen in great abundance, mixed with such tree-ferns as Alsophila pruinata, Hemitelia hordida, H. grandifolia, etc. — The slopes of Volcan de Cartago or Irazú (11,500 feet) above 7,000 feet also possess the forest of oaks, where in addition to the oaks mentioned above grows Quercus citrifolia. The undergrowth consists of Cavendishia veraguensis, Siphocampylus Gutierrezii, Centropogon costaricanus, Myrtus Oerstedii, Hedyosmum calloso-serratum, Viburnum

¹) Cowell: Explorations in Panama; see Bibliography p. 82.
stellato-tomentosum, Ardisia irasuensis, A. lacvis, Eupatorium ixiocladon, Oreopanax Oerstedianum, and at the upper limit of oaks Aretostaphylos rubescens and Buddleia alpina. — This oak forest on Volcan Irazu is very different from that either of Poás, or Turrialba in Costa Rica. The remnant of this forest is a narrow belt of stunted oaks just below the ash-cone and it gives way to a rather scattered growth of small trees and bushes which become more sparse and small as the summit is approached. — The oaks on the mountains in Panama at 4,200—8,000 feet, discovered by Dr. Seemann, consist of Quercus glabrescens, Q. aristata, Q. bumelioides together with Alnus Mirbelii, an alder which extends north to Guatemala. Chamaedorea pacaya occurs in barrancas at 7,000 feet.

Mountain Summit Formations. (Including the "paramos"). At 10,000 feet the oaks are stunted and covered with Usnea. They occur on Volcan de Barba mixed with Gaultheria Oerstediana, Gunnera insignis (the most northern representative of the genus) and a Calceolaria. The sides of the crater are clothed with thick bushes of Psidium costaricense, Myrtus Oerstedii, Myrsine rapanea and several others. — There is no trace of vegetation on the upper part of Volcan de Reventado. The crater lake, however, is surrounded by compact rows of oaks supporting various epiphytic plants such as Odontoglossum Oerstedii. Here also grow Senecio Oerstedianus, Hieracium irasuensis, as well, as species of Vaccinium, Viola and Geranium. — On the higher parts of Volcan Irazu, all arboreous vegetation ceases. The trachyte covered with vegetable mould is thickly carpeted with Lupinus and Alchemilla. At 11,000 feet in volcanic sand are found tufts of Chionolaena lavandulifolia, Castilleja irasuensis, Pernettya coriacea, Vaccinium densiflorum, Sphacele alpina and two other species, which form thick bushes six to seven feet high clothed with Usnea and a leafless, yellow Viscum.

According to Hemsley, the mountains in western Veraguas, Panama possess a vegetation resembling the Mexican highlands. Species of Alnus and Rubus are found with Fuchsia and Salvia; the brake Pteris aquilinum grows with Lupinus and Ageratum. Oaks and palms are intermingled, while the following genera are represented: Ageratum, Centradenia, Clematis, Conostegia, Freziera, Fuchsia, Galium, Euphorbia, Smilax, Styrax, Salvia, Rondeletia, Rhopala, Equisetum and Lopezia.

Savanna Formation. Savannas are found especially on the Pacific coast of Costa Rica. The savannas situated between the coastal and main cordilleras are interspersed with woodland and may be compared to an archipelago of savanna islands in a forest-sea. This character of the landscape extends to the border of Panama, and as far, as the southern end of the Chiriqui cordilleras. The savannas in Panama 1) exist only on the Pacific side of the Isthmus, where they form a grassy belt sixteen to eighteen miles broad lying between the littoral formation and the mountains. — In Costa Rica the plants of the savannas are, according to Tonduz: Curatella americana, Byrsonima crassifolia, Miconia argentea, and the grasses in the list from the "Savanes de la Cruz" are species of Sporobolus, Andropogon, Trachypogon, Paspalum, Scleria, Cyperus and Rhynchospora 2).

1) Cowell, J. F.: Explorations in Panama, see Bibliogr. p. 82.
2) Tonduz, A.D.: Herborisations au Costa Rica; see Bibliogr. p. 86.
The ground of the savannas in Panama is clothed with a turf of brilliant green consisting of Scleria nutans, Rhynchosporora comata, Paspalum distichum, P. irrigatum, Panicum maximum, Eragrostis ciliaris, and Papilionaceae, Polygonaceae, Gentianaceae, Violaceae. Groups of trees and bushes rise here and there. The trees belong, according to Hemsley, to such orders as Myrtaceae, Melastomaceae, Chrysobalanaceae, Papilionaceae, Verbenaceae, Compositae, Dilleniaceae, Anonaceae, Malpighiaceae, Acanthaceae overspread by plants of the Connvolvulaceae, Aristolochiaceae, Apocynaceae and climbing plants of other natural orders, and such ferns as Pteris aquilinum, Schizaea occidentalis. The chumiccales, or groves of sand-paper trees, Curatella americana, form curious features of the landscape.

Potreros Formation. The potreros in Costa Rica, according to Ridgway, are covered with trees supporting vines and epiphytes. Near the streams tree ferns are common. The high potrero (9,000 feet) at the base of the ash cone of Turrialba is a park-like savanna with groves of fine trees dotted over the undulating grass land and bearing epiphytic ferns, bromeliads and orchids. Polakowsky mentions the plants of the potreros as Alternanthera achyrantha, Dalea alopecuroides Hyps pectinata, Marsypianthes hypotoides, Mimosa pudica, M. invisa, Muhlenbergia tenella, Polygala paniculata and species of Panicum and Paspalum.

Catingas Formation. Polakowsky speaks of the Catingas of Costa Rica using that word in the Brazilian sense, where this formation typically exists. The light forests (Catingas), which exhibit the phenomenon of the fall of the leaf and stand during the hottest, driest season stripped of all their foliage remind the traveller of the northern forests in their leafless winter condition. With the first rains, the trees become clothed with green foliage. These stand in the Costa Rican region interspersed with the open forest found rarely away from the Pacific side, and savannas) in the central and western parts of Nicaragua and in Guanacaste in Costa Rica.

Chapter VII. North American Tropic Zone: West Indian Section.

The floristic section of the West Indian Islands includes three distinct regions, viz.: the Antillean, the Bahaman and the Bermudan. Each of these regions is characterized by a flora which owes its character to climatic, historic and edaphic factors. The high mountain chains in the Antillean region with numerous freshwater rivers and streams give to its flora a diversified character not possessed by the flora of the Bahama and Bermuda islands, which are generally low, calcareous and without running streams. The flora of the Greater Antilles possesses in many places the tropic luxuriance of a rain forest, while in the Bahamas, the plants are more or less xerophytic and the arborescent vegetation in the nature of chaparral, rather than associated together into a true forest. Besides the flora of the Bahama, and especially the Bermuda islands, is derivative, while that of the Antillean islands is much older and represents the remnants of a flora which was coincident with the former Antillean continent 2).

1. Antillean Region.

This includes the islands of Cuba, Jamaica, Santo Domingo, Puerto Rico and the Virgin islands. The Lesser Antilles are excluded because

Vegetation in Roaring River Bed, Jamaica.
River Bank Formation.
Reproduced by permission of the Philadelphia Museum.
their flora is of different origin and much younger in point of time than that of the Greater Antillean chain. For convenience, and because the division is a natural one, the flora of the Antillean Region has been divided into four districts, as follows: Cuban, Jamaican, Santo Domingan and Puerto Rican districts. Each of these will be considered separately, although they possess many phytogeographic features in common, as for example, a similar strand and mangrove vegetation.

A. Cuban District.

This phytogeographic district comprises the Island of Cuba, the Isle of Pines and outlying islands and keys. It is difficult in the absence of exact data to give an account of the plant formations of this district; but a general sketch, which will give the salient features of its flora, is of importance.

The flora of Cuba is noted for a large number of endemic types and also for the striking character of those types, their occurrence and their distribution. A comparison with the flora of Florida shows a great difference, while a comparison with Central and South America shows it to be almost identical with them in general character; and this is probably due to two facts: (1) Cuba and the other Greater Antilles were at one time connected intimately with Central and South America 1), and their floras practically identical (see map ante p. 172); (2) The Gulf Stream washing the shores of northern South America is deflected from the coast of Central America into the Caribbean Sea, carrying all tropic seeds over into the West Indies. Cuba's great coast line and its proximity to the stream, a part of which flows along the south coast and a part making a circuit of the Gulf of Mexico, striking the north coast of Cuba, would greatly favor the reception of such seeds. — The distribution of the flora over the Island is very interesting. The many different kinds of soil, the altitude, the proximity to the sea, all combine to make a diversified flora.

Presumably the Mangrove Formation in Cuba is similar to those swamps that occur in the other West India Islands where Rhizophora mangle, Avicennia nitida, Conocarpus erectus and Laguncularia racemosa are prominent. The Isle of Pines is completely surrounded by mangrove vegetation. — The Dune Formation includes the sandy beaches and sand dunes found in many parts of the island.

In general, the flora of such sandy places has much in common with similar locations in other parts of the Antillean archipelago. The plants of the sand dunes in Cuba are: Suriana maritima, Sesuvium portulacastrum, Borrichia arborescens, Ipomoea pes-caprae, Euphorbia buxifolia, Ximenia americana, Maytenus buxifolia, Tephrosia cinerea, Verbesina enclioides, Justicia (Adhatoda) origanoides, etc. The sandy soil or sandy flats are marked by the presence of Sida cordifolia, Corchorus hirsutus, Malpighia cocceigera, Myginda rhacona, M. ilicifolia and Pisonia discolor.

Harshberger, Survey N.-America.
Where the rocky strata reach the shore, the waves have worn them into their present irregular Sea Cliff Formation. Upon such rocky shores in southern Cuba grow Canavalia obtusifolia, Opuntia tuna, Rachicallis rupestris, Tournefortia gnaphalodes, Phyllanthus epiphyllanthus, Ayenia pusilla, Bursera angustata, Erythroxylum brevipes, Malpighia urens var. lanceolata, Pierodendron arboenum, Ceanothus reclinata, Gilricidia platycarpa, Sophora tomentosa, Ateleia apetala, Bourreria montana, Alternanthera muscoides.

The sterility of the river bottoms and river deltas south of the Sierra Maestra of Cuba is a marked feature of the country. With the exception of species of *Plumiera* and a few other species such areas are without trees. A rank growth of shrubs gives the whole river bottom a characteristic appearance not unlike "the scrub" of the Bahama islands, according to Taylor 1).

Along the streams in the Isle of Pines, according to Rowlee 2), and elsewhere in Cuba, the vegetation shows in the River Bank Formation the least xerophytic tendency and closely approaches the conditions found in humid tropic regions. The trees are mostly large. Palms abound, also shrubs of many kinds. Several plants of the banana family occur here together with many ferns and orchids.

The gorges of the south side of the Sierra Maestra of Cuba, according to Taylor are profusely covered with vegetation. Here occur Campyloneuron angustifolium, C. phylliditis, C. latum, Polypodium polyplodioides (= P. incanum), P. plumula, Philodendron lacerum, Renealmia occidentalis, Epidendrum cochleatum, Peperomia acuminata, P. obtusifolia, P. rotundifolia, P. scandens, Boehmeria litoralis, Fjella nudicaulis, P. microphylla, Rojania hastata, Pieramnia pentandra, Pavonia typhalaea, Gilibertia arborea, Wallenca laurifolia, Asclepias nivea, Solanum triste, Hamelia lutea, Psychotria lasiophalma, Chioocca racemosa, Dicliptera assurgens, Adenostemma Berteri. The abundance of water in these gorges in contrast to the slopes produces a luxuriant flora and through the decay of generations of these plants a rich damp soil has been formed.

Mud swamps are found at several places in the island of Cuba, as at Cienfuegos 3). Little is known about them; except that here grows the large fern, usually in pure association, *Acrostichum aureum*. No information is available as to the association of plants in the rivers and freshwater lagoons of Cuba, but the following aquatic plants of southern Cuba presumably are important elements in such associations: *Nasturtium officinale*, *Nymphaea ampla* var. *pulchella*, *Jussiaea repens*, *Utricularia spirandra*, *Sagittaria intermedia*, *Potamogeton fluviatans*, *Naias guadalupensis* and *Marsilia polycarpa*.

Savanna Formation. The savannas are wooded grass lands, grading into upland woods on the one hand, and into what are called "maniguas," and prairies with scattered clumps of bushes, on the other, and varying with the soil, as to whether, it is red, gravelly, or black. According to Rowlee, the savannas in the Isle of Pines may be wet, or dry. The dry savannas extend to the uplands and have steadily increased in size as the natives have burned them over to improve the pasturage. Besides sedges and grasses,

1) Torreya VII: 53.
3) Combs, Robert: District of Cienfuegos, see Bibliography p. 88.
there are many other herbaceous plants, especially species of Leguminosae. These plants make a dense sward. Scattered everywhere over the savannas are arborescent palms, mostly of the palmetto type.

The following are some of the plants which according to Combs are inhabitants of the savannas with underlying red soil: Davilla rugosa, Polygala angustifolia, Wissadula periplociofolia, Guazuma ulmifolia, Luhea speciosa, Crotalaria pumila, Brya eocenus, Belairia mueronata, Poeppigia procer, Cassia chrysocarpa, Mimoso pudica, Lysiloma latilisilqua, Calycocereetes protractus, Cuphea Parsonis, Casearia spinoseens, Piriqueta cistoides, Turnera pumilea, Passiflora ciliata, Roneletia trifoliol, Òenipa carao, Vernonio mensahofia, Chrysanthelium procumbens, Fectis eliarias, Jacquinia linearias (along brooklets), Rauwolfia Alphonsiana, R. cubana, Echites rosea, Ipomoea tenuissima, Solanum calicarpaeolius, Scoparia dulcis, Buchnera elongata, Vitex ilicifolia, Hypis gonocephala, and Coperocia hospita.

The fertile savannas on the south shore of Cuba, presumably those with the black soil, are noted for the presence of the following plants, according to Combs: Clematis dioica, Urena sinuata, Ericendron anfractuosum, Melochia nodiflora, Triumfetta semiritloba, Corchorus siliquosus, Malpighia urens, Gouania tomentosa, Serjania diversifolia, Spondias purpurea, Crotalaria retusa, Indigofera tinctoria, Centrosema Plumieri, C. virginianum, Clitoria glycinoides, Acaea sermentosa, Psidium guajava, Eugenia axillaris, Casearia hirta, Passiflora suberosa, Alibertia edulis, Mikania orinocensis, Lucuma mammosa, Tabernaemontana citrifolia, Echites rosea, Aselepis eurasavica, Hydrolea siniosa, Ehretia tinifolia, Tournefortia bicolor, Ipomoea umbellata, Solanum verbascifolium, S. jamaicense, Angelonia angustifolia, Geradina hispidula, Ruellia tuberosa, Curculigo scorzonerae, Oreadoza regia, with such grasses as, Paspalum Paniculatum, Andropogan bicorns, Panicum leucophaeum, Setaria setosa, Sporobolus Jacquetomii, and a fern Ancimia adiantifolia. Rhipsalis cassytha is found hanging from palmetto trees.

Open Forest Formation. This usually adjoins and grades imperceptibly into the savanna formation. The lee, or south slopes and ridges of the Sierra Maestra along the south shore of Cuba west of Santiago are covered with a dense growth of trees, according to Taylor. The lack of undergrowth is very marked and throughout the forest is an unbroken succession of ridges and slopes carpeted with little but dried leaves. The grasses Arthrostylidium capillifolium, Oplismenus hirtellus, Pharus latifolius and Renealmia occidentalis are the most common herbaceous species. Entering the woods in the half shade, according to Fernow the botanist finds the undergrowth to consist up to 2500 feet of a species of Calyptranthes, although the undergrowth is not dense owing to the lack of surface water.

The trees of such forests, never in pure stand, are Ceiba pentandra, Bursera simaruba, Spondias lutea, Cedrela odorata, Swietenia mahagoni, Pithecolobium arboreum (= P. filicifolium), Bocagea virgata, Carpoptemia cubensis, Lysiloma sabicu, Lonchocarpus sericeus, coffee and lemon trees run wild, together with such plants as Tillandsia fasciculata, Vanilla phaenantha, while conifers are absent, except Pinus occidentalis on the driest peaks above 1,800 feet. The Pine Barren Formation is distributed throughout Cuba, but in what localities is not known. On approaching El Yunque, a mountain near Baracoa at the east end of Cuba, the country becomes densely wooded and the scattered clumps of Oreadoza regia observed below 2,000 feet are absent. About three miles north of El Yunque is a range of high steep hills forming the watershed between the Duava and Toa rivers. The tops of these hills are occupied

1) Torreya VII: 51.
an open pine forest that is sharply marked off according to F. S. Earle1) from the surrounding forest areas.

The pineland on the Isle of Pines, according to Rowlee2), resembles that of the Gulf coast of the United States. The pine-timber predominates over considerable areas and consists of Pinus caribaea (= cubensis) [see plate VI at page 305], Pinus recurvata, and P. caribaea var. anomalula. The pines are best developed on the higher ground and with them are commingled palms, especially on the lower lands.

Tropic Forest Formation. The great forest area of Cuba occupies the interior of the eastern end and stretches unbroken a distance of 60 or 70 miles. This forest contains scattered trees of Swietenia mahagoni, Cedrela odorata and other trees together with vines and bushes which form an impenetrable tangle. The fungi of this forest include an abundance of Polyporaceae and Thelephoraceae; Hydnaceae are rare; the ground-inhabiting Agaricaceae are almost entirely wanting, while the kinds growing on rotten wood are fairly abundant.

The Sierra Maestra watered by the Guama River were almost completely covered by Oxandra (Boegean) virgata and a species of Calyptranthes. There also grow the Spanish cedar (Cedrela odorata), mahogany (Swietenia Mahagoni) and the ever-present Cecropia peltata and Spondias lutea. A balanophoraceous parasite Seybalium jamaicense grows on the roots of Cassia emarginata at an altitude of 2,100 feet, according to Norman Taylor3).

In the Isle of Pines, the trees of this forest are species of Clusia, Ficus and Cecropia, while bromeliads, orchids and aroids grow upon the trees and shrubs. On the rocks among the trees are species of Plumeria, Billbergia, Furcaea, and cacti in great profusion; palms are abundant particularly on the perpendicular faces of the mountains.

On the south shore of Cuba, near Cienfuegos, this type of forest only exists where the rain is sufficient to foster a rich and luxuriant tropic growth. Such a rainfall only occurs on those mountain slopes which face in the direction from which the rain clouds come, that is toward the prevailing moisture containing wind. The vegetation on the north slopes of the Sierra Maestra is watered by abundant rains and consequently the member of species is so great that one is bewildered by the richness of the flora. Filmy ferns, tree-ferns, epiphytic orchids, bromeliads, hepatics and mosses together with many species of the genus Peperomia seem to predominate. The lee or protected slopes of such mountains are generally arid and are covered with a xerophytic vegetation.

The atmosphere here is nearly saturated with moisture, an ideal environment for plants of all kinds. Almost every tree is covered with epiphytes, mostly ferns, orchids and Peperomias, while on the ground grow grasses. Such as Oplismenus and Arthrostylidium, the latter often running up into the trees. Of the orchids a little Pleurothallis was the most common. The genus Stelis is also represented together with melastomaceous shrubs and trees confined solely to the wet mountain slopes. The following trees, according to Fernow4), grow in these wet woods:

4) The High Sierra Maestra, Forestry Quarterly IV: 239—269.
In Corfe Rio Cobbe River (Roe Walk) Jamaica. Dead Tree Loaded with Ephyrite Orchids and Bromelias.

Tropic Forest Formation
Ochroma lagopus, Paritium elatum (= Hibiscus elatus), Rheedia aristata (rare), Calophyllum calaba, Bocagea laurifolia, Genipa americana, Guarea trichilioides, Styrax obtusifolium, Chrysophyllum glabrum.

B. Jamaican District.

Owing to the topographic configuration of this island with elevated mountains, plateaus, valleys, rivers and plains the flora although tropic in character is of the most varied constitution. The prevailing tropic vegetation of Jamaica is distinctly related to that of the Central and South American mainland, as is shown in the great profusion and variety of Melastomaceae, Myrtaceae and Cinchonaceae and the total absence of Cupuliferae and Abietineae. Although the flora is well known, botanically speaking, no authoritative systematic work has ever been published and there is no satisfactory phytogeographic sketch extant. This the present sketch in part attempts to supply.

The Mangrove Formation exists in a considerable number of localities along the coast line of Jamaica notably according to my observations in Kingston Bay, Montego Bay and the harbor of Port Antonio. Its constitution is similar to that in other parts of the tropics. At the marshy edges of a mangrove swamp, I found Mariscus rufus and Fimbristylistis spadicea. — The constitution of the Dune Formation is essentially similar to that on other tropic sand dunes. Ipomoea pes-caprae according to my observations is the character plant of low beaches. Recently Britton has discovered on the dunes west of Black River, a tall palm (Thrinax) known locally as bay thatch or pimento.

The Sea Cliff Formation exists along the entire coast line of Jamaica, except where broken by recrrent bays, or by sandy beaches.

According to my observations², the rocks near Port Antonio, projecting over the sea and in storms wet by the spray (that is, tossed up from beneath), support Wedelia cariosa, Coccoloba uvifera, Ruellia tuberosa, Crotalaria incana and Plumeria sp. Hanging over the rocks and lying prostrate on the ground is Borrichia arborescens. — On the ocean cliffs at Runaway Bay grows Rhaehicallis maritima a shrub known only in Jamaica at this point. This formation is well represented at Lover’s Leap, a precipice at the coastal end of the Santa Cruz Mountains in southwestern Jamaica. Here in the dry soil was obtained one of the larger Jamaican cacti, a species of the genus Pilocereus. The columnar branched plant fifteen feet high was found on the cliffs at 1,600 feet altitude. This being a region of low rainfall the cacti form extensive groves and the plants are adapted to dry conditions notably the rare, wind-like shrub Lasiocroton macrophyllus. In the woods of the Santa Cruz Mountains Dr. Britton collected Bauhinia porrecta and the rare Feltostigma of the rue family. The rocky woods at Negril Point yielded many rare species, including the "wild sago" (Zamia) and the fine spider lily (Hymenocallis).

Savanna and Chaparral-Formation. In all probability this formation was a prominent one in the southwestern part of the island before the land was devoted to agriculture and grazing. Much of the best pasture land is found in the St. Catherine, Clarendon, Manchester and St. Elizabeth parishes and presumably the ancient grassy savannas were early devoted to the rearing of

1) Harshberger, John W.: Strand Flora of Great Inagua etc.: see Bibliogr. p. 89.
cattle, the country having every appearance of having been grassland for a long time.

Liguanea Plain and the Salt Pond District are covered with chaparral, which owes its presence to the much diminished rainfall on the south side of the island as compared with the almost daily rains on the north side. This meteorologic fact is reflected in the vegetation. The country is covered with the mesquite, *Prosopis juliflora*, logwood, *Haematoxylon campechianum*, *Yucca aloifolia*, *Pithecolobium unguis-cati*, *Inga vera*, *I. ingoides*, *Acacia farnesiana* and other leguminous trees and shrubs, while such cacti, as *Opuntia tuna*, *O. spinosissima*, species of *Cereus* abound, together with *Bromelia pinguin* and other xerophytic types of plants.

Limestone Sinks (Cockpit) Formation. The vegetation of the cockpits on account of the inaccessibility of the country has never been investigated thoroughly, and we know little about the associations of plants there. The cockpits, which are west of the Clarendon ridges, vary in depth from shallow, circular, basin-like depressions surrounded by low mammillary hills to steep-side sinks often 500 feet deep. These are developed in the upper part of white limestone. Below is another white limestone, also soluble, but less pervious than the former, and below this again, nodular limestone, clays and conglomerates of the older insoluble and impervious strata which check the downward course of the lime-charged waters and force them to take a horizontal direction. When the bottoms of the cockpits reach the more resisting limestone of the second group, their perimeters begin to expand and round or oval valleys are formed known in Jamaica as light-holes. The flora of these sinks is peculiar and is still open to investigation.

In the Great Morass of Westmoreland, according to Britton 1), we have a swamp of large extent similar in some features to the Everglades of Florida. The rare tree * Crudia Schreberi* (= *C. spicata*) grows here, as well, as the marsh cabbage palm *Oreodoxa* and a veritable forest of the long thatch palm * Geonoma Swartzii*.

The River Bank Formation is typically developed along the numerous streams in Jamaica, but as it insensibly merges into that of the tropic rain forest, it will be best to refer to it again under that head. Roaring River where it passes under the road from St. Ann’s Bay to Ocho Rios is a series of low waterfalls separated by nearly level stretches which present the curious aspect of many large trees (* Bucida buceras*, *Grias cauliflora*) growing directly in the water. Their seeds germinate in the calcareous travertine, or tufa, deposited in the level stretches from the water. (See plate XVI to page 672.)

Tropic Forest Formation. This is typically developed on the north side of the island and on the slopes and the summits of mountains where the rainfall is sufficient to stimulate the growth of a rich and luxuriant vegetation. The whole eastern part of the island about the John Crow Mountains is one of very heavy rainfall and the vegetation is wonderfully varied and beautiful. Ferns according to Campbell 2) abound and in some places thickets of beautiful

palm, *Euterpe oleracea*, form a striking feature of the forest. These palms with the tree ferns, large aroids and epiphytic bromeliads give a thoroughly tropic aspect to the vegetation. There are numerous epiphytic orchids and a great variety of species of *Heliconia, Hedychium, Canna* and tropic liverworts, of the genera *Dendroceros, Syngonium* and *Monoclea*. In this tropic forest generally, according to my observations, the botanist meets with several species of *Philodendron* climbing high up the trunks of trees, or clambering over rocks. *Syngonium* is also abundant and species of *Anthurium, Dieffenbachia, Peperomia*, and other genera abound in the more moist situations. Innumerable lianes festoon and smother the forest trees. Some of these are leguminous climbers, others belong to the natural orders Convolvulaceae, Vitaceae, Acanthaceae, and Apocynaceae. The ferns comprise all the tropic types, according to Campbell, the *Hymenophyllaceae* alone being represented by some fifty species. The *Cyatheaceae* include the tree ferns (see plate XVIII), *Cyathea, Alsophila, Hemitelia*, while the order *Marattiaceae* is represented by *Marattia alata, Danaea alata, D. elliptica* and *D. nodosa*. The fern order *Schizaceae* comprise *Schizaea elegans, Lygodium volubile*, *L. venustum, Ancimia aurita, A. hirta, A. adiantifolia* and others. *Gleichenia pubescens, G. dichotoma, G. pectinata* are common and conspicuous ferns. The bromeliads (*Acchmea, Caraguata, Tillandsia*) occur in nearly all parts of the island and form an important factor in the rich epiphytic flora. One of the most characteristic sights is a large cotton tree, *Ceiba pentandra (= Eriodendron anfractuosum*) with its great horizontal branches covered with epiphytes conspicuous among which are orchids, *Cereus triangularis, Rhipsalis cassytha*, many Tillandsias and other bromeliaceous plants (see plate XVII, to page 677, Bog Walk.) Sixty species of orchids are found in the island, the more interesting epiphytic types in this rain forest formation. There are pretty species of *Epidendrum*, a brilliant crimson orchid *Broughtonia sanguinea* and such terrestrial orchids as *Bletia floridu, B. verecunda*.

The most detailed account of the mountain forests of eastern Jamaica we owe to Forrest Shreve (1906, see Bibliogr.) who penetrated them in a large valley drained by a branch of Spanish River lying between Vinegar Hill and John Crow Peak (6,000 feet), the most westerly high peak of the Blue Mountain Range. Over the river the trees form a closed arch and here such trees as *Symphonia globulifera, Calophyllum calaba* reach a height of 100 feet. The long thatch palm *Geonoma Swartzi*, *Helleonia bhai*, species of *Canna, Philodendron* and numerous shrubby and arborescent Rubiaceae and Melastomaceae are present. The epiphytic forms are exceedingly rich; *Pilea radicans* covers the limbs of the shrubs to a height of 20 feet; *Trichomanes pyxidiferum* and *T. musceoides* clothe the lower portions of many trunks and *Podophyllum phyllitis* and *P. serpens* are larger climbing ferns. The rich terrestrial herbaceous vegetation consists of ferns, species of *Pilea* and *Peperomia*, as well as several orchids. Sareely a leaf of the undergrowth is without its epiphytic *Hepaticae* (which have been studied systematically by Prof. Evans of Yale University, Cfr. Bibliography) and some large fronds of *Danaea* and *Aeroschium* are completely covered. Among the interesting ferns in this forest are *Vittaria lineata, V. remota, Aspidium Fadyenii, Danaea jamaicensis, Davallia ecutarioides, Gymnopteris aliena* and *Rhipidopteris peltata*. Hanging from the trees is *Lycopodium taxifolium* and nearby is the rare *Psilotum complanatum*. Among the epiphytic orchids occur *Liparis elata, Masde-
vallia fenestrata, Epidendrum fragrans, E. bleetioides, E. polybulbon which climbs over the limbs of trees with Peperomia cordifolia, as well, as Comparettia falcata and Pleurothallis tribuloides. The vegetation of the valley slopes consists of the shrubs Cephaelis punicea (= C. elata), Hoffmannia pedunculata, Clidemia (Sagracea) plumosa, the trailing Schradera cephalotes and the root parasite Seybalium jamaicense. Scattered colonies of Burmannia sp. are found together with such ferns as Marattia alata, Lygodium volubile, Gleichenia furcata, Cyathea arborea (see plate XVIII), as well as species of Botrychiunm, Davallia, Danaea, Trichomanes, Hymenophyllum, Lomaria and Elaphoglossum. Among the trees may be seen species characteristic of higher altitudes as Podocarpus Urbanii, Vaccinium meridionale, Alehoentia latifolia, Guarea trichioides and Laplacea haematoxylon, a plant with splendid, white, rose-like flowers.

In the forest at over 2,200 feet altitude near Bluefields grow Columnea, a vine of the Gesneriaceae and three species of the bromeliaceous genus, Hohenbergia. The forest of Dolphin Head in western Jamaica consists of a variety of trees and shrubs such as the elegant white flowered vine Blakeo, the nickel-tree (Ormosia), a tall forest tree, as is also Hernandia with its curious pouch-like, translucent fruits. On the hills and mountains of St. Ann’s Parish occur Thrinax tessellata and Podocarpus Purdieanus, a large forest tree. (See colored map.)

Mountain Summit Formation. Above the tropic rain forest, the occurrence of sphagnum mosses, as well, as Lycopodium clavatum, L. complanatum, Fragaria vesca, Rubus alpinus, R. jamaicensis, Ranunculus repens, R. parviflorus, mixed species of Begonia, Gleichenia and other tropic types show the meeting of mountain and northern types with the tropic lowland flora.

The trees at the summit of Blue Mountain Peak are somewhat dwarfed. Among the most characteristic trees of the higher altitudes is Vaccinium meridionale, associated with Podocarpus coriaceus. Tree ferns (in three species) also abound, but are not so fine as those somewhat lower down. The fern flora of the mountain summit consists of Asplenium Harrisii, A. Fawcettii, and a fern allied to Cystopteris fragilis (which may be the long lost Cystopteris jamaicensis) and a Nephrodium are among the many rarities growing there 1). The summit of Sir John Peak (6,100 feet) is clothed with bushes of Vaccinium sp., Clethra Alexandri covered with mistletoe and a large new grass Danthonia Shrevei growing in dense tufts and covering extended areas almost to the exclusion of other vegetation.

C. Santo Domingan District.

Santo Domingo excels Puerto Rico, Cuba and Jamaica in altitude, diversity of configuration, picturesque aspect and natural fertility. It is continental in its topographic make-up, consisting of lofty forest-covered peaks and deep valleys threaded by streams of limpid water. There are many central valley plains in the island. The largest of these, lying between the Monte Christi Range and the Cordillera Cibao, extends from the sea at the Haitian border to Samana Bay. The western portion watered by the Yaqui is an arid region covered by chaparral, where arborescent opuntias and cereuses abound. The windward area, or eastern division, watered by the Yuna has a mesophytic

1) Underwood, L. M.: Account of Explorations, see Bibliogr. p. 92.
tropic flora. The terraced Caribbean coast supports a belt of forest averaging twelve miles in width. The tension line between coastal forest and inland prairie is park-like in aspect and forms savannas, which are carpeted by green grass and dotted with clumps of trees. — These areas of course vary with the configuration of the country. In general the lee slopes of mountains and valleys are arid, or dry, being cut off from the moisture containing prevailing winds; while the windward slopes are usually clothed with rich and luxuriant tropic vegetation.

The country has never been explored thoroughly for botanic purposes and many interesting plants remain to reward the toil of the explorer. In the absence of satisfactory information, the following arrangement of formations has been adopted tentatively.

The Mangrove Formation, according to my observations 1), exists typically in all of the large harbors, or bays of the island of which there are many beautiful ones. The three trees concerned in forming the mangrove swamp are Rhizophora mangle, Avicennia nitida and Laguncularia racemosa. — Along the shore the usual strand flora is found; conspicuous among the plants here being Coccoioba uvifera, Ipomoca pes-caprae, Hymenocallis and many other seaside plants. Back of the dunes comes a belt of low woodland, which gradually merges into the vegetation of the low hills. These low woods are characterized by species of Clusia, Ficus, Haematoxylon. Extensive salt lakes, or ponds, are found in the southwestern parts of the island.

In the Republic of Haiti, as well as in that of Santo Domingo, there are many arid plains which owe their origin to their location on the leeward side of mountains. Here we find a xerophytic flora composed of Opuntia tuna, O. spinosissima, species of Cereus, Nopalea, Mamillaria, Melocactus, Peireskia aculeata, together with species of Agave.

The Chaparral Formation exists in many places and the component vegetation consists of Acacia farnesiana, A. sphacrocephala, Prosopis juliflora, Yucca aloifolia and other xerophytic shrubs and herbaceous plants. This formation grades imperceptibly into the formation of arid plains. It exists about Azua and other places on the south coast of the island. — The Savanna Formation forms green covering of the open park-like areas and consists of species of the following genera of grasses as of the chief components of savanna land: Paspalum, Chloris, Panicum, Andropogon and Eragrostis 2).

The savanna at San Michèl in north central Haiti is fringed by a xerophytic strip which merges into the pine lands of the mountain foot hills covered with Pinus occidentalis, a palm Thrinax sp. and a species of Agave, according to Nash 3). Low shrubs characterize this savanna and a species of Duranta occurs near the banks of dry streams that carry water in wet weather. On the plain of Gonaives the vegetation consists of small trees mingled with which are numerous

1) In the harbor of Cape Haitien, Gonaives Bay, Aux Cayes harbor and harbor of Jacmel in 1901.

shrub species of Tillandsia usneoides, Caeti are common, such as Opuntia Dil- lenii, columnar species of Cereus, Pilocereus forming the characteristic feature of the landscape.

The savanna in the Valle Nuevo in Santo Domingo (2270 m) is dotted over with trees of Pinus occidentalis, on the stems of which grows, according to Urban, the loranthaceous parasite Dendropecon pyenophyllum with fine rose-colored flowers and the ground is covered with such grasses as Agrostis perennans, Danthonia domingensis, Eaton (Sphenopholis) obtusata and Trise- tum toluccense.

Tropic Forest Formation. This consists in the mountains near Barahona of a forest rich in mahogany _Swietenia mahagoni_, lignum-vitae _Guaiacum officinalis_, fustic _Maclura_ (Chlorophora) _tinctoria_, satinwood _Zanthoxylum flavum_ and lancewood. At 2,900 feet the mahogany disappears and at 3,590 feet the West Indian cedar, _Cedrela odorata_ is a dominant forest tree. At a height of 2,000 feet on the north coast, tree ferns begin to make their appearance, and a few scattering filmy ferns, but at an elevation of 3,500 feet, according to Nash 1), tree ferns and ferns in general become plentiful.

At this elevation, the mountains are covered with clouds in the afternoon and everything is dripping with moisture, the home of filmy ferns, hepaties and many mosses. The larger trees are draped with lianas and their limbs support a rich and varied epiphytic flora of ferns, caeti, bromeliads and orchids; while parasites of the genera Phoradendron and Dendrophthora occur on many of the forest trees. Along the roadside through a lowland tropic forest back of the city of Cape Haitien, I noticed in 1901 2), Palicourea pavetta, _Salvia mieranthra_, _Lepidium virginicum_, _Leonurus sibiricus_, _Sida acuta_, _Hamelia patens_, _Tephrosia purpurea_, _Spermacoce laevis_, _Achyranthes aspera_ var. _obtusifolia_, _Centrosema virginianum_, _Rauwolfia canescens_, _Solanium aculeatissimum_, _Hibiscus Boryanus_, _H. vitifolius_, _Vinea rosea_, _Parthenium hysterophorum_ and the cosmopolitan _Argemone mexicana_.

At definite elevations on the mountain slopes in Santo Domingo, as at Marmalade (3,000 feet), the tropic forest is replaced by a _Coniferous Forest Formation._ On account of the open growth of the trees, the appearance of this pine forest is similar to the pineries of the southern United States, but here the pines cover the mountain sides. The undergrowth is extremely dense, consisting of small trees and shrubs and such herbs in the Valley of Constanza (1170 m) as _Aseyrum hypericoideae_, _Oxalis Eggersii_, _Desmodium ciliare_, _Rubus domingensis_, _Aster exills_, _Herci- cium carolinianum_, _H. venosum_, _Pteris_ (_Pteridium_) _aquilina_, and as parasites on the pines _Dendro- pemon parvifolius_ and _D. Constantiae_. Conspicuous among these are plants of the orders Mela- tomaeae and Compositae, a species of Agave and many others.

Mountain Summit Formation. The loftiest peak in the island is Mount Loma Tina (10,300 feet), being situated to the south of the axial line of mountains, northwest of the city of San Domingo. The highest eminence of the main ridge is Pico del Valle, so called, because it is constantly enveloped in silvery clouds. This rises to 9,700 feet, while nearby are many mountains, 8,000 feet, or more in altitude. Up to four thousand feet, pines (_Pinus occidentalis_) are found; further up, as the precipitation increases, are beautiful leafy woods; while on the summits are dense thickets of ferns. According to the observations of Baron H. Eggers 3) the vegetation on the summit of

1) Nash, G. V.: Report on Exploration in Haiti; 1903: see Bibliogr. p. 90.
Cyathea arborea Smith (tree fern),
a Group on a Jamaican hillside. This fern which shuns the shade, ranges to 2,500 feet (760 m).
Reproduced by permission of the Philadelphia Museum.
Pico del Valle is three to four feet high ($1-2$ m), consisting of shrubs such as *Lyonia heptamera*, *Garrya Fadyenii*, while here are found *Peperomia reflexa*, *Pilea alpina*, and the ferns *Vittaria lineata*, *Polypodium angustifolium*, *Elaphoglossum Eggersii*, *E. leptophyllium*, *Asplenium monanthes*, *Lepicytis murrorum*, mosses and lichens. The other mountains peaks of which there are many in the island, are veritable terra incognita, to reach which the botanist is compelled to slash his way through thickets of ferns, lianes and shrubs often so dense that he must crawl on hands and knees through a tunnel cut by himself, and blinded by spores at every step.

D. Puerto Rican District.

The islands of Puerto Rico, Culebra, Crab, St. Thomas, St. John, Tortola, Virgin Gorda, Anegada and the adjoining keys together with St. Croix are phytogeographically included in this district. Geographically St. Croix is separated from the other islands by a sea passage, 2,452 fathoms deep; whereas the greatest depth of sea between Puerto Rico and the other islands mentioned does not exceed 23 fathoms and that in the Virgin Passage (see ante p. 124). These islands are all mountainous, projecting above the water as submerged peaks, which they really are. They are very rugged, due to the encroachment of the sea which has formed cliffs, detached stacks and skerries, with winding channels of blue water, like land-locked lakes between the islands. The smaller islands are marked by stretches of coral and shell-sand overgrown with seaside grapes, cactus — a large prickly pear. St. Croix has a high, sharp configuration with deep cliffs near the shore and many low hills in the interior all covered with beautiful vegetation. Two areas are distinguished: the Puerto Rican Territory and the Virgin Island Territory.

a) Puerto Rican Territory.

This territory comprises the island of Puerto Rico, Culebra and Crab Island. Puerto Rico, which is rectangular in shape, possesses a central mountain chain known as the Cayey range extending unbroken from end to end of the island with the Luquillo Range, parallel to it on the south (see ante p. 124). Between the two ranges (2,500 feet) lies a mountainous valley full of sharp ridges, detached peaks and deep ravines, with no level land except a few narrow alluvial valleys. Along either coast, extending from the foothills of the mountains to the sea, stretch beautiful plains, gently sloping to the shore and reaching in width at some points on the south side to five miles and on the north side to three miles.

Very little is known concerning the plant formations of Puerto Rico except the tropic forest formation, and consequently no description of them can be given, except for several which have recently been studied. The following account summarizes our knowledge of the phytogeography of the island.
Coast Formations. Our information concerning the marine algae of Puerto Rico is due to the work of Dr. F. Hauck. The cays and inlets of the island are frequently bordered by mangrove vegetation. Presumably the same plants enter this formation as in other parts of the American tropics. — Presumably the Dune, River Bank, Salt Marsh, Swamp, Savanna and Arid Plain formations exist on this island, as in Santo Domingo and Cuba, because Puerto Rico has a similar topographic configuration. The Pine Formation, however, is absent.

Chaparral Formation. The chaparral formation occupies the foothills between the southern front of the central mountains and the southern coast, a region which is comparatively arid. The wide playas and stream valleys of this country were once covered with large trees, a few scattered examples of which have been preserved, with the clearing of the land for sugar culture. The flora is markedly different from the mountain region, although there are a few species of trees in common. Low, shrubby, thorny leguminous trees (species of Acacia, etc.) covered by Spanish mosses (Tillandsia) largely compose the vegetation. In the dry season, the landscape has a brownish color in contrast to the bright greens of the mountain forests. This formation is found, especially well developed on the coast hills between Ponce and Yauco.

In this country, it is accompanied by a thick undergrowth of grass, approaching the condition of a savanna. The limestone summits of the hills, or cerros, west of Yauco are covered by a remarkable growth of chaparral, including a little fan palm Thrinax Ponceana, the Llume palm Aèria attenuata, arboreal cacti, accompanied by thorny trees, the whole draped by Tillandsia. This formation occurs on the Island of Culebra which, as the altitude of the hills is not sufficient to condense the moisture as rain, is a dry island. Its forest is low and not very dense consisting of guayanilla (Bucida buceras), lignum vitae (Guajacum sanctum) as the largest trees, while cactuses abound in ten species of the genera Cereus, Pilocereus, Mammillaria, Nopalea, Opuntia and a palm (Coccothrinax) and giant century plant (Agave) are found.

Tropic Forest Formation. The composition of this forest varies from quebrado to quebrado and the trees of south and west slopes present distinct differences from those of east and north exposures. But to a large extent the distribution of species is more or less an accident. Trees have grown wherever the many means of distribution have dropped the seeds and where they have found conditions suitable to their needs. It is rare to find trees of the same species in considerable numbers together, except perhaps a palm (Acrista monticola Cook) which is more or less gregarious in habit. Here and there single trees or little groups of trees found only in one spot are seen, as for example the mago, Hernandia sonora. On the whole, then, the forest growth of the island is far from uniform, although the causes which have brought about its local differentiation are for the most part not of a kind to afford a basis for classification into types.

3) Quebrado = ravine, gorge.
Much of the mountain area is occupied by cultivated crops of coffee, tobacco, fruit trees, shrubs etc., broken by fields of tall Para and Guinea grasses. There are many large cultivated shrubs and bushes which grow here, and hence it is that some of these mountainous portions of the island have, although under cultivation, the aspect of thick primeval forests. Such wooded lands are often coffee plantations.

The original forest has been preserved upon the slopes and summit of El Yunque, the highest peak of the island (3,300 or 3,790 feet). The forests of El Yunque in general consist of a jungle of trees, underbrush and lianas, and are exceedingly wet, the rainfall averaging one hundred and twenty inches per year. The forest resembles in its main features those of the other West India islands, according to EGGERS in a letter to Sir JOSEPH HOOKER, dated 1883 (Nature, London 1884). Here occur several interesting trees, especially a beautiful Talanuna, a Hirtella, and Coccoloba macrophylla found up to an elevation of 2,000 feet.

The United States government has established a forest reserve here which has been designated technically the Luquillo Forest Reserve. Specifically, according to the studies of GIFFORD, the sole distinction which can be made within the reserve is the division into low and high mountain forest. First in importance is the forest which grows in the fertile gorges, ravines and coves protected from strong winds and lying between the altitudes of 500 and 2,000 feet. This forest consists of four dominant trees, viz.: tabanuco (Dacryodes hexandra), laurel sabino (Magnolia splendens), aubusbo (Sideroxylon masticifolium) and guaraguao (Guarea trichilioides). Of these the aubusbo is the rarest, while laurel sabino is not so scarce with guaraguau standing third. The most abundant tree is the tabanuco which grows in patches and groups of almost pure stand and is common on the eastern side of the reserve, reproducing freely. Associated with these species, there is a host of others, such as: Bacida capitata (= Terminalia Hilariana), Andira inermis, Ternstroemia luquillensis. There are also many climbing vines, such as Rourea frutescens, R. glabra and a species of grass, which cuts like a razor. Here and there in this belt are groups of mountain palms which have control of extensive areas. In looking down upon the interior basin from the top of El Yunque, it appears, like a sea of palms with islands of dark-leaved hardwoods here and there. Probably fifty per cent. of this fertile basin is covered with these palms.

Above the 2,000 foot contour line, there is another kind of forest growth. This is a stunted, gnarled, slow-growing vegetation, made up of many species. The limbs are moss covered and the roots in many cases bare. These are the rough mountain tops where the vegetation helps to restrain the floods and hold the soil. — Trees to the number of ca. 85 species of trees according to GIFFORD and BARTLETT occupy the Luquillo Reserve in Puerto Rico.

b) Virgin Islands Area.

The islands included in this area, mentioned from east to west, are: St. Thomas, St. John, Tortola, Virgin Gorda, Anegada and, distinct from the

4) GIFFORD, J. C.: The Luquillo forest Reserve, see Bibliogr. p. 89.
rest, St. Croix. Looking at the vegetation of St. Croix and the Virgin islands in its generality, and without entering into details, we may consider it to be identical, as a whole, showing the same main features. Our knowledge of the flora of these islands is due to the labors of several botanists 1).

On the sandy shore and on the dunes consisting of innumerable pieces of broken shells and corals is found a luxuriant flora, which remains green throughout the year, even in dry spells, because of the underground water which filters down from the hills above. The species which inhabit the strip of upper beach form an Ipomoea pes-caprae Association. The vegetation is in general sparse, the patches of plants being separated by bare stretches of sandy beach. Directly behind the upper beach, the botanist finds an association of trees and shrubs which correspond to the Barringtonia Formation in Java. The trees of this Coccoloba-Hippomane Association are Hippomane manguine, Coccoloba uvifera, Chrysobalanus icaco (more rare), Thespesia populnea, Terminalia catappa with Caesalpinia (Guianilint) bonduc and C. bonducella in the shade of the dominant trees.

The species of the rocky cliffs are mostly shrubs of low growth with thick and coriaceous leaves that are able to resist the force of the wind. The most common plants of such situations, according to Boergesen and Paulsen, are Zanthoxylum spinifex, Erithalis fruticosa, Jacquina armillaris, Borreria arborescens and Conocarpus erectus (a mangrove swamp plant here under different edaphic surroundings) and, according to Eggers, Plumeria alba, Coccoloba punctata, Elaeodendron xylocarpum and such herbaceous species as Stenotaphrum americanum, Paspalum distichum, Sesuvium portulacastrum and Euphorbia buxifolia. A tree also characteristic of rocky shores is Baccharis dioica, while on the rocky coasts of St. Thomas and St. John occur many succulent plants: Agave Morrisii, Cereus floccosus, Opuntia tuna, O. humilis and a species of Thrinax.

Mangrove Formation. As before mentioned, the mangrove vegetation inhabits the bays and the lagoons along shore, as well, as the salt ponds of the interior. In many situations Rhizophora mangle is the sole constituent, forming a dense forest growth with interlacing branches above, where beneath the shade thus found are associated Herpestis Monniera and Acrostichum aut-

Elsewhere among the mangroves are found *Avicennia nitida*, *Laguncularia racemosa*, *Anona palustris*, *Conocarpus erectus* and occasionally *Bucida buceras*.

Among the herbaceous plants at the edge of the lagoons may be mentioned *Hellotropium curassavicum*, *Batis maritima*, *Portulaca pilosa*, *Herpestis Monniera*, *Chenopodium ambrosioides*, *Peetis humifusa* and *Caparria biflora*.

In the shallow water among the roots of the mangroves, the phytogeographically inclined botanist finds *Caulerpa verticillata*, *Bryopsis plumosa*, *Codium tomentosum*, *Catenella opuntia* and species of the genera *Bostrychia* and *Acanthophora*, together with *Penicillus capitatus*, *Udoeaa flabellata*, *Halimeda tuna*, *H. tridentata*, *Caulerpa pluraris*, *C. crassifolia var. mexicana*, *C. cupressoidea*.

The Sandy Alkaline Plain Formation vegetation of this formation is encountered in the neighborhood of the salt ponds, where the sandy soil frequently shows an inerustation of salt. Again such plains are separated from the sea by a barrier of beach sand. Where the land becomes firm are found *Laguncularia racemosa*, *Avicennia nitida*, *Conocarpus erectus* together with *Fimbristy1is ferrugineus*, *Plucheia odorata* and *Wedelia buphthalmoides*. The herbaceous plants, however, which characterize the bare stretches of salt and sand are *Batis maritima*, *Salicornia ambigua*, *Sesuvium portulacastrum*, *Atriplex cristata*, *Phloxerus verniculatus*, *Stenotaphrum americana*, *Herpestis Monniera*, *Cyperus viscous*.

Chaparral Formation. This is found on small islands and in the southern parts of St. Croix and the Virgin group. Such a coppice has a grayish parched aspect owing to the hoary or spiny covering of many of the plants and occupies about one-third part of the surface of the group.

Here are found in dense association *Bromelia pinguin*, *Cereus floccosus*, *Opuntia tuna*, *Leucaena glauca*, *Randia aculeata*, *Pithecolobium unguis-cati*. Among the larger trees of such thickets may be mentioned *Crescentia cujete*, *Pisonia subcordata* together with those hardly less inferior in size, viz.: *Comocladia ilicifolia*, *Elaeodendron xilocarpum*, *Bucida buceras*, *Tecoma leucocyn*. The height of the vegetation varies; for example, the botanist finds species of *Croton* (C. flavens, C. astroites) two or three meters tall, associated with *Lantana involucrata*, *L. camara*, *Corchorus hirsutus* and *Melochia tomentosa* of a less height. The crown of several trees shape themselves in growth like an umbrella. Such are *Randia aculeata*, *Citharexylum cinereum*, *Anthorylium Rohrii*. Lisaes are well represented in the chaparral by *Bignonion unguis-cati*, *Metastelma albiflorum*, *Ipomoea arenaria*, *Serjania lucida*, *Cissus trifoliata*, *Tragia vulgaris*, *Echites subericata*, and *Tournefortia volubilis*. The epiphytes all belong to the genus Tillandsia including such species as *T. utriculata* and *T. recurvata*. The parasites are *Loranthus emarginatus* and a *Phoradendron*.

Hardly to be separated from the Chaparral Formation and yet sufficiently distinct to merit attention is a formation first named by Baron Eggers, the *Croton Formation*. This formation consists of plants which in various ways have become adapted to resist the effects of a dry climate, and to exist on a barren rocky soil always found where the moisture is not sufficient to decompose the natural surface of the rock. Thus, some of these plants, as of the genus *Croton*, have leaves, which, like the stem, are covered with scales and hairs, containing besides aromatic oils which tend to reduce transpiration. Here in the island of St. Croix where this sort of vegetation is typically developed we find *Sideroxylon*, *Bursera*, *Randia*, *Acacia*, *Leucaena*, together with *Croton*, *Melochia*, *Corchorus*, *Wedelia*, *Waltheria*, *Solanum aculeatissimum*, *S. igneum*, *S. bahamense*, *Cordia*, *Hibiscus*, *Malvastrum*. Other members of this formation are *Haematomyxylon campechianuin*, *Parkinsonia aculeata*, *Ceroedendron aculeatum*, *Anthacanthus spinosus*, *Castela erecta* and *Argithamnia fasciculata*. The linaes of this coppice are *Metastelma albiflorum* and *Gonolobus maritimus*. The succulent plants which are markedly xerophytic and which may be considered as constituents of the croton vegetation are *Bromelia pinguin*, *Melocactus communis*, *Opuntia tuna*,

rem.
O. curassavica, O. spinosissima and Cereus floccosus. All of these plants are more or less frequent and help to make such thickets almost impenetrable.

Tropic Forest Formation. The ravines, as well as the northern and western parts of the islands, are often covered with a growth of tall trees, forming a forest composed of species partly evergreen and partly with deciduous foliage. The area covered by this formation may be taken, according to Eggers (1879), to be about one fifth of the whole surface, the best wooded islands being St. John, Vieques and the least wooded ones St. Thomas and Virgin Gorda. As nearly everywhere in the tropics, this forest is composed of many different species of trees mixed together, a gregarious growth being very rare.

In the interior of St. Thomas, we find the following trees in this formation: Buclida buceras, Melicocca bijuga, Mammea americana, Clusia rosea, Ceiba pentandra (= Eriodendron anfractuosum) and species of such genera as Ficus, Sapindus, Pisonia and Eugenia. Lian vegetation reaches here its most pronounced development, but species are much the same as in the chaparral formation. This forest also abounds in ferns and aroids, such as species of Adiantum and Polypodium, Blechnum occidentale, Anthurium Huegelli and A. cordifolium. Epiphytic orchids also form an element in this forest.

On St. John the trees of this forest formation are Tecoma leucoxylon, Andira inermis, Zanthoxylum clava-herculis, Morisonia americana, Mammea americana. In the shade of the trees Boergeisen and Paulsen found a climbing fern Polypodium Swartzii, Poylepidium phyllitidis, Blechnum occidentale, Polypodium tetragonum and the climbing aroid Philodendron giganticum. A tall grass Pharus glaber also exists in the shade of the forest trees together with an exotic Bryophyllum calycinum.

The island of St. Croix possesses a forest in which tree species of such genera as Cieca, Eriodendron, Anacardium, Swietenia and Oreodoxa abound together with Hura erepitans and Andira inermis. Near the eastern end of the island is a true forest which Eggers called by the name Eriodendron vegetation, which consists of such trees as Ceiba (Eriodendron)¹, Eugenia, Anona, Tetrazygia, Tecoma stans (an evergreen shrub), Buclida buceras, Mammea, Coccoloba barbadensis, Trichilia, Hura, Artocarpus incisa [introduced], Carica papaya, Ceeroplia pentata, together with such lianes, as Cissampelos pareira, Cissus trifoliata, sieyoides, and epiphytic on trees Polypodium Swartzii, Epidendrum ciliate. Pendant from the branches of Eriodendron is an abundance of the Spanish moss, Tillandsia usneoides.

2. Bahaman Region.

This region comprises the islands and cays (keys) which form the Bahaman Archipelago, together with the southern end of the Floridan Peninsula. The islands and the mainland are mostly low with little topographic relief and many of the cays are scarcely above water at high tide. The region abounds in coral reefs and submerged banks upon which grow the characteristic algae of such rock deposits. The vegetation impresses the traveller by its low, monotonous growth. The color scheme, according to my observations, is a dull, grayish green relieved occasionally by dashes of more brilliant color; but the glare of the sun on the eolian sand and rocks is little relieved by the

trees, which are found as a scrubby coppice growth. The arid conditions, which generally prevail, are due to the porous rock which prohibits the appearance of living streams of water and to occasional periods of excessive drought. Salt lakes and marshes abound and mangrove swamps lend variety to an otherwise monotonous landscape. There is little or no soil, but the eolian rocks are fairly honeycombed with holes, pits and cavities of all sizes; often sharp, jagged points project, making walking difficult.

Such environmental conditions, however, have occasioned corresponding adaptations of habit and structure in the plants of the region. The plants of the sand dunes, salt marshes, mangrove swamps, rock surfaces possess many interesting and peculiar adaptations. According to Coker, for example, the old leaves of _Rhizophora mangle_ become much thicker and change their function from photosynthesis to water storage.

a) Insular Area.

This corresponds territorially with the archipelago of islands and cays. Our knowledge of the flora of these islands has been extended recently by the expeditions under the auspices of the New York Botanical Garden and the Geographical Society of Baltimore). The author visited the group for botanic purposes at Great Inagua in the summer of 1901. The following formations have been recognized and may be described in the pages that follow.

Beginning seaward with the Strand Formation of the several islands and cays, the following associations may be recognized: *Ipomoea pes-caprae* Association. On the south side of New Providence, *Ipomoea pes-caprae* is by no means abundant and where it does not occur its place is taken by grasses: _Paspalum vaginatum_ and _Sporobolus virginicus_. This grass strip, according to Coker, varies from 1 to 10 feet, beginning at high-water mark and running back.

The _Uniola-Tournefortia_ Association in New Providence occupies the gently sloping, or in some places quite level, sandy strip that extends to the scrubby coppice behind. _Uniola paniculata_ is scattered at intervals with large clumps of _Tournefortia gnaphaloides, Scaevola Plumieri_, together with _Suriana maritima, Salmea petrochioides, Strumpfia maritima, Borrichia glabra, Ambrosia hispida_ (in open spots), _Sesuvium portulacastrum_. On the eastern beach of Eleuthera there are dunes 40 feet high. The beach at the foot of the dunes is covered at high-tide mark by _Uniola, Tournefortia, Iva imbri-cata, Cakile aegualis_, behind which is a fringe of tall _Suriana_ with which is mixed _Salmea_ and _Cenchrus tribuloides_. Scattered individuals of _Agave ri-

gida cover the seaward slope of the dunes and their outer ridges are occupied by *Uniola*, *Cyperus brunnneus* and fine beds of *Hymenocallis arenicola*. The same association occupies the rocky, or sandy ledge that runs along the western beach of Watlings Island at high-tide mark. The rock is not hard, but is covered with sand in which grow *Tournefortia gnaphaloides*, *Suriana maritima* and the trailing *Ambrosia hispida*.

Chrysobalanus (cocoa-plum) Association. This occupies the rounded sandy elevations on Watlings Island immediately behind the flat area of the above. The association is almost pure consisting of *Chrysobalanus fellocarpus* and *C. icaco*. *Coccoloba uvifera*, *Ilex Krugiana*, *Ernodena littoralis*, *Genipa clusii-folia*, *Rhus Metopium*, *Reynosia septentrionalis*, and *Eugenia confusa* appear scattered in this formation.

The *Sabal-Lantana Association* of *Sabal* (*Inodes*) palmetto (see plate IX at p. 433) on Watlings Island forms a very distinct line. The trees are 20 to 25 feet high which are associated *Phyllanthus epiphyllanthus*, *Chloris petraea*, *Cenchrus tribuloides* and *Dalbergia ecastophyllum*.

The *Pithecolobium-Salmea Association* begins on New Providence Island immediately behind the *Uniola-Tournefortia Association*. Its principal plants are according to Coker: *Pithecolobium*, *Salmea*, *Torrubia*, *Jaquemontia*, *Erithalis*, *Lantana involucrata*, *Ernodene*, *Solanus bahamense* and occasional tufts of *Cyperus brunnneus*. The shrubs of this formation are low and dwarfed, generally not more than three feet high.

Erithalis-Reynosia (littoral sand-coppice) Association. The flat tops of sand ridges on New Providence Island are occupied by this association in which *Erithalis fruticosa*, *Reynosia septentrionalis*, *Rhus Metopium*, *Torrubia*, *Salmea*, *Myrsine guianensis*, *Ilex Krugiana*, *Genipa clusii-folia*, *Acacia choriophylla*, *Bumelia cubensis* and *microphylla*, *Bourreria havanensis*, and *Uniola racemiflora* are the principal constituents. At Powell's Point, Eleuthera, the most noticeable peculiarity of the coppice was the grouping of its different plants into almost pure association. For example, a pure growth of *Reynosia septentrionalis* would be succeeded by an equally pure growth of *Pithecolobium keyense*; this by *Acacia choriophylla*, and this by *Eugenia buxifolia*. Near Clarence Harbor, Long Island on the north slope of a line of hills occurs a low growth corresponding to this association. The constituents of this low scrub are *Lantana*, *Erithalis*, *Pithecolobium*, *Cajancus cajan*, *Tecoma bahamensis*, *Psychotria undata*, *Reynosia*, *Eugenia*, *Tetrazygia*, *Croton*, *Phyllanthus*, *Smilax beyrichii*, *Jaquemontia jamaicensis*, and *Stigmaphyllon sagar-sa-numa*. Near the top of the hill occur fine specimens of *Pilocereus lanuginosa*.

Coccothrinax Association. The characteristic tree is the *silver palm*, *Coccothrinax jucunda*, which grows on the inner slopes of ridges in New Providence and extends to the marshy depression behind. On Green Cay this palm is scattered in dry areas, but in lower damper places it is replaced by *Thrinax bahamensis* and these palms are associated with *Pithecolobium*, *Jacquinia keyensis*, *Reynosia septentrionalis*, *Cassia lineata* and *Antirrhaea myrtifolia*. — Along the beach on Watlings Island are low sand dunes where *Coccothrinax jucunda* is abundant, but the associated species are different from those species mentioned above. This association on Great Inagua Island occupies the "whiteland" region where the associated species are *Coccothrinax jucunda* and *Jacquinia keyensis*.

Fresh-water Formations. A Marsh Formation occurs in New Providence behind the beach where the soil is saturated or entirely covered with shallow water. *Sabal Palmetto*, the thatch palm (see pl. IX, p. 433), is abundant on the damp margins of the marsh and a few also enter the marsh, along the edge of which also grow *Mikania heterophylla*, *Centella repanda*, *Cladium effusum*, *Sabbatia campamulata* and *Ipomoea sagittata*. *Anona palustris* occurs
further out and Rhizophora mangle gives evidence of the brackish character of the water. — Sabal Palmetto occurs also in a sand inlet in Eleuthera island, where it occupies a marshy depression, where it no doubt is able to procure supplies of fresh water. — About one mile from the shore on Cat Island are a series of fresh-water pools (unusual in the Bahamas) in which grow Utricularia sp., Nymphaea ampla, while along the edges were found Spigelia anthelmia, Sabbathia campanulata, Centella repanda. On New Providence, the plants of the fresh marshes are Myrica cerifera, Baccharis angustifolia and Sagittaria lanceifolia.

Salt Marsh- and Mangrove-Formations. Directly south of Nassau, New Providence Island is a large tract of marshy land with a considerable pond of water that rises and falls with the tides. The rocks margining this pond are covered with a swamp marl favorable only for the growth of such resistant species as Aster tenuifolius and Distichlis maritima. Behind these where the honeycombed rock is exposed grow dwarf forms of Conocarpus erectus var. sericea and Rhachicallis maritima with Cassytha running along from plant to plant. — Certain depressions in Green Bay are brackish and here are found Anona palustris, Cladium, Conocarpus, Avicennia nitida. In a long, brackish marsh a few hundred feet behind the beach was a fine association of Typha domingensis and Eleocharis cellulosa. Except at this place, Typha was seen only on New Providence, where, according to Coker, it is abundant at Lake Killarney. The immediate shores of a large salt-water pond on Rum Cay are characterized by the presence of Rhizophora mangle.

A Conocarpus Flat Formation extends on Watlings Island some distance back from a marsh. The ground is a honeycombed rock with water in the holes. Conocarpus erectus var. sericea grows here in almost pure association. At certain places on Abaco, the Conocarpus-flat is bordered with an association of Aster tenuifoillis, Distichlis maritima and Salicornia ambigua.

The Conocarpus-Mangrove Formation exists on Watlings Island about 8 feet high. Except near the shore of a lake where it occurs, there is a pure growth of Conocarpus, but on the water's edge Rhizophora mangle forms a fringe together with Avicennia nitida. On the sandy margins of the lake also grow Hippomane mangelina, Batl maritima and Lithophila vermicularis.1

Salinas Formation. This formation (also Swash) occupies depressions in the scrub in which has collected the wash from the surrounding ridges of rock or sand, the resulting soil being a sticky compound, especially when wet. The salinas are more or less occupied by ponds and lakes connected together in wet weather. The ground almost flat is covered with small mangroves, Rhizophora, the salt-bush, Avicennia and a low form of Conocarpus erectus not more than a few feet in height. One or two species of Salicornia also are found, and in general the plants of this formation are quite scattered, and a considerable distance apart. The monotony of the landscape is varied near the creeks by three species of palms: the "silver thatch", Thrinax bahamensis; the "hog cabbage", Cyclospathe Northropii; the "saw-tooth cabbage", Paurotis androsana: all of small size.2

The Savanna Formation is coincident with large flat plains in Great Inagua covered in great part with Sporobolus virginicus. Here and there

2) See references to papers of Nash and Northrop quoted above.
small clumps of trees dot the surface of the savanna consisting of *Swietenia mahagoni* 1). On Andros the savannas are level prairie-like stretches covered with a coarse sedge *Cladium jamaicense*, the saw grass of the natives. *Terminalia spinosa* forms occasional clumps while *Flaveria linearis*, *Polygala Boykinii*, *Eustoma exaltatum*, *Gerardia purpurea*, *Aletris bracteata*, *Spiranthes tortilis*, *Calopogon pulchellus*, *Buchnera elongata* and *Samolus ebracteatus* are also inhabitants of these savannas 2).

Sea Cliffs and Rocks. The north shore of New Providence differs from the south shore by its rocky character. Sand covers the rocks in places. In many places, however, the exposed rocks are covered with a dense growth of *Rhachicallis maritima* and *Suriana maritima* in pure association. Behind this association is *Coccoloba uvifera* and *Genipa clusifolia*.

On Andros Island, the rock surfaces are characterized by *Portulaca oleracea* and on the slopes of hills grow *Lysiloma palaeifolia*, *Swietenia mahagoni*, *Coccoloba laurifolia*, *Bursera simaruba*, *Acacia choriophylla*, *Rhus Metopium* and *Eugenia confusa*. Covering the barren rocks behind the beach on Green Cay is a low growth of *Ernodea littoralis*, *Genipa clusifolia*, *Catesbaea fasciculata*, *Antirrhiza myrtifolia*, while *Passiflora foetida* grows among these shrubs. The rocks behind this sand inlet show a low copice of *Sideroxylon masticodendron*, *Zanthoxylum pterota*, *Coccoloba*, *Torrubia* longifolia, *Amyris elemifera*, *Bursera simaruba* together with *Opuntia tuna*. — The bare rocks on Eleuthera support among other plants *Suriana maritima*, *Borrichia glabra*, *Rhachicallis maritima*, *Sesuvium portulacastrum*. — Growing in small rock pockets, according to my observations at Matthewtown, Great Inagua, *grow Portulaca oleracea var. parvifolia*, and back of this plant in the treeless area are found *Coccoloba uvifera*, *Tournefortia gnaphalodes*, *Bucida buceras*, *Rhachicallis rupestris*. These form an association which may be designated the *Tournefortia-Coccoloba Association* 3).

The depressions in the rocky plain show a type of vegetation in every respect different from the ordinary level, which may be designated as Banana Holes. In such an hole on Eleuthera thirty feet across grew *Anona palustris*, *Ficus sapotaeoflia*, *Picramnia pentandra*, *Psychotria undata* and *Cladium effusum*. Attached to the sides of the "sink" beneath its overhanging edges flourish *Adiantum melanoleucum* and *Lindsaya clavata*.

The absolutely bare rocks near Gregory Town, Eleuthera, are characterized in the crevices by *Serjania diversifolia*, *Cissus sicyoides*, *Amelopsis (Parthenocissus) quinquefolia*, *Galactia rudolphioides*, *Rhabdadenia biflora*, *Smilax beyrichii*. In the deep depressions of these vine-clad rocks grow *Bursera simaruba*, *Bumelia microphylla*, *Ficus sapotaeoflia* and *Phyllanthus epiphyllanthus*.

On the top of ridges on Rum Cay among the hard smooth rocks grow *Gossypium barbadense* (absolutely wild), *Agave rigidida*, *Plumeria obtusa*, *Guadacum sanctum*, *Guetarda scabra*, *Bumelia loranthifolia*, *B. microphylla* and *Reynosa septentrialis*. — Growing on the rocks of Little Inagua Island were found by Nash *Melocactus sp.*, *Agave sp.*, *Opuntia sp.*, *Thrinax keyensis*, *Pilocereus sp.*, etc.

Pine-Barren Formation. The ground of this formation is either wet or dry. In New Providence and elsewhere in the Bahama islands the wet for-

mation is composed of more or less honey-combed rock and has the water constantly within a few inches of the surface. This formation, according to Coker, differs from the typic pine-barrens in the occurrence of Sabal Palmetto, and differs from the wetter marsh in the presence of the pine, *Pinus caribaca* (= *P. Elliottii, bahamensis*). The dominant growth is open and scattered and consists almost entirely of pines (20—25 feet tall) and palms (15—20 feet tall), Rhus Metopium, Exostemma caribaeum, and Coccoloba laurifolia are scattered here and there, but hardly reach the size of trees. The undergrowth is low and open consisting of Corchorus hirsutus, Torrubia longifolia, Pithecolobium keyense, Tecoma bahamensis, Lantana involucrata, Cordia bahamensis, Bourreria havanensis, Byssonima lucida and such vines as Smilax Beyrichii, Rajania hastata, Mikania heterophylla, and the parasite Cassytha filiformis. The principal herbaceous species in New Providence are Evolulus sericeus, Turnera ulmifolia, Lippia stoechadifolia, Dieromena colorata, Chloris petraea and a little fern Ornithopteris adiantoides together with a species of Andropogon.

The wet pine barrens insensibly intergrade with the dry "pine yards". In New Providence 1) it extends across the central part of the island to the base of the Blue Hills. *Pinus caribaca* (= bahamensis) rarely reaches a large size, being generally slender and from 20 to 35 feet high. *Coccothrinax jugunda* is next to the pine the most conspicuous and abundant tree occasionally 12 feet tall. The orchid *Bletia verucunda* is common in rock holes.

In Andros 2), *Pteris* (*Pteridium*) *canadata* is very characteristic of the pine barrens. It often forms impenetrable thickets six or seven feet in height associated with *Acacia choriophylla, Ascyrum hypericoides, Tetrazygia bicolor, Linum bahamense, Ernodea littoralis, Vernonia bahamensis, Dicromena colorata* and *Bletia verucunda*. In many parts of the pine barrens on Andros, there is no underbrush, nothing but a coarse grass, *Andropogon* sp., relieved here and there by the crimson flowers of *Ipomoea repanda*.

Among the pines, which grow on Abaco, are found, according to Coker, *Tetrazygia bicolor, Cordia bahamensis, Ichthymetheda piscipula, Bursera simaruba, Rhus Metopium, Swietenia mahagoni, Tecoma bahamensis, Burmelia microphylla, Acacia choriophylla, Anthacanthus acicularis, Duranta repens, Ernodea littoralis, Myrica cerifera, Mikania heterophylla, Rajania hastata, Byssonima lucida, Erythroxylon brevipes, Morinda roloce, Hypelate trifoliata, Bourreria havanensis, Hype- late paniculata, Vernonia bahamensis, Gymnanthes lucida, Eugenia buxifolia, Erithalis fruticosa, Rapania guyanensis, and Coccoloba laurifolia, Ernodea Cokeri and Galium hispidulum. — According to Britton 3), an extensive pine forest similar to that on New Providence extends from Eight Mile Rocks nearly or quite to the extreme eastern end of Great Bahama Island. The flora of this pine forest is similar to that on New Providence Island.

Low Thicket Formation. These thickets are almost impenetrable because the trees and shrubs grow straight up and close together and the growth of epiphytes (bromeliads and orchids) upon them is extraordinary. An essentially leafless *Vanilla* scrambles through and upon the shrubs, and with it *Arthrostyletidium*, a slender bamboo. This kind of thicket covers most of the northern

2) Northrop, Alice R.: New Providence and Andros, see Bibliogr. p. 91.
slopes of the Blue Hills in New Providence Island and a large part of the flat country on the north and east sides of that island.

This coppice (the average height of which is 10 to 15 feet) consists of such small trees and shrubs as Hyptele paniculata, Bourreria havanensis, Coccoloba laurifolia, Bumelia loranthifolia, Erithalis fruticosa, Haematoxylon campechianum, Picramnia pentandra, Byrsonima lucida, Maba caribaea, Anastaphia Northropiana, Tecoma bahamensis, Torrubia longifolia, T. obtusata, Psychotria undata, Ocotea Catesbyana, Zanthoxylum pterota, Duranta repens, Leucaena glauca, Krugiodendron ferrueum, Heliceres spiralis, Melicocca bijuga, Croton eluteria and such vines as Smilax havanensis, S. oblongata var. viscifolia, S. Beyrichii, Jacquemontia jamaicensis, Triopterus rigida and the parasite Cassytha filiformis, together with Vanilla articulata.

The low scrub on Eleuthera occupies an elevated, rocky plain and consists of Bumelia loranthifolia, Coccoloba laurifolia, Zanthoxyllum pterota, Bursera simaruba, Torrubia longifolia, Bumelia microphylla, Picrodendron baccatum var. bahamense, Ichthyomethia piscipula, Pithecolobium keyense, Acacia choriophylla, Haematoxylon campechianum with such vines as Gouania domingensis and Parnthecocissus Ampelopsis (Quinaria) quinquefolia. — The long eastern slopes of the high ridge is covered by a low scrub, unlike anything on any of the other islands and composed of Baccharis dioica, Croton eluteria, Phyllanthus epiphyllanthus, Anthacanthus acicularis, Lantana croce, L. involucrata, Acacia choriophylla, Bumelia microphylla and Jacquinia keyensis 3).

The low coppice growth on Watlings Island is not often more than 8 or 10 feet high and is composed principally of the following species: Croton lucidus, Calliandra haematoma, Amyris elemifera, Bourreria havanensis, Erithalis fruticosa, Coccoloba laurifolia, C. Krugii, Raponia guyanensis, Reynosia septentrionalis, Bumelia microphylla, Mimusops Sieberi, Rhus Metopium, Calyptranthes pallens, Exostemma caribaem, Buxus bahamensis, Phalanthus myrtilloides, Eugenia confusa, E. buxifolia, Ilex Krugiana, Maytenus buxifolia, Byrsonima lucida and Gymnanthes lucida.

On Great Inagua, according to my observations 3), the low thicket of the strand consists of an association of Phyllanthus epiphyllanthus, Acacia farnesiana, Tournfortia volubilis, Xylosma buxifolia, Opuntia sp., and Urechites subereca, a climbing plant which grows over the components of the thicket. On James Hill (90 feet elevation), Great Inagua, according to NASH 3), grow a species of Pilocerus, Opuntia Dilleni, another Opuntia of the spinosissima section and a species of the genus Mamillaria (Cactus) growing in great profusion. Tillandsia usneoides is also an element of this scrub, while in other places in the coppice occur Mimosas bahamensis, Clusia rosea, Pseudophoenix Sargenti, Agave sp., Melocactus sp., etc. The shrubs and trees of this coppice on the south shore do not attain a height of more than a foot or a little over, because this shore is subjected during the summer months to the full force of the trade winds which blow from the northeast.

The low thicket on Grand Turk Island consists of a shrubby Pithecolobium 10 to 15 feet tall and an extensive cactus vegetation composed of Opuntia Nashii, O. tuna, O. Dilleni while Euphorbia vaginulata, found on sand ridges and called milk bush by the natives, gives a gray-brown aspect to the landscape as it does on Watlings Island where it is also found. Pseudophoenix Sargenti exists by the thousands on the island of Little San Salvador, and elsewhere in the Bahamas it is abundant.

High Thicket Formation. In this type of thicket in New Providence, there is very little undergrowth on the densely shaded ground. The largest tree of this coppice which covers the southern slope of the Blue Hills on the Bahama black loam soils is Lysiloma latisiliqua, the wild tamarind. Swietenia mahagoni, Sinaruba glauca and Pera bumeliaefolia are also large trees.

The high-coppice formation on Watlings Island consists of large trees. Here are found in association Gymnanthes lucida, Guaiacum sanctum, Bourreria havanensis, Ichthyomethia piscipula, Bursera simaruba, Acacia choriophylla, Tecoma bahamensis, Thouinia discolor, Chioococa parvifolia, Illumelia microphylla, Cajanus cajan, Citharexylum quadrangulare, and such vines as Smilax Beyrichii and Scjania subdentata, together with Thrinax bahamensis.

On Long Island the most abundant constituents of this formation are Lysiloma bahamensis, Rapania guyanensis, Guaiacum sanctum, Erythroxylon brevipes, Tetrazygia bicolor, Krugiodendron ferreum, Tecoma bahamensis, Caesalpinia vesicaria, Zanthoxylum caribaeum, Reynosia septentrio-nalis, Amyris emilfera, Maytenus buxifolia, Gymnanthes lucida, Exostemma caribaeum, Hypelate trifoliata, Torrubia longifolia and Bursera simaruba, which reach a common height of 15 to 20 feet.

Tropic Forest Formation. On Mangrove Cay, Andros, the botanist encounters, according to Coker, a true forest where are found Lysiloma paucifolia, L. latisiliqua, Zanthoxylum coriaceum, Hypelate trifoliata, which reach a height of 40 to 50 feet, while as secondary species 30 to 40 feet tall may be mentioned Coccoloba laurifolia, Rhizus Metopium, Ichthyomethia piscipula and Swietenia mahagoni, all contributing to a thick growth and dense shade.

b) Floridan Area.

Phytogeographically this area comprises the southern extremity of peninsular Florida and the keys (cays) which lie off its coast. The geology of southern Florida is similar to that of the Bahama islands and the botanist would naturally expect to find, that controlled by the edaphic conditions, there would be many species of plants in common. A statistic enumeration shows this to be the case. The honey-combed limestone rock supports a luxuriant vegetation and a reference to a former page (229–232) will present the main facts concerning the principles underlying the distribution of Floridan plants. The following are the principal plant formations of this area:

Mangrove Formation. The mangrove formation represents an important element in the flora of southern Florida. The mangrove swamps are particularly abundant along salt or brackish shores and along the sea islands, the so-called Florida Keys

Their vegetation is confined almost exclusively to the mangroves (Rhizophora mangle) and such few Tillandsias and orchids as grow upon their branches. Frequently on the borders of these swamps occur a large, showy fern Acrostichum aureum. Many of the keys are surrounded by a girdle of mangrove trees.

In detail, according to the botanic exploration of the sand keys west of Key West by LANSING the mangrove formation is distributed, as follows: Key C. consists almost entirely of a colony of

2) MILLSPAUGH, C. F.: Sand keys of Florida (1907); see Bibliogr. p. 90.
Rhizophora mangle bordered by Laguncularia racemosa and Avicennia nitida. The northern side of Man Key is occupied by a broad area of mangrove vegetation from which Laguncularia racemosa is absent. Woman Key is characterized by extended areas of the mangrove associated with Laguncularia racemosa and Avicennia nitida while Ballast Key has only a small corner occupied by such plants. Boca Grande Key with the exception of the narrow area of sand is a mangrove island. All of the islets of the Marquesas group of keys with the exception of one small key are characterized by extensive growths of the mangrove, while the keys of the Tortugas group, as also Bird and Loggerhead keys are destitute of the mangrove. The small keys north and west of Woman Key, viz., Mule, Cottrell, Mullet, East and West Crawfish and Conch keys are mangrove islets only. Changes are constantly taking place in these islands owing to the extension of the mangroves and the action of the wind and waves on the white, coral sand.

The islands along the west coast of Florida are largely covered by this formation. Shoals are formed by the action of the waves, and on these the mangrove finally takes root, and the roots catch and retain seaweeds and other floating matter, building such material about the trees. On the seaward side, banks of shell are formed and the interior gradually becomes a typical hammock.

Mud Flat and Strand Formation. Along the edges of the mangrove thickets are mud flats which are found on many of the islets which form the Florida keys.

The vegetation on the mud flats of Key C. consists of Salicornia ambigu, Batis maritima, Monantheschoele littoralis, Sesuvium portulacastrum. On Man Key, the tenants of such flats are Borrichia arborescens, Pithecolobium guadalupense, Avicennia nitida, Alternanthera brasiliiana, Batis maritima, Conocarpus erecta, Euphorbia (Poinsettia) havanensis, while on the mud flats of Woman Key are separated colonies of Suriana maritima, Sesuvium portulacastrum, Cyperus brunneus, Atriplex cristata, etc.

The islet of the Marquesas Group designated B. by LANSING has an association of mud flat plants, viz., Dondia linearis, Laguncularia racemosa, Avicennia nitida, Distichlis maritima. The mud flat vegetation is not typically developed into a formation on any of the other islets of the Marquesas group, except on Round Island where Laguncularia racemosa and Salicornia ambiguous are characteristic while on Marquesas J. the mangrove border, while characterized by Avicennia nitida, here shows for the first time in the group a full substitution of Conocarpus erectus for Laguncularia racemosa. This formation is unknown on the islets of the Tortugas group.

Historically the sea-strand formation is an old one floristically speaking. The east coast of Florida, as far south, as Biscayne Key (lat. 26° 75' north), is lined by low sand dunes ranging from ten to thirty feet in height. Shoals are formed out at sea by the action of currents and tides; and when these emerge and become dry, such dune-building plants as Sesuvium portulacastrum, Iva imbricata, Cakile maritima, Panicum amarum take possession of them and help to form a low line of dunes. Uniola paniculata is the main sand-binding grass to be found on the top and seaward side of the first line of dunes. Here it forms almost 75 per cent of the vegetation and may be properly termed the Uniola association. Species of Spartina, Panicum, Euphorbia and Opuntia are found mingled in this association together with Ipomoea pes-caprae, Yucca, Croton maritimus, Serenoa serrulata (see plate VI, p. 306). At the base of the main line of dunes, according to WEBBER 1), are a number of dune-builders: Panicum amarum, Ipomoea pes-caprae and littoralis, Iva imbricata, Cakile maritima etc.

The most interesting strand plant of the open beaches of the keys along
the mainland is *Agave decipiens* widely distributed along the strand of tropic
Florida, being disseminated almost wholly by bulbets produced in place of
flowers. On sandy stretches occur *Hymenocallis caymanensis*, *Coccoloba*, *Ipomoea*, *Ernodes* and *Alternanthera floridana*.

Shell Bank Formation. On the seaward side of mangrove islands shell banks are formed by the action of the tides and waves and these become occupied by vegetation which consists of *Forestiera porulosa*, *Myrsine rapanea* (= *Rapanea guyanensis*), *Coccoloba uvifera* and *Juniperus virginiana* with *Iva imbricata*, *Cakile maritima* and *Ipomoea pes-caprae* at the margin of the water. — The shell islands of the coast consisting of oyster shells are inhabited by *Yuea aloifolia*, *Forestiera porulosa*, *Quercus virrens* (= *Q. virginiana*), *Opuntia pes-corvi*, *O. vulgaris*, *Mentzelia floridana*, and *Vincetoxicum securariun* climbs over these plants while *Passiflora suberosa* and *Cocculus carolinus* carpet the pavement of white shells. *Chicoccia racemosa* and *Psychotria rufescens* also occur 1).

Cypress Swamp Formation. This formation is found in many parts of
southern Florida, but nowhere better developed than in the Big Cypress
Swamp west of the everglades and limited on the gulf side by the mangrove
swamps which fringe the coast. It can be located by its proximity to Galli-
vans Bay and Cape Romano. The southeastern limit of *Taxodium disti-
chum*, the principal tree of this formation, has been placed by Professor
Sargent at Mosquito Inlet (about lat. 29°) on the east coast and at Cape
Romano (about lat. 26°) on the west coast, but *Small* has found it extending
down the Miami River and has found it in the everglades nearby.

Little is known of the composition of this formation in Florida. The larger and smaller
trees form with the lesser vegetation an almost impassable growth. The larger trees are buttressed
and large root growths the so-called "knees" project from the soil or above the surface of the
water. This forest is so dense that perpetual twilight is found beneath the trees and the silence
is relieved only by the occasional splash of an alligator in the streams which sluggishly meander
through the depths of the forest.

Everglade Formation. The everglades historically speaking may be older
than the pine woods. Their origin is as follows 2):

The chain of keys surrounded by the everglades are duplicated by the
outer series of Florida keys. Before these everglade hammock islands were
raised to their present altitude, they were probably surrounded by a shallow
sea. This being the case, we can easily account for the tropic American flora
now inhabiting them. After sufficient elevation had taken place, the surround-
ing sea was transformed into the vast spring known as the everglades and a
northern flora advanced into this area thus surrounding and isolating a
totally different tropic flora. (See ante Part III, page 201, 229.)

The everglades cover an area about one hundred miles wide and perhaps
one hundred and fifty miles long, the elevation being about eighteen feet above

sea-level. This formation consists of an extended saw-grass swamp (*Cladium effusum*) merging in places with pine land, prairies, cypress swamps, custard apple (*Anona glabra*) swamps and traversed by winding river channels, occasionally filled with water lettuce, *Pistia stratiotes*, with the water perfectly clear and pure, and covered with scattered hammock-lands. Its flora consists of grasses, sedges and other herbaceous plants, among which are many aquatic and mud-inhabiting species (f. e. *Peltandra virginica, Saururus cernus*) less than one-half as many species as grow either in the hammocks or the pine-lands. This formation partially surrounds and intersects the sandrock ridge. Structurally it consists of a marsh with scattered hammocks, while its flora is composed of plants (*Apios tuberosa* etc.) of far northern range and therefore mainly of a different character from those found in either the pinelands, or the hammocks, which are characterized by tropic palms, cycads, orchids and bromeliads.

The shores of the streams by which the everglades are entered are covered with rank growths of the cocoa-plum, *Chrysobalanus icaco*. This same species grows about the edges of the glades producing blue fruit on the eastern edge and white fruit toward the west.

Savanna- and Prairie Formation. With the appearance of level plains by the removal of the shallow sea over a sandy bottom, the isolated trees, which associated together constitute the savanna formation, appeared and clothed the ground. Imperceptibly these savannas are transformed into pine-land. — When the swamps, or everglades are raised a few feet by the deposition of decaying vegetable matter and silt the character of the vegetation completely changes. Grassland is formed and the hard, rank grasses, palmetto scrub and reeds give place to growths of "blue joint", *Andropogon virginicus* and other grasses (*Syntherisina, Panicum virgatum*) which can be used for fodder and hay.

Pine Barren Formation. (See plate VI to page 306: Southern Florida.) When the grassland is invaded by trees, pineland results, if that invasion is sufficient to close up the grassy stretches with a continuous forest growth. It may also be formed by the encroachment of trees on the savanna formation. *Pinus caribaea (= P. heterophylla = P. cubensis)* is the dominant tree of the pine barrens associated with numerous shrubs, shrubby herbs and herbaceous perennials. The exposed coral rock of the slight elevations maintain not only more species than the slight depressions, but also more individuals, or in other words the more eroded and needle-shaped the condition of the coral rock with apparently barely enough soil to support plant life, the more diversified and abundant the vegetation. *Pinus clausa* occurs in the pine scrub associated with *Ceratiola ericoides*.

These pinelands are light and airy, the timber affording little shade. Besides *Pinus caribaea* several palms are conspicuous elements of the landscape, viz: *Serenoa serrulata, Coccothrinax jucunda (= Thrinax argentea)*, C. Garberi (on dry coral ridges along Biscayne Bay), *Sabal megacarpa (= S. Etonia)*, and *Zamia floridana*. The most abundant fern of the pine barrens is *Pteridium aquilinum var. pseudocaudatum* found in dry soil.
The keys on the western side of Bahia Honda are covered with low and thin forests composed of Pinus caribaca, Coccothrinax jucunda together with Serenoa serrulata and Myrica cerifera. The central portion of Big Pine Key, according to Stewardson Brown, is covered with Pinus caribaca (70—80 feet) with palms underneath and the same is true for Little Pine Key, while Croton linearis, Galactia volubilis, Dolicicholus parvifolius, Chamaecrista grammica, Mikania heterophylla, Pteridium caudatum, Dichromena colorata and Pteris longifolia are abundant plants in the pine lands of the keys.

There are two types of pine barrens in Florida: first, the "flat woods", with numerous slight depressions, which are ponds in wet weather and are usually grown up with cypress and gum; second, the rolling barrens drained by small streams, which are bordered by almost impenetrable thickets and stretches of swamp 1).

Hammock Formation. The hammocks consist of isolated groups of hardwood trees, shrubs and vines. These hammocks have an overlying soil thicker than the pine-lands due to the accumulation of vegetal detritus, occasionally 1—2 feet deep, and they vary in size from an acre to many hundred acres, and are scattered as islands in the everglades and pine forests. The trees, shrubs and vines harbor a large number of plants of various categories. The growth of epiphytes is especially striking, for in numerous cases the tree trunks and branches are loaded with air plants, and the growth is so crowded that many of the orchids and bromeliads are forced to grow on the ground, or on the neighboring pine trees. This hammock formation includes the great majority of flowering plants now known to be common to the West Indies and Florida. The area occupied by the hammocks is insignificant as compared with that of the pineland, yet there are nearly as many species of flowering plants growing in these small areas, as there are in the vast pine-lands.

Small describes a hammock which is actually being destroyed by the excessive development of epiphytes. The epiphytic bromeliads and orchids having taken possession of every available bit of surface on the larger trees have broken to the ground, where the epiphytes completely cover the floor of the hammock and the smaller trees beneath the larger ones. In addition to the bromeliad-orchid flora, the hammocks are characterized by ferns of a tropic type, such as: Polypodium ineanum (on oaks), P. phyllitidis, Pteris cretica, Adiantum tenerum, Aspidium trifoliatum. Some of the species of ferns are confined to the trees, others to the curious and treacherous sink holes, while the ground is often carpeted with filmy ferns or gigantic sword ferns. Several of the hammocks are characterized by the presence of palms: Pseudophoenix Sargentii (Elliott's Key), Oreodoxa (Roystonea) regia (Royal Palm Hammock) and such orchids as Dendrophy lax Lindenii (on the trunks of the royal palm), Epidendrum nocturnum, E. rigidum. The gumbo limbo Bursera simaruba is a constituent of the hammocks on Boca Chica Key.

The Great Gulf Hammock according to **Garber** yielded the following plants: Chrysobalanus oblongifolius, Galactia Elliottii, Sclerolespis verticillata, Boltonia diffusa, Senecio lobatus, Vaccinium tenellum, Sabattia gracilis, Asclepias perennis, Sagittaria graminea, Calopogon multiflorus, Smilax Beyrichii, Dichromena colorata, Rhynchospora macrostachya, Carex gigantea, C. cherokeeensis, C. verrucosa, Paspalum undulatum, Panicum gymnocarpum, etc.

1) **Curtiss, A. H.: Among Florida Ferns.** Plant World V: 68 April 1902.
3) **Garber, A. P.: The April Flora of Cedar Keys, Fla.** Botanical Gazette II: 112.
The chain of everglade islands or keys are similar to the Florida Keys both in its crescent shape and in its flora. It is surrounded by the everglades, except where the upper islands touch Biscayne Bay. Before these hammock lands were elevated to their present level above the sea, they were probably surrounded by a shallow sea later transformed into the everglades. Their total area is perhaps about 150 square miles. Small 1) who has explored them more carefully than any other botanist finds that between five and six hundred species of native flowering plants occur on them. He has now established the fact that considerably more than one half of the species found on the islands south of Miami are also native in Cuba and the Bahamas, and so it happens that an older tropic flora is completely surrounded by a newer vegetation introduced from higher northern regions.

These islands, or hammocks, scattered through the everglades are covered with luxuriant virgin forests. Quercus virens (= Q. virginiana) and Persea borbonia are present in large numbers interspersed with wild lemon Citrus limoniuum, wild orange Citrus aurantium and the wild cucumber while on Royal Palm Hammock occur Smilax laurifolia, Salix longipes, Magnolia glauca, Ampelopsis (Parthenocissus) quinquefolia, Diospyros virginiana, Calli-carpa americana and Cephalanthus occidentalis. Carica papaya, Anona glabra, Zanthoxylum Clava-Herculis are of frequent occurrence, and here and there, governed by the size and elevation of the islands, are the cabbage palmetto, Sabal Palmetto, Pinus caribaea and Ficus aurea grow to enormous size in some of the hammocks strangling other forest trees 2). Throughout there is a phenomenal growth of lianes. Wherever the land is dry enough, the coontie Zamia floridana flourishes.

There are several other plant formations to be recognized in southern Florida, but information concerning them is so meagre that it is impossible to give an exact statement concerning them. It is one of the phytoecographic surprises that we have such little information about a region of such marked botanic interest 3).

3. Bermudan Region.

This region comprehends the archipelago of larger and smaller islands lying south of the Gulf Stream in the western Atlantic between 32° 14' and 32° 23' N. latitude and 64° 38' and 64° 53' W. longitude, thus being about 600 miles from the nearest land, Cape Hatteras in North Carolina. This region is placed in our classification in the West Indian section because its flora shows affinities to that region, but yet the vegetation is distinct enough with its thirteen endemic species to merit its separation into a Bermudan region with such plants as *Erigeron Darrelianus* and *Carex bermudiana* with no living American relatives. It is evident from a study of the composition of the Bermudan flora, that it is of comparatively recent introduction. Briefly, says Hemsley 1): "it is not of purely West Indian origin, but was derived from the West Indies and that region of south-eastern North America where the West Indian and North American types of vegetation overlap each other". Britton emphasizes the fact that the flora is almost wholly West Indian and Floridan.

There being no running streams, the original flora of Bermuda was essentially of a xerophytic type. The islands have been settled so long that the character of the original vegetation has been altered and we must infer from the appearance of the flora at the present what its condition was when the Bermudas were first discovered. The following formations according to the observations of the writer 2) in June 1905 may be distinguished.

Marine Algal Formation. The marine algae of Bermuda are mainly those which have accustomed themselves to living on a shore composed of limestone rocks (reef rocks, or colian rocks) exposed to the action of the surge or which live in a limestone, or coral sand in the comparatively placid water of salt water lakes, bays, or lagoons.

According to my observations, the algae of the rocks exposed to the surge are *Sargassum bacciferum*, *Halimeda tridens*, *H. tuna*, *Avrainvillea nigricans*, *Anadyomene flabellata*, *Codium tomentosum*, *Neomeris dumetosis*, *Ulva lactuca*, *U. latissima*, *Rhodymenia palmata*, *Padina pavonia* and others. Those of the tidal pools formed in the rock hollows are: *Padina*, *Digenea simplex*, *Acetabularia crenulata*, *Caulerpa crassifolia*, *C. racemosa* var. *occidentalis*, *Ulva* etc. The sandy bottoms beneath mangrove trees, or in the channels leading from salt-water sounds, or ponds to the sea are characterized by *Halimeda tridens*, *Penicillus capitatus*, *Caulerpa cupressoides* var. *mamillosa*, *Padina*. The salt

water ponds, especially at Walsingham, are fed by underground channels so that the water in them rises and falls with the tide. Here grow several interesting marine algae, such as: Valonia utricularis, Caulerpa plunnaris, C. racemosa and Colpomenia sinnosa. Thalassia testudinum grows in all shallow bays.

Mangrove Formation. The mangrove swamps occur at the heads of bays especially along the south shore of the Bermudas and in the salt water ponds which are here and there found distributed over the islands. The vegetation consists either of a pure growth of Rhizophora mangle with its prop roots extending in all directions, or a pure growth of Avicennia nitida (in flower in June) with its numerous asparagus-like root knees projecting through the sticky mud at low tide. In some places, as in Castle Harbor, both Avicennia and Rhizophora are in association and frequently one finds arising from the mud the green brush-like tops of Penicillus capitatus. Little else grows beneath the dense shade formed by the overarching crowns of these trees. Frequently a morass is formed by either Rhizophora, or Avicennia taking possession of a shallow inland pond which thus becomes a swamp.

Salt Marsh- and Brackish Marsh Formation. This is found at the head of bays and elsewhere where the soil is influenced by the tides. In such a marsh along Harrington Sound the writer noted Salicornia ambigua, Heliotropium curassavicum, Sesuvium portulacastrum, a number of sedges and a single tree of Avicennia. The rare Statice Lejroyi, identical with Statica Limonium var. carolinianum is a salt marsh plant. The Brackish Marsh Formation exists in depressions some distance inland, where marshes occur, such as Smiths Parish Marsh, Devonshire Marsh, Pembroke Marsh, all of which were investigated by me. Paget Marsh was visited by N. L. Britton and Stewardson Brown.

Smiths Parish Marsh is devoid of trees. Here in the soil rendered brackish by underground channels grow Typha angustifolia in pure association, Baccharis glomeruliflora, Myrica cerifera in thickets, Dichromena colorata, Scirpus lacustris, while Osmunda cinnamomea is frequent. Acrostichum aureum forms pure associations at the edge of this marsh. — Devonshire Marsh is a large area with a few pools of water in the depressions. It gives evidence that it was once a pond. Juniperus Bermudiana, Sabal Blackburniana and Baccharis glomeruliflora have encroached on this marsh so as to shade it. On the ground in the wettest places according to Coulter are Hydrocotyle asiatica, Herpestis Monniera, Mentha viridis, M. piperita and a white bracted sedge, Dichromena colorata. On the drier ground, Osmunda regalis and O. cinnamomea become abundant, while in the still drier peaty soil, according to my observations, Pteris aquilina var. caudata is growing vigorously. Typha angustifolia is in some places in pure association. Acrostichum aureum also forms pure associations here and there in this marsh. The pools are occupied by two species of Sphagnum, Proserpinaca palustris and Lemma minor.

3) According to N. L. Britton and Stewardson Brown who visited the islands August 31—September 20, 1905, it is Lemma cyclotosa.
Pembroke Marsh is characterized by somewhat similar associations of plants, such as Paniceum crus-galli, Cyperus flavescens, Ranunculus repens, Proserpinaca palustris, Ludwigia (Linaria) palustris, but in addition to the plants noticed above Governor LeFroy mentions several other plants peculiar to it, f. e. Spiranthes brevilabris, the only orchid of Bermuda. The omnipresent cedar is found along the edges of this marsh together with Sabal Blackburniana which invades it. In a small pool grows Lemna minor and in Paget Marsh, Carex bermudiana.

Dune Formation. Sand dunes occur typically along the south shore of Bermuda at the head of reentrant bays between stretches of rocky coast. Several low dunes are found on the north shore, as at Shelly Bay. The middle beach is covered with masses of Sargassum, washed ashore at high tide.

The upper beach at the foot of the dunes is characterized by the presence of Cakile lacnecolata, occasional clumps of Tournefortia gnaphalodes, Scaevola Plumieri, and Croton punctatus. Ipomoea pes-caprae sends its long runners down from the slopes of the dunes, associated with Scaevola Plumieri, Stenotaphrum americanum. A little back of the crest of the dunes are found Tournefortia gnaphalodes, Ipomoea pes-caprae, Scaevola Plumieri, Juniperus bermodiana (wind-swept form) Sisyrinchium bermodianum, Lepidium virginicum, Euphorbia buxifolia, Canavalia ob tusifolia, Opuntia vulgaris. On the dunes at Tuckertown, Scaevola Plumieri forms extensive tracts in pure association (Scaevola Association) with Alaine Baldwini. Solidago sempervirens, as in the eastern United States, is also a dune plant together with the glaucous and hairy forms of Borrichia arborescens and Dodonaea viscosa. Conocarpus erectus forms thickets which in some places protects the dune crest. Here we have a mangrove plant occuring on sand dunes under perhaps similar ecologic conditions as in salt water.

Sea Cliff Formation. The coast line of Bermuda is generally rocky and the waves have honeycombed the rocks into jagged forms with sea caves hollowed out beneath. These rocks support a characteristic vegetation consisting of Matthiola incana, Suriana maritima, Borrichia arborescens, B. frutescens, prostrate trees of Conocarpus erectus, clumps of Solidago sempervirens, Lantana involucrata, L. camara, Euphorbia buxifolia, the crab grass Stenotaphrum americanum (covering all the available soil on the rocks), while wind-swept trees of Juniperus bermodiana, Yueca aloifolia and dwarf palmettos, Sabal Blackburniana also abound in some places. Coccoloba uvifera in Bermuda seems to prefer the rocky shores to those of sand. Sesuvium portulacastrum and Lippia nodiflora are also rock plants.

Cedar Forest Formation. This formation has been signified by the name "forest", although no true forest exists on the islands, for the reason that the growth of the cedar trees Juniperus bermodiana is too open and the trees are not tall and dominant in the forest sense. However, all of the hillside and hill summits not under cultivation are covered with this cedar with the admixture of Forestiera porulosa, Sabal Blackburniana, Chiococca bermodiana, Ilex vomitoria (= I. cassine, Eugenia axillaris, Borreria laevis, Zanthoxylum flavum (rare). This species of juniper is a rapid growing one and reaches a merchantable size (2—3 feet in diameter), but it differs from the eastern American species (J. virginiana) in branching much more freely. It produces fruit in abundance. It is hard to determine the character of the original undergrowth. Now it consists of two species of Lantana (L. involucrata, L. camara), the prevailing exotic Nerium oleander, Lippia nodiflora, Galium bermudense, Solidago sempervirens and Sisyrinchium bermodianum. The rock crevices are filled with delicate endemic fern, Adiantum

bellum. *Bryophyllum calycinum* (the floppers of the natives) is perhaps the most abundant plant in the undergrowth. It is found in all parts of the islands. The ground beneath the cedars is carpeted with the crab grass *Stenotaphrum americanum* in the absence of other plants. Here and there the botanist meets with an introduced tree, which enter into this formation and change its constitution.

Limestone Sinks. The so-called Walsingham Tract and several places near Harrington Sound on the south shore are characterized by the presence of numerous depressions, or sinks, as well as several caves. The Walsingham Tract, a narrow ridge of land about two miles long and from a quarter to half a mile wide which separates Castle Harbor from Harrington Sound, contains within its bounds nearly the whole of the indigenous flora of the islands including the rarest trees of the islands, viz., the olive wood *Elaeodendron Lanneanum*, yellow wood *Fagara flava* and red mulberry, *Morus* sp.

According to my observations, the following trees form a large part of the vegetation of one of the sinks: *Celtis mississippiensis*, *Citrus limonium*, *Fiis earica*, *Musa Cavendishii* (= *M. chinensis*, planted), *Melia azedarach*, *Lantana camara*, *L. odorata*, while *Stenotaphrum americanum* abounds and *Asplenium trichomanes* together with *Rhus toxicodendron* are found on the sloping sides of such depressions. Several vines are abundant and loop themselves across the trees, viz.: *Cardiospermum microcarpum*, *Phaseolus lunatus* and *Jasminum gracile*; *Commelina agraria* also occurs in such sinks. The cave-like sinks are characterized, according to the recent observations of N. L. Britton and Stewardson Brown, by such ferns as *Dryopteris (Aspidium) ampla*, *Adiantum bellum*, *Pteris longifolia*, *Asplenium mutleum*, *Diplazium lasianianum*.

At Walsingham, *Juniperus bermudiana* prevails mixed with Sabal *Blackbumiana*, *Celtis mississippiensis*, *Citharesylum quadrangulare*, *Calophyllum calaba*, *Adelia segregata*, *Psychotria undata*, *Trema Lamarckiana*, *Eugenia monticola* etc., while the trees are festooned with *Jasminum gracile*, *Rhus toxicodendron* and *Ipomoea purpurea*. *Peperomia septentrionalis* (= *magnoliaefolia*) and several ferns are found on the rough rocks in the bottom of the sinks, together with *Bryophyllum calycinum* and one or two species of *Lantana*.

A Scrub Formation is due to the hand of man. After the cedars are cut down, if the land is neglected and allowed to stand without cultivation it is covered by a growth of several species of *Lantana*, presumably *Lantana camara* and *L. involucrata*. *Bryophyllum calycinum* also abounds, together with many introduced weeds and thickets of *Nerium oleander*. Many of the hillsides in Bermuda are covered with this worthless scrub. Later perhaps under favorable conditions *Juniperus bermudiana* appears, but the flora is never restored to its original condition, because the sage brush plants always form an important constituent of the undergrowth.
Index of Plants.

The details of synonymy omitted in the text are given in this index. It also supplies exact data as to the habitats, or stations, of many North American plants, thus furnishing geographic details which our manuals of botany do not give. The index comprises 7,400 scientific names of plants.

Abies 176, 183, 271, 393.
— amabilis (Loud.) Forbes 264, 266, 595.
— Armstrongii 176. [596, 598, 602.
— concolor Lowiana (Murr.) Lemm. 614.
— Fraseri (Pursh) Lindl. 223, 492, 493, 495.
— magnifica Murr. 267, 617, 619.
— nobilis Lindl. 264, 266, 594, 595, 596, 598, 599, 607.
— religiosa Lindl. 651, 652, 653, 655.
— shastensis Lemm. (= magnifica Murr. var. shastensis Lemm.) 258, 614, 615, 618, 619.
Abronia fragrans Nutt. 287.
— latifolia Esch. 604.
— maritima Nutt. 282, 624.
— turbinata Torr. 287, 530.
— umbellata Lam. 24, 280, 624.
— villosa Wats. 622, 636.
Abutilon 274.
— Avicennae Gaertn. (= Abutilon Rusby = Theophrasti Medic.) 506.
— californicum Benth. 638.
Acacia 176, 242, 293, 637, 616, 662, 666.
Harshberger, Survey N.-America.

Acacia Berlandieri Benth. 642, 645, 659, 660.
— choriophylla Brit. 329, 690, 692, 693.
— constricta Benth. 645. [694, 695.
— cornigera Willd. 301.
— Coulteri Benth. 645.
— filicina Willd. (= Hartwegi Benth.)
— flexicaulis Benth. 650, 660. [530, 645.
— Greggii Gray 245, 250, 262, 270, 634.
— millefolia Wats. 251. [635, 637, 642, 645.
— pennatula Benth. 657.
— sermentosa Griseb. 675.
— Schottii Torr. 645.
— sphaerocephala Cham. & Schlecht. 681.
— Willardiana Rose (= Prosopis hetero-phylla Benth.) 637.
— Wrightii Benth. 638, 645, 660.
Acaena 274, 302, 340.
— elongata L. 653, 654.
Acalypha 274, 332.
— californica Benth. 282, 625.
— subviscida Wats. 641.
— virginica L. 544.
Acamptopappus 289.
— sphaerocephalus Gray 585.
Acanthophora 687.
Acanthorhiza 664.
Acanthospermum xanthoides DC. 431.
Acer 176, 200, 433, 442, 513.
— cirenatum Pursh 264, 595, 596, 602, 614.
— floridanum (Chapm.) Pax 202.
— grandidentatum Nutt. 245, 249, 581, 582, 589, 642.

45
— nigrum F. A. Michx. 502, 511, 522.
— pleistocenium Daws. & Penhal. 184, 185.
— saccharum barbatum (Michx.) Trelease (= nigrum Michx.) 509.
Acetates 176.
— auriculata Engelm. 532.
— floridana (Lam.) A. S. Hitchc. 437.
— viridiflora (Raf.) Eat. var. Ivesii Britt. 518.
— viridiflora (Raf.) Eat. var. linearis Aceriphyllum 176. [Gray 518.
Acetabularia crenulata Lamour. 701.
Achillea borealis Bong. (= A millefolium L.) 257, 616.
— lanulosa Nutt. 555, 558, 583.
— millefolium L. 379, 527, 564, 570, 573.
— ptarmica L. 347.
Achlys, 274.
Achnanthes gibberula 561.
Acras Sapota L. 664.
Achyranthes aspera L. var. obtusifolia Achyronichia 289. [Lam. 682.
— Aconitum columbianum Nutt. 257, 609, 615, 618.
— columbianum Nutt. var. Eisenii 618.
— delphinifolium DC. 359, 592.
— Fischeri Reichb. (= columbianum Nutt.) 195.
— uncinatum L. 479, 485.
Acorus 176.
— Calamus L. 355, 357, 386, 442, 463, 523.
— Acria monticola O. F. Cook 684. [525.
— Acrocomia 303, 604.
— virinera Oerst. 667.
Acrostichopteris 176.
Acrostichum 176, 679.
— aureum L. 659, 674, 696, 695, 702.
— Schiede Kze. 653.
— simplex Sw. 653.
Acteeza 271.
— arguta Nutt. 602. [521.
— rubra (Ait.) Willd. 377, 479, 521, 526.
— spicata L. 292, 583.
— spicata L. var. arguta Torr. 567.
Actinella. 289, 585.
— (Tetraneuris) acaulis (Pursh) Greene 534, 563.
— (Tetr.) argentea (Gray) Greene 576.
— (Ryderbergia) grandiflora (Torr. & Gray) Greene 193, 563.
— (Tetraneuris) lanata (Nutt.) Greene 576.
— (Tetraneuris) linearifolia (Hook.)Greene odorata Gray 576. [529.
— (Picradenia) Rusbyi (Gray)Greene 582.
Adelia segregata Kuntzi (= Forestiera porulosa Michx.) 704.
Adenocaulon bicolor Hook. 196, 555.
Adenostemma Berteri DC. 674.
Adenostoma 607.
— fasciculatum Hook. & Arn. 272, 607, 611, 626, 629, 630.
— sparsifolium Torr. 268, 630.
Adiantum 653.
— bellum Moore 331, 704.
— capillus veneris L. 275, 490, 628.
— emarginatum Hook. (= Jordani Muell.) melaneoleucum Willd. 692. [275, 628.
— pedatum L. var aleuticum 365.
— tenerum Sw. 690.
Adlumia cirrhosa Raf. (= fungosa (Ait.) Adolphia 274. [Greene 486.
— californica Wats. 200.
— infesta Meissn. 581.
— Aechmea 679.
Aeria attenuata O. F. Cook 684.
Aeshchynome virginica (L.) B.S.P. 448.
Aesculus 176, 200, 662.
— arguta Buckley 512.
— californica (Spach) Nutt. 267, 270, 585, 609, 611, 616.
— flava Ait. (= octandra Marsh.) 472, 484, 488, 489, 492, 493, 496, 505, 509.
— glabra Willd. 237, 457, 504, 505, 509.
Aethalium septicum Fries (= Fuligo septica (L.) Gmel.) 414.
Index of Plants.

707

Agarum Gmelini 588.
— Turneri Post. & RuPr. 349, 351, 370, 383, 587, 588.

— appianata Lemaire 581, 646.
— asperrima Jacobi 300, 646.
— brauniana Jacobi 646.
— caribaea Hort. Kew. 300.
— dasylirioides Jacobi & Bouché 300.
— decipiens Baker 229, 697.
— deserti Engelm. 290, 300.
— excelsa Jacobi 300.
— geminiflora Ker-Gawl 300.
— (Manfreda) guttata Jacobi & Bouché 300.
— heterocantha Zucc. 645. [646.
— hexapetala Jacq. 300.
— horrida Lemaire 648.
— huachucensis Baker 300.
— Humboldtiana Jacobi 646.
— maculata Regel 300.
— Margaritae T. S. Brandegee 300, 640.
— marmorata Roezl 647.
— megalacantha Hemsl. 651.
— Morrissii Baker 300, 686.
— Newberryi Engelm. 300.
— Palmeri Engelm. 300.
— Parryi Engelm. 300, 576, 635.
— Peacockii Croucher 646.
— Pringlei Engelm. 300.
— rigida Mill. 689, 692.
— sebastiana Greene 300.
— Seemanniana Jacobi 300.
— Shawii Engelm. 282, 300, 625.
— sisalana (= rigid sisalana Engelm.)
— Smithiana Jacobi 646. [229.
— sobria T. S. Brandegee 300.
— spicata Cav. 300.
— subinermis M. Roem. 300.
— utahensis Engelm. 290.
— virginica L. 226, 300, 515.
— Wallisii Jacobi 300.
— Wislizeni Engelm. 581, 646.
— xylonacantha Salm-Dyck 646.

Ageratum 671.
— arbutofolium H. B. K. 655.
— Agoseris (Troximon) aurantiaca (Hook.) Greene 562.
— (Troximon) monticola Greene 258, 616.
— Agrimonia incisa Torr. & Gray 447.
— mollis (Torr. & Gray) Britt. 520.
— parviflora Soland. 463.
— striata Michx. 512.
— Agropyron 622.
— caninum (L.) Beauv. 561, 632.
— Agropyron dasystachyum (Hook.) Scribn.
— divergens Nees. 561. [399.
— glaucum (Desf.) R. & S. 528.
— occidentale Scribn. 528.
— pseudorepens Scribn. & Sm. 527, 528.
— repens (L.) Beauv. 528, 572.[536, 539, 582.
— Scribneri Vasey 564.
— spicatum (Pursh) Rydb. 516, 536, 538.
— tenerum Vasey 577. [569, 570.
— violaceum (Hornem.) Vasey 373, 583.
— Agrostis 260, 605, 653.
— alba L. 370, 413, 492, 496.
— canina L. 315, 376, 573, 590, 591.
— canina L. var. rubra L. 377.
— exarata Trin. 592, 594.
— hyemalis (Walt.) B. S. P. 394, 400.
— humidis Vasey 601. [413, 509, 518, 583.
— intermedia Scribn. 486.
— perennans (Walt.) Tuck. 487, 496, 512.
— Pringlei Scribn. 605. [523, 682.
— Rossae Vasey 601, 620.
— rubra L. 371, 373, 407.
— scabra Willd. (= hyemalis (Walt.) B. S. P.) 496, 523, 561.
— tenuis Vasey 632.
— verticillata Vill. 576, 577.
— virescens H. B. K. 655.
— vulgaris With. 577.
— Achnfeltia plicata Fries. 384, 587.
— Aliolotheca parthenioides DC. 647.
— Aria atropurpurea Wahlenb. 315.
— caryophyllea L. 593.
— Alaria 593.
— cordata Tilden 588.
— esculenta (L.) Grev. 370, 383.
— fragilis Saunders 588.
— lancolata Kjellm. 588.
— laticosta Kjellm. 588.
— praelonga Kjellm. 351.
— Alchemilla 302, 671.
— alpina L. 197.
— pinnata Ruiz & Pav. 655.
— Alchornea latifolia Sw. 680.
— Alectoria 395.
— Fremontii Tuck. 615.
— jubata (L.) Ach. 367.
— jubata (L.) Ach. var. prolixa 549.
— sarmentosa Nyl. 549.
— bracteata Northrop 602.
— farinosa L. 202, 215, 421.
— Alibertia edulis A. Rich. 675.
— Alisma Plantago-aquatica L. 280, 386, 397.
— tenellum Mart. 392. [511, 540, 572.
— Allenrollea (Spirostachys) occidentalis Wats.
— Allionia 274. [636.

45*
Alternanthera floridana Small 697.
— muscoides Benth. & Hook. 674.
Amaranthus blitoides Wats. 540.
— chlorostachys Willd. (= hybridus L.)
— hypochondriacus L. 280. [539.
— Palmeri Wats. 636.
— pumilus Raf. 382.
— retroflexus L. 420.
Amarella monantha (A. Nels.) Rydb. (= Gentiana tenella A. Gray in part) 194.
Amaryllis 641.
Amblyopappus 274.
— pusillus Hook. & Arn. 282, 624, 640.
Ambrosia 464.
— artemisiaefolia L. 379, 417.
— bidentata Michx. 506.
— hispida Pursh 689, 690.
— psilostachya DC. 280, 524, 539, 540.
— trifida L. 463, 464.
Ameilanchier 176, 200, 473.
— alnifolia Nutt. (= spicata (Lam.) C. Koch) 195, 238, 240, 245, 249, 356, 536,
— 544, 548, 549, 553, 562, 566, 568, 571,
— 572, 582, 594, 597. [590.
— Botryopus (L. f.) DC. 434, 544, var.
— canadensis (L.) Medic. 237, 353, 355,
— 380, 408, 425, 457, 458, 466, 477, 479,
— 490, 500, 504, 507, 515, 522, 536, 544.
— canadensis (L.) Medic. var. oblongifolia
Tor. & Gray 386, 388, 589.
— Cusickii Fernald 572.
— rotundifolia (Michx.) Roem. 536.
Amianthium muscaetoxicum (Walt.) Gray
202, 203, 221, 424, 476, 486, 495.
Ammannia coccinea Rotb. 280, 497, 541.
Ammophila arenaria (L.) Link (= arundinacea Host) 222, 309, 379, 381, 382,
— 399, 409, 411, 412, 413, 416, 429, 430,
— Amorpha 274, 527. [499.
— Californica Nutt. 627.
— canescens Pursh 518, 520, 522, 524,
— 527, 528, 532, 536.
— fruticosa L. 322, 438, 456, 458, 506,
— glabra Desf. 447. [540, 546.
— hispidula Greene 431.
— virgata Small 494.
Ampelopsis 177, 453, 463, 473, 512.
— cordata Michx. (= Cissus Ampelopsis
— (Parthenocissus, Pseadera) quinquefolia
(L.) Planch. 248, 322, 388, 394, 399,
— 400, 412, 413, 414, 416, 425, 430, 431,
— 432, 456, 458, 467, 502, 506, 544, 567,
— 693, 649, 700.

Allionia (Oxybaphus) hirsuta Pursh 515.
— littoralis (2) 528.
— ovata Pursh 518.
Allium 260, 529, 621.
— acuminatum Hook. 272.
— brevistylum Wats. 558.
— canadense L. 524.
— cernuum Roth. 524.
— mutabile Michx. 527.
— Nuttallii Wats. 531.
— Schoenoprasum L. 558.
— serratum Wats. 626.
— Tolmiei Baker 602.
— tricoccum Ait. 499.
— validum Wats. 257, 615, 618.
— vineale L. 463.
Allocarya 281, 612.
Algocarya virgata Torr. & Gray 254, 602.
Alnus 176, 295, 353, 671.
— acuminata H. B. K. 651, 656.
— castaneaefolia Mirb. 652.
— incana (L.) Willd. 248, 285, 355, 356,
— 359, 364, 365, 388, 389, 392, 401, 482,
— Kelersteinii Göpp. 174.
— maritima (Marsh.) Muhl. 379.
— Mirbelii 671.
— oblongifolia Torr. 251, 633, 642.
— oregana Nutt., 188, 262, 264, 266, 589,
— 590, 594, 596, 598, 602, 606.
— rhombifolia Nutt. 246, 262, 267, 269,
— 276, 280, 553, 572, 578, 612, 617, 630,
— rubra L. 591, 592, 595. [632.
— rugosa (Du Roi) Spreng. 439, 442.
— serrulata Willd. 426, 458, 463, 466,
— 473, 477, 513.
— sinuata (E. Regel) Rydb. 247, 257,
— 348, 590, 615.
— tenuifolia Nutt. 250, 268, 545, 572,
— 614, 618, 619.
— viridis DC. (= alnobetula (Ehrh.) E. Koch) 223, 247, 321, 354, 356, 359,
Alopecurus 271.
— alpinus J. E. Smith 334.
Alsine Baldwinii Small 703.
— baicalensis Coville (= Stellaria umbel-
lata Turcz.) 254.
— laeta (Rich.) Rydb. 550.
— longipes (Goldie) Coville 254.
— strictaWahl(ArenarialapponicaSpreng.)
— verna L. 192, 583. [197.
Alsophila 665, 679.
— pruinata Klgi. 670.
Alternanthera achyrantha R. Br. 672.
— brasiliiana Kuntze (= Mogiphanes bra-
siliensis Mart.) 696.
Amphicarpa monoica (L.) Ell. (= Fal-
cata comosa (L.) Kuntze) 526.
Amphiachrysis Fremontii A. Gray 585.
Amphiprora ornata Bail 396.
Amphiroa 593.
— planiscusta Kütz 588.
— tuberculosa (Post & Rupr.) Endl. 588.
Amsinckia 283, 612, 634.
— lycopoides Lehm. 287.
— spectabilis F. & M. 626.
Anania 289, 585.
Anigyralus 177.
Anisyl elememera L. 602, 694, 695.
— madrensis 650.
— parvifolia Gray 659.
Anabaena 560.
— flos-aquae (Lyn.) Bréb. 396.
Anacardium 688.
Anadyomene flabellata 701.
Anaphalis marginaticea (L.) Benth. &
Hook. 366, 371, 373, 411.
Anastraphia 407.
Andropogon 30.
— Adiantifolia Hook. 320, 441.
— polifolia L. 180, 207, 312, 348, 353, 355,
— speciosa Michx. 438. [592]
Andropogon 426, 435, 453, 524, 645, 671,
681, 693.
— argyraeas Schult. (= ternarius Michx.)
— bicornis L. 675. [225, 226, 494.
— brachystachyus Chapm. 441.
— (Heteropogon) contortus L. 635.
— Elliottii Chapm. 226, 494.
— floridanus Scribn. 438.
— furcatus Michx. 453, 494, 499, 516, 518,
520, 523, 525, 527, 537, 537.
— glomeratus (Walt.) B. S. P. (= mac-
rourus Michx.) 219, 422, 442.
— Hallii Hack. 532.
— hirtiflorus Kunth. 582.
— leucopogon Nees. 635.
— macrorurus Michx. (= glomeratus). 275,
421, 628.
— nutans L. var. avenaceus (= Chryso-
pogon avenaceus Benth = Sorgha-
strum avenaceum (Michx.) Nash.) 390.
— occidentale 537.
— provincialis Lam. 239.
Andropogon saccharoides Sw. 275, 530, 628.
— scoparius Michx. 215, 239, 300, 309,
400, 421, 494, 499, 500, 518, 523, 524,
527, 528, 530, 532, 534, 537.
— Torreyanus Steud. (= Amphilophis
Torreyanus (Steud.) Nash) 635.
— virginicus L. 215, 413, 450, 509, 698.
Androsace chamaejasme Willd. 194, 312.
— filiformis Retz. 194, 559. [347, 562.
— occidentalis Pursh 515, 516, 518, 522,
527.
— septentrionalis L. 292, 312, 347, 559,
563, 574, 583, 592.
— subumbellata (A. Nels.) Small 551.
Androstaphylium breviflorum Wats. 571.
— violaceum Torr. 531.
Aneimia adiantifolia (L.) Sw. 676, 679.
— aurita Sw. 679.
— hirta (L.) Sw. 679.
Anemia (= Houttynia) 177.
Anemone 334.
— caroliniana Walt. 508, 518, 527.
— cylindrica Gray 518, 528, 531.
— decapetala Ard. 522.
— Drummonndii Wats. 551.
— globosa Nutt. (= multifida Poir.) 192.
— multifida Poir. 399, 573. [557.
— narcissiflora L. 102, 359, 391, 566, 592.
— nemorosa Man. ed. 6, not L. (= quin-
quefolia (L.) A. Wood) 424, 477, 486,
490, 520, 526, 606.
— (Pulsatilla) occidentalis Wats. 601.
— parviflora Michx. 359, 592.
— patens L. var. Nuttalliana Gray (= pa-
tens L. var. Wolfgangiana (Bess.) Koch
= Pulsatilla hirsutissima (Pursh) Britt.)
357, 545, 551.
— pennsylvanica L. (= canadensis L.) 506.
— (Rhododendron Hook. 357, 592. [513, 525.
— sphenophylla Poepp. 634.
— trifolia L. 486.
— virginiana L. 366, 473, 520.
Anemone (= Syndesmon) 202.
— thalictroides (L.) Spach 469, 472, 503.
Angelica Curtisii Buckl. 496.
— hirsuta Muilh (= villosa (Walt.) B. S. P.)
— Pringlei Coult. & Rose 652. [490.
— villosa (Walt.) B. S. P. 490.
Angelonia angustifolia Benth. 675.
Angiopteridium 177.
Anguria Keithii Northrop 330.
Anhalonium 296, 645.
— (Ariocarpus) fissuratum Engelm. 645.
— (Echinocactus) fissuratum Engelm. 645.
— (Echinocactus) fissuratum Engelm. 645.
Index of Plants.

Anoda 295.
Anomozamites 177.
Anona 177, 688.
— glabra L. 698, 700.
— palustris L. 687, 690, 691, 692.
Anredera 660.
— aprica Greene 193.
— argentea Benth. 618.
— campestris Rydb. 518, 527.
— carpathica R. Br. 391, 574.
— dimorpha (Nutt.) Torr. & Gray. 599.
— dioica Gaertn. 196, 254, 563, 573, 620
— lanata Greene 550.
— lizuloides Torr. & Gray 618.
— media Greene 193, 196, 257, 616.
— nardina Greene (= corymbosa E.Nels.) [564.
— neglecta Greene 421. [564.
— neodioica Greene 370.
— parvifolia Nutt. (= dioica) 558.
— plantaginiifolia (L.) Richards 512.
— umbrinella Rydb. 193.
Antahanthus acicularis Nees. 693,694.
— spinosus Nees 687.
Anthaenanita rufa (Ell.) Schult. 450.
Antherylion Rohrrii Vahl. 687.
Anthurium cordifolium Kunth 688.
— Huegelii Schott (= Hookeri Kunth)688.
Antirrhoea myrtifolia (Griseb.) Urban 690, Antirrhinum 627.
— glandulosum Lindl. 275, 628.
— Nevinianus Gray 275, 628.
— virga Gray 607.
Antithamnion boreale (Gobi) Kjellm. 588.
Anychia dichotoma Michx. 487.
Aparigidium boreale Torr. & Gray (= Leontodon boreale DC.) 196.
Aphanisia 274.
— blitoides Nutt. 282, 624.
Aphanizomenon flos-aquae (L) Ralfs. 396, Aphanochaete repens A. Br. 395. [399.
Aphyllon uniflorum Torr. & Gray. (= Thalesia uniflora (L) Britton = Orobanche uniflora L.) 469.
— fasciculatum Gray (= Thalesia fasciculata (Nutt.) Britt. = Orobanche fasciculata Nutt.) 578.
Apios tuberosa Moench (= Apios (L) Mac Millan) 231, 544, 608.
Aplectrum hyemale Nutt. (= spicatum (Walt.) B. S. P.) 486, 513.
Aplopappus (Stenotus) acaulis Nutt. 196.
— (Stenotus) armerioides Gray 553.
— (Pyrocoma) Brandegei Gray 550, 551.
— (Stenotus) caespitosus Nutt. 193.
— (Chrysoma) cuneatus Gray 586, 633.
Aplopappus (Chrysoma) ericoides DC. 275, 276, 622, 628.
— (Stenotus) interior Coville 629.
— (Stenotus) linearifolius DC. 275, 611, 628.
— (Pyrocoma) Lyallii Gray 193, 551, 565.
— (Oreochrysum) Parryi Gray 193.
— (Tonestus) pygmaeus Torr. & Gray 193.
— (Eriocarpum) spinulosum Pursh 532,638.
— (Macronema) suffrutescens Gray 196.
— (Pyrocoma) tenuicaulis Eat. 287. [561.
— (Pyrocoma) uniflorus Torr. & Gray 559.
— (Chrysothamnus)viscidiflorus Nutt. 573.
Apopynym cannabismum L. 280, 586.
— hypericifolium Ait. 513.
Apteria setacea Nutt. 447.
Aquilegia 260, 621, 641.
— canadensis L. 424, 468, 470, 481, 515, 520, 522, 544, 566.
— chrysanthca Gray 292, 583, 635.
— caerulea James 192, 195, 244, 561, 566.
— formosa Fisch. 591.
Arabis alpina L. 197.
— arcuata Gray 631.
— canescens Nutt. 192, 564.
— dentata Torr. & Gray (= Iodanthus dentatus (Torr. & Gray) Greene 515.
— depauperata 621.
— Drummondii Gray 564, 574.
— furcata Wats. 192.
— hirsuta (L.) Scop. 254, 588, 602.
— Holboelli Hormem. 195, 359.
— laevigata (Muhl.) Poir. 510, 515, 652.
— longirostris Wats. 287.
— Lyallii Wats. 195, 601.
— lyrata L. 359, 470, 486, 524, 526, 592.
— nudicalus DC. (= Parrya macrocarpa R. Br.) 522, 545.
— patula Graham (= Bourgovii Rydb.) pedicellata AX. Nels. 619. [391.
— petrea Lam. 350.
— platy sperma Gray 195, 254, 257, 600, racemosa 522. [616, 618.
— retrofracta Graham 391.
— stricta Huds. 197.
Aralia 174, 177, 662.
— hispida Vent. 364, 392, 477, 482, 501.
— (Panax) quinquefolia Decne. & Planch. 472, 477.
Aralia racemosa L. 404, 408, 502, 512, 521, 522, 526.
— (Panax) trifolia Decne. & Planch. 469.
Araucaria 177.
Araucarioxyylon 177.
Araucartes 177.
Arbutus 307, 651, 668.
— arizonica (Gray) Sarg. 642.
— floribunda Mart. & Gal. 653.
— laurina Mart. & Gal. 653.
— paniculata Mart. & Gal.
— petiolaris H. B. K. 641.
— spinulosus Mart. & Gal.
— varians Benth. 656, 658.
Arceuthobium (Razoumofskya) america-
— Douglassi Engel. 556. [num Nutt. 555.
— occidentale Engel. 608.
Archeangelica Gmelini DC. 354, 379, 591.
— atropurpurea Hoffm. 354, 525.
Archeilejeunia 432.
Arctostaphylos 304, 607, 622, 656, 668.
— (Mairania) alpina Spreng. 194, 312, 315.
— bicolour (Nutt.) Gray 640.
— diversifolia Parry 282, 625.
— glauca Lindl. 629, 630.
— manzanita Parry 272, 608, 625, 629,630.
— nevadensis Gray 254, 257, 597, 599, 615.
— nummularia Gray 605. [618, 619, 623.
— patula Greene 598, 614, 629, 633.
— Pringlei Parry var. drupacea 631.
— rubescens Hemsli. 671.
— tomentosa (Pursh) Doug. 597, 629, 635.
— Uva-ursi (L.) Spring 249, 348, 354, 359.
— uva-ursi (L.) Spring 249, 348, 354, 359.
— brevifolia Nutt. 490.
— bryoides Willd. 654, 655.
— capillaris Poir. 193.
— capillaris, var (nudifolius Ledeb. 550.
— caroliniana Walt. (= squarrosa Michx.)
— ciliata L. 197. [422, 424.
— ciliata L. var. humifusa Hornem. 365.
Arenaria compacta Coville 195, 254, 618.
— congesta Nutt. 195, 562.
— decussata Willd. 652.
— Fendleri Gray 192, 537, 553.
— groenlandica (Retz.) Spring 204, 223.
— Hookeri Nutt. 534, 535.
— leptophylla Cham. & Schlecht. 653.
— macradenia Wats. 586.
— macrocarpa Pursh 350.
— (Moehringia) macrophylla Hook. 611.
— major 593.
— Michauxii Hook. f. (= stricta Michx.)
— Nuttallii Pax 621. [486, 564.
— patula Michx. 508, 510.
— (Ammodenia) peploides L. 354, 381.
— pungens Nutt. (= Nuttallii Pax) 195.
— pygmaea 558.
— (Alsinopsis) Rossii R. Br. (= stricta Michx. 192.
— sajanensis Willd. 365, 558, 564.
— serpyllifolia L. 570.
— squarrosa Michx. (= caroliniana Walt.)
— texana (Robinson) Britt. 515. [219,421.
— verna L. 189, 192, 292.
— (Alsin) verna L. var. aequicaluis 564.
Arethusa bulbosa L. 355, 356, 402, 426.
Argemone 576, 645.
— alba Lessib. 532.
— mexicana L. 287, 655, 682.
— munita Dur. & Hilg. (= hispida Gray)
— platyceras Link & Otto 532. [609.
— fasciculata Muell. 687.
— Argyrothamnium (= Ditaxis) 289.
— serrata Muell. Arg. 638.
Ariocarpus 296.
Arisaema 177, 470.
— Dracontium (L.) Schott 469, 513.
— triphyllum (L.) Schott. 379, 388, 389.
— quinatum Chapman 496.
Aristida 576.
— arizonica Vasey 582.
— basiramea Vasey 531, 532, 536.
— dispersa Trin. & Rupr. (fasciculata
Index of Plants.

Aristida longiseta Steud. 537, 582.
- oligantha Michx. 531, 532.
- purpurea Nutt. 287, 527, 528, 530, 532.
- Schiediana Trin. & Rupe 530. [576]
- stricta Michx. 435, 436, 438, 530.
- tuberculosa Nutt. 382, 524.

Aristolochia 177, 274.
- Siphlo L’Her. (= macrophylla Lam. 474.
- tomentosa Sims 453, 492. [485]

Aristolochites 177.

Armeria 274.
- vulgaris Willd. (= Statica Armeria L.)
- sibirica Turcz. 189. [391]

Arnica 244, 271.
- Chamissonis Less. (= mollis Hook.) 189.
- discoidea Benth. 611. [591]
- foliosa Nutt. 599.
- fulgens Pursh 193.
- latifolia Bong. 360, 592.
- longifolia D.C. Eat. 193, 196, 358, 573.
- Merriana Greene 196, 258. [615]
- mollis Hook. 365, 376, 573.
- monocephala Rydb. 193.
- Parryi Gray 193.
- unalaschensis Less. 350.
- viscosa Gray 196, 258.

Aronia (Pyrus) arbutoifolia (L.) Ell. var.
erythrocarpa 438.

Aronicium Clusii Koch (= Dornicum hirsutum Lam.) 197.

Arracacia nudicaulis Coult. & Rose 653.

Arthrotaxopsis 177.

Artemisia 243, 626, 645.
- androsacea Seem. (= senjavinensis Bess.
- arbuscula Nutt. 196, 569, 573. [348]
- arctica Bess. 348.
- aromatica A. Nels 572.
- borealis Pall. 365.
- borealis Pall. var. Wormskjoldii Bess.
- cana Pursh 533, 569. [365]
- californica Less. 626.
- canadensis Michx. 238, 399, 400, 499, 533, 537.
- caudata Michx. 381, 382, 390, 399, 400, 499.
- discolor Dougl. var incompta Nutt.246.
- dracunculoides Pursh 248.
- filifolia Torr. 523, 533, 534.
- frigida Willd. 193, 238, 246, 359, 533, 534, 537, 545, 599.
- globularia Cham. 350.
- gnaphalodes Nutt. 518, 545.
- Ludoviciana Nutt. 246.
- norvegica Fries 196, 592.

Artemisia Palmeri Gray 275, 628.
- Parishii Gray 275, 628.
- Pattersoni Gray 562.
- rigidia Gray 569.
- Rothrockii Gray 196, 254, 618.
- scopulorum Gray 193, 562, 564, 565.
- spinescens D.C. Eat. 283, 571, 573.
- spithamea Pursh 193.
- Stelleriana Bess. 381.
- Suksdorffii Piper 593.
- tridentata Nutt. 252, 283, 288, 533, 562, 568, 569, 570, 571, 580, 586, 629, 630.
- trifida Nutt. (= tripartita Rydb.) 571.
- vulgaris L. var. californica Bess. 280.
- vulgaris L. 312, 347.

Arthrostylidium 676, 693.
- capillifolium Griseb. 675.

Artocarpus 177, 183.
- incisa L. 688.

Arundinaria 319.
- acuminata Munro 661.
- macro sperma Michx. 224, 439, 440, 441.
- teca (Walt.) Muhl. 224, 442, 447, 456.
- Arundo 177, 651, 659. [473]
- donax L. 447.

Avrainvillea nigricans Decsne. 701.

Asarum arifolium Michx. 447.
- caudatum Lindl. 602. [521, 522].
- macranthum Small 490.
- virginicum L. 473, 484, 485, 491.

Asclepias albicans Wats. 639.
- curassavica L. 655, 675.
- decumbens L. 529.
- eriocarpa Benth. 628.
- eosa Torr. 602.
- exaltata (L.) Muhl. 487, 520.
- humistrata Walt 427.
- Jamesii Torr. (= latifolia [Torr.] Raf.)
- Meadii Torr. 522. [530]
- nivea L. 674.
- obovata Ell. 453.
- obtusifolia Michx. 219, 380, 390, 421, 422.
- perennis Walt. 456, 699. [423, 518, 522.
- pumila (Gray) Vail 528.
- quadri folia Jacq. 490.
- speciosa Torr. 532.
- subulata Dec. 636, 638.
- Sullivantii Engelm. 524.
- syriaca L. 238, 399, 518.
- tuberosa L. 413, 424, 518, 522.
- variegata L. 473.
- verticillata L. 518, 522.

Asclepiodora decumbens (Nutt.) Gray 531.
Asclepiodora viridis (Walt.) Gray 453.

Aescophyllum (Fucus) nodosum Le Jolis 370.

Ascyrum crux Andreae L. (= hypericoides L.) 219, 413, 421, 446.
— hypericoides L. (= crux Andreae L.) 422, 682, 693.
— stans Michx. 219, 227, 421, 422, 424, 426, 436, 446.

Asimina 177, 200, 295, 453, 509, 512, 544.
— parviflora Michx. 225, 226, 438, 450.

Asperococcus echinatus Grev. 384.

Aspidiophyllum 177.

Aspidium 351, 486.
— (Polystichum) aculeatum var. Braunii
— fragrans (L.) Sw. 365, 378.
— lonchitis Sw. 549, 590.
— (Polystichum) munitum Kauff. 265.
— trifoliatum (L.) Sw. 699.

Aspleniopteris 177.

Asplenium 177, 351, 477, 486, 590, 653.
— angustifolium Michx. 508.
— Bradleyi Eat. 490, 495.
— Fawcettii Jenm. 680.
— (Athryhum) filix-femina Bernh. 469.
— Laffanianum Baker 331.
— monanthes L. 683.
— montanum Willd. 486, 487, 490.
— muticum Gilb. 704.
— parvulum 486, 490.
— pinnatifidum Nutt. 487, 490, 509.
— platyneuron (L.) Oakes 513.
— resiliens Kze. 579.
— ruti-muraria L. 486, 487.
— septentrionale (L.) Hoffm. 567.
— thelypteroides Michx. 355, 366, 488.
— trichomanes (L.) var. majus. 655.

Asprella (Hystrix) hystrix L. 496, 544.

Astegphanus 289, 290.

Aster 244, 527, 608.
— adnatus Nutt. 437. [477.
— adscendens Lindl. 196.
— alpignum Torr. & Gray 616.
— alpinus L. 193, 601.
— (Oreastrum) Andersonii Gray 196, 254.
— andinus Nutt. 193. [618.
— anomalous Engelm. 515.
— apricus (Gray) Rydb. 193.

Aster azureus Lindl. 523.
— canescens Pursh 238, 537, 582.
— commutatus Gray. 537.
— concolor L. 219, 421, 422, 423.
— conspicus Lindl. 501.
— cordifolius L. 477, 510.
— diffuse Dryand. 456.
— divaricatus L. 469.
— Douglasii Lindl. 280, 281, 613.
— dumosus L. 486.
— ericaefolius Rothrock (= Leucelene ericooides (Torr.) Greene) 579.
— ericooides L. 413, 523.
— exilis Ell. 280, 539, 682.
— Geyeri (Gray) Howell 557.
— glacialis Nutt. 574.
— gracilis Nutt. 424, 436.
— integrifolius Nutt. 196, 561.
— junceus Ait. 386, 500, 525.
— laevis L. 401, 469, 494.
— Lamarckianus Nees (= A. paniculatus Lam.) 391.
— (Ionactis) linnariifolius L. 390, 475.
— longifolius Lam. 238.
— macrophyllus L. 465.
— missouriensis Britton 513.
— mohavensis Kuntze 585.
— montanus R. Br. (= sibiricus Gray)193.
— multiflorus Ait. 518, 520, 527, 539, 540.
— nemoralis Ait. 219, 421, 422, 423, 424.
— nova-angliae L. 502, 515, 525.
— nova-belgii L. 525.
— Nutttallii Torr. & Gray 287.
— oblongifolius Nutt. 510, 515, 516, 518.
— Orecttii Vasey & Rose 290. [520, 523.
— (Heleastrum) paludosus DC. 436.
— paniculatus Lam. 513, 525.
— patens Ait. 473, 494, 506.
— phoeniceus 525.
— polypephalus Rydb. 537.
— polyphyllus Willd. (= Faxonii Porter) 577.
— potosinus Gray 647.
— prenanthoides Muhl. 486.
— pulchellus DC. Est. (= Oreastrum Haydeni (Porter) Rydb.) 573, 600, 601.
— sagittaefolius Willd. 491.
— salicifolius Lam. 525.
— salsuginosus Hook. (= peregrinus Pursh 312, 347.
— scopularum Gray (= alpina (Nutt.) Greene) 193.
— sericus Vent. 518, 523, 527, 536.
— hastensis Gray 616.
— Shortii Hook. 491, 497.
— sibiricus Gray 193, 567.
— simplex W. (= paniculatus Lam.) 372.
Aster spectabilis Ait. 219, 421, 422, 423.
— spinosus Champ. 638.
— subulatus Michx. 382, 428.
— (Machaeranthera) tanacetifolius H. B. K.
— tenuifoliis L. 382, 691. [530, 582.
— (Xylorrhiza) tortifolius Torr. & Gray
— tradescanti L. 522, 525. [290, 571.
— turbinellus Lindl. 515.
— (Doellingeria) umbellatus Mill. 371, 372.
Asterionella formosa Hass. 396. [373.
— gracillima Heib. 396.
Astraeus stellatus (Scop.) E. Fisch. 414.
Astragalus 243, 284, 288, 337, 571, 576,
— albiculis DC. 287.
— alpinus L. 191, 312, 347, 354, 360, 366,
— (Homalobus) aboriginorum Rich. 574.
— adsurgens Pall. 536.
— (Homalobus) caespitosus Nutt. 534, 535.
— calycosus Torr. 195, 574.
— caryocarpus Ker-Gawl. 508, 524, 531.
— cobrensis Gray 643.
— coriaceus Hemsl. 646.
— crassicarpus Nutt. (= caryocarpus Ker-
— (Homalobus) caespitosus Nutt. 534, 535.
— cyaneus Gray 576.
— dentatus 287.
— diphacus S. Wats. 646.
— diphyus Gray 576.
— distortus Torr. & Gray 515.
— Drummondii Doug. 534, 537.
— elegans (Hook.) Sheldon 204.
— flexuosus (Hook.) Doug. 528.
— Hookerianus (Torr. & Gray) Gray 573.
— Hosackiae Greene 582.
— humistratus Gray 643.
— Kentrophyta Gray (= Homalobus montanus
— Kentrophyta Gray var. elatus Wats. 195
— labradoricus Hook. (= alpinus L.) 392.
— lentiginosus Doug. 287.
— leptocarpus Torr. & Gray 646.
— Lindheimeri Gray 531.
— (Phaca) longifolia Pursh 532.
— lotiflorus Hook. 531, 537.
— mexicanus A. DC. 512, 515, 531.
— microlobus Gray 538.
— miguelensis Greene 622.
— missouriensis Nutt. 238, 643.
— mollissimus Torr. 238, 536, 537, 643.
— multiflorus Gray, 534.
— Nevinii Gray 277.
— Nuttallianus DC. 287, 531, 643.
Astragalus oroboides Hornem. (= elegans
— parvus Hemsl. 646. [(Hook.) Sheld.
— pilifolia 599.
— platensis Nutt. 508.
— platytropis Gray 195, 574.
— pterocarpus Wats. 287.
— pycnostachys Gray 282, 624.
— Robbinsii (Oakes) Gray 573.
— Seatonii M. E. Jones 652.
— (Orophaca) sericeus Nutt. 535.
— scapoides 287.
— Shortianus Nutt. 643.
— squamosus H. B. K. var. gracilis 652.
— succulentus 534.
— tegetarius Wats. var. impexus Canby.
— tegetarius Wats. 574. [564.
— Vaseyi Wats. 636.
— Whitneyi Gray 195.
Atamisquea emarginata Miers 638.
Ateleia apetala Griseb. 674.
Atelophragma oroboides americana Gray
— (Phaca elegans Hook.) 192.
Athyrium 271.
— cyclosorum Rupe. 577.
— cyclosorum var. strictum 618.
— filix-foemina (L.) Roth 363, 490, 493,
— 526, 536, 591, 602.
Atragene americana Sims (= Clematis vertic-
cillaris DC. 1247.
— occidentalis Hornem. 555.
Atrichoseris 289, 585.
— platyphylla Gray 585.
Atriplex 293, 576, 627, 636.
— arenaria Nutt. 381, 411.
— argentea Nutt. 539, 576.
— californica Moq. 624, 628.
— canescens (Pursh) James 571, 572, 575,
— 576, 586, 635.
— confertifolia Wats. 283, 569, 571, 573.
— coronata Wats. 280. [575, 585.
— cristata H. B. K. 687, 696.
— deltata Greene 640.
— dilatata Greene 639.
— expansa Wats. 539, 576.
— hastata L. 282, 354, 420, 539, 570, 624.
— hastata L. var. oppositifolia Moq. 280.
— hymenelytra Wats. 585, 586.
— insularis 639.
— leucophylla Dietr. 280, 624.
— littoralis L. 593.
— macrocarpa Dietr. 282.
— microcarpa Dietr. 624.
— Nuttallii Wats. 569, 571.
— Palermi Gray 623.
— patula L. var. hastata Gray 369, 382.
— patula L. 628.
— phyllostegia (Torr.) Wats. 287.
Atriplex polycarpa Wats. 586.
— pusilla Wats. 287.
— spicata Wats. 280.
— Torreyi Wats. 573.
 attenua 303.
— cohune Mart. 304, 664, 665.
Audibertia incana Bentli. 569, 571.
— polystachya Bentli. 624, 636.
— stachyoides Bentli. 625.
Aulocornium palustre Schwaegr. 402, 403.
Avicennia nitida Jacq. (= littoralis Boiss.)
215, 216, 229, 446, 637, 639, 673, 681.
687, 691, 696, 702.
— tomentosa Jacq. 658.
Ayenia 289.
— pusilla L. 674.
Azalea canescens Michx. 434.
— viscosa L. var. glauca Michx. 490. [482.
Azolla caroliniana Willd. 454, 498, 659.
Baccharis 293, 448, 638, 641, 653.
— angustifolia Michx. 228, 446, 691.
— dioica Vahl 686, 694.
— Douglasii DC. 280, 613.
— glomeruliflora Pers. 702.
— glutinosa Pers. 634.
— halimifolia L. 382, 499, 412, 419, 429.
— potosina Gray 647. [439, 431, 446.
— pteronioides DC. 343.
— salicina Torr. & Gray 252, 634.
— sarotheoides Gray 282, 625.
— viminea DC. 627, 629, 630.
Bacillus limicola 385.
— litoralis 385.
— maritimus 385.
— pelagicus 385.
Bactris 664.
— (Guillema) utilis Bentli. & Hook. 670.
Baeomyces placophyllus 375.
Bahia 281, 612.
— integri folia DC. (= Eriophyllum caespitosum Doug.) 196.
— oppositifolia Nutt. 576.
Baiera 177.
Bacria 281, 612.
— Palmeri Gray 623.
Baieropsis 177.
Bailey 289.
— multit radiata Harv. & Gray 634.
Baldwinia (Actinopsernum) angustifolia
Pushr 427.
— multiflora Nutt. 217.
— uniflora Nutt. 446.
Balsamorrhiza Careyanca Gray 569.
— deltoides Nutt. 585.
— Hookeri Nutt. 193.
Balsamorrhiza incana Nutt. 193, 570.
— sagittata (Pushr) Nutt. 193, 548, 569.
Bambusa 641.
Banara mexicana Gray 661.
Banisteria 661.
Banksia 177.
Banksites 177.
Baptisia 390.
— alba (L.) R. Br. 226, 494.
— australis (L.) R. Br. 508.
— bracteata Ell. (= leucophaea Nutt.) 518.
— laevicaulis (Gray) Small 453. [527.
— leucantha Torr. & Gray 497, 506, 524.
— leucophaea Nutt. (= bracteata Ell.)
520, 522, 524.
— perfoliata R. Br. 427.
— tinctoria (L.) R. Br. 413, 421, 424.
Barbarea 271, 653.
— vulgaris R. Br. (= Barbarea (L.) Mac.
Barioetia setosa Gray 647. [M.] 469.
Bartonia verna (Michx.) Muhl. 446.
— virginica (L.) B. S. P. (= tenella) 436.
— tenella Muhl. (= virginica) 421, 426.
Bartramia 653.
Bartsia alpina L. 197, 353.
Batis maritima L. 215, 226, 282, 446, 624.
Bauhinia 177.
— [659, 687, 691, 696.
— porrecta Sw. 677.
Bazzania (Mastigobryum) trilobata L. 371.
Bebbia juncea (Benth.) Greene 638. [492.
— juncea var. aspera Greene 583.
Beggiatoota 560.
Begonia 638, 680.
Bejaria racemosa Vent. 438.
Belairia mucronata Griseb. 675.
Beloperone 289, 638.
— californica Bentli. 282, 625.
— violacea Planch. & Linden 658.
Bellis integrifolia Michx. 510.
Benzoin 177.
Berberis 177, 334.
— aquifolium Pursh 240.
— canadensis 485, 486.
— Fendleri Gray 252, 572, 580.
— Fremontii Torr. 292, 571, 579, 580.
— (Mahonia) ilicina 653.
— nervosa Pursh 246, 595, 596, 602.
— trifoliata Moricand 579, 660. [596,606.
Berchemia 177, 442, 453.
— scandens (Hill) Trel ease (= volubilis
DC.) 225, 319, 439, 440.
— volubilis DC. (= scandens) 224, 432.
Berlandiera lyrata Bentli. 529. [440.
— tomentosa (Pushr) Nutt. 427.
Bernardia 289.
Berula erecta (Huds.) Coville (= angustifolia Mert. & Koch) 238, 586.
Beschorneria 295, 669.
- yuccoides C. Koch 335.
Betula 175, 177, 200.
- alaskana Sarg. 548.
- glandulosa Michx. var. rotundifolia (Spach) Regel 592.
- kenaica Evans 590.
- microphylla Bunge (= fontinalis Sarg.)
- nana L. 348, 349, 353, [570].
- occidentalis Hook. 249, 245, 248, 262, 533, 543, 544, 553, 566.
- papyrifer var. cordifolia Regel, 371, 372, 373.
- papyrifer var. minor Tucker. 376.
- populifolia Marsh. 207, 361, 362, 364, 393, 404, 408, 421, 477, 482.
- priscæ Ett. 174.
- pumila L. 207, 358, 366, 401, 403, 557, 571.
Betulites 177.
Beaucarnea oedipus 648.
Bidens 513, 638.
- angustissima H. B. K. 647.
- Beckii Torr. 397.
- chrysanthenoides Michx. (= laevis (L.) B. S. P.) 387, 651.
- connata Muhl. 508.
- frondosa L. 280, 433, 522.
- heterophylla Ortega 647.
- involucrata (Nutt.) Brit. 448.
- laevis (L.) B. S. P. 280.
- trichosperma (Michx.) Brit. (= tenuiloba (Gray) Brit. 402. [196, 254, 618].
Bigelovia (Chrysothamnus) Bolanderi Gray
- graveolens Gray (= Chrysothamnus nauseosus (Pursh) Brit.) 533, 569, 570, 571, 599.
- Bigelovia graveolens var. glabrata Gray 537.
- oppositifolia Gray 647.
- Rusbyi 576.
- teretifolia Gray 586.
Bignonia 332, 333.
- crucigera L. (= capreolata L.) 225, 227.
- unguis-cati L. 687. [453].
Billbergia 676.
Blakea 680.
Blechnum 177.
- occidentale L. 688.
- spicant (L.) Wither. 595, 605.
Blennosperma 272.
Bletia florida R. Br. 679.
- verecunda Sw. 229, 438, 679, 693.
Bocagea laurifolia Benth. & Hook. 677.
- virgata Benth. & Hook. 675.
Boehmeria cylindrica (Linn.) Willd. 388.
- littoralis Sw. 674. [388, 440, 506].
Boerhaavia 274, 289.
- bracteosa Wats. 615.
Boisduvalia densiflora (Lindl.) Wats. (= Douglasii Spach) 280.
- densiflora var. imbricata Greene 613.
Bolelia 281.
Boletinus porosus (Berk.) Pk. 403.
Boltonia asteroides (L.) L'Hér. 497, 524, 525.
- diffusa Ell. 448, 699.
Bombax 177.
Borreria (Spermacoce) laevis Griseb. 703.
Borrichia arborescens (L.) DC. 673, 677, 686, 696, 703.
- frutescens (L.) DC. 427, 429, 444, 703.
- glabra Small 689, 792.
Boschniakia 270.
- glabra C. A. Mey. 360, 591.
- Hookeri Walp. 595.
- strobilacea Gray 594, 602, 608.
Botrychium 351, 470, 680.
- obliquum Muhl. 440.
- obliquum Muhl. var. oneidense (Gilbert) Waters 499.
- simplex E. Hitchcock 550, 561.
- ternatum (Thunb.) Sw. var. intermediwm (DC.) Eat. 369.
- ternatum var. australe 550.
- virginianum (L.) Sw. 359, 469, 472, 488.
Botrydiopsis enensis Snow. 396. [512].
Botryococcus Braunnii Kütz. 395.
Bouchea linifolia Gray 645.
Bourreria havanensis (Willd.) Miers 690.
- montana 674. [693, 694, 695].
- thymiolia Griseb. 330.
Bouteloua 289, 293, 576, 585.
Bouteloua bromoides (H. B. K.) Lag. 635
— curtipendula (Michx.) Torr. (= racemosal Lag.) 653, 518, 524, 527, 528, 530, 537, 635.
— eriopoda Torr. 530, 577, 635.
— hirsuta Lag. 523, 524, 528, 530, 531, 532, 535, 537.
— oligostachya (Nutt.) Torr. 527, 528, 530, 532, 534, 535, 537, 539, 568, 575, 576, 582, 635.
— polystachya (Benth.) Torr. 577, 635.
— prostrata Lag. 651.
— racemosa Lag. (= curtipendula (Michx.) texana Wats. [Torr.] 516, 635.
Bowlesia 634.
Boykinia (Therofon) aconitifolia Nutt. 486.
— (=) elatum (Nutt.) Greene 594, 595.
— (=) Jamesii (Torr.) Wheelock 564.
— (=) occidentalis (Torr. & Gray) 275, 628.
— (=) Richardsonii (Hook.) Wheel. 348.
— (=) rotundifolia (Parry) Wheel. 275, 628.
Brachychaeta cordata Torr. & Gray (= spachelata (Raf.) Britt. 510, 570.
Brachyelytrum aristatum Beauv. (= erectum (Schreb.) Beauv. 496.
Brachypodium 177.
Brachypodium mexicanum Link 652.
Brasenia 177, 443, 455, 523.
Brauniera pallida (Nutt.) Britt. 518, 527.
Bravaisia tubiflora Hemsl. 658.
Braya pilosa Hook. 348.
Brevoortia 274.
Breweria 217, 340.
— aquatica (Walt.) Gray 437.
— grandiflora Gray 438.
— humistrata (Walt.) Gray 473.
— Pickeringii M. A. Curtis 424.
Brickellia 286, 641.
— (Coleosanthus) atractyloides Gray 386.
— (Coleosanthus) Coulteri Gray 647.
— diffusa Gray 647.
— hastata Benth. 640.
— lanata Gray 647.
— Palmeri Gray 647.
— (Coleosanthus) squamulosa Gray 647.
Brizopyrum spicatum Hook. & Arn. (= Distichlis spicata (L.) Greene) 586.
Erodiaea 576.
— (Milla) capitata Benth. 571, 623, 626, 634, 640.
Bromelia pinguin L. 661, 678, 687.
Bromus 177, 260, 593.
— breviaristatus (Hook.) Buckley 559, 561.
— carinatus Hook. & Arn. 607.
Bromus ciliatus L. 185, 373, 496, 559.
— Kalmii Gray 238, 523, 559.
Bromus laevipes Shear 606.
— marginatus Nees 560, 632.
— Porteri (Coul.) Nash 238.
— purgans L. 312.
— Richardsonii Link var. pallidus (Hook.) Shear 558, 583.
Broughtonia sanguinea R. Br. 679.
Brunnichia cirrhosa Gaertn. 447, 453.
Brya Ebenus DC. 675.
— (Phylloodoce) Breweri Gray 196, 254, 621.
— (Phylloodoce) glanduliflorus Hook. 194, 550, 551, 589, 592, 601.
Bryophyllum calycinum Salisbury 688, 704.
Bryopsis plumosa (Huds.) Ag. 384, 687.
Bryozophium norvegicum Mitt. 394.
Bryum 177, 394, 653.
— argentecum L. 432, 653.
— crudum Schreb. (= Webera cruda (Schimp.) 392.
— intermedium Brid. 536.
— nutans Schreb. (= Webera nutans (Hedw.) 493.
Buchloë (Bulbilla) dactyloides (Nutt.) Engelm. 527, 528, 529, 530, 535, 538, 539.
Buchnera 638.
— americana L. 494.
— elongata Sw. 675, 692.
Bucida (Terminalia) buceras L. 678, 684, 687, 688, 692.
— capitata Vahl. (= Terminalia Hilariana Steud.) 685.
Buckleya distichophylla (Nutt.) Torr. 178.
Buddleia alpina Oerst. 671.
— crotonoides Gray 638.
— Humboldtiana Roem. & Schult. 671.
Buellia 395, 432.
— geographic L. (= Rhizocarpon geographicum (L.) Lam. & DC. 364, 375.
— petraea Wulfs. (= Rhizocarpon petraeum (Wulf.) Koerb. 395.
— spuria (Schae.) Arn. 536.
Bulbochaete 563.
Bulnesia arborea Engl. 339.
— bonariensis Griseb. 339.
— chilensis C. Gay 339.
— foliosa Griseb. 339.
— macrocarpa Phil. Sert. 339.
— Sarmienti Lorentz 339.
— Schickendanzii Hieron. 339.
Bumelia 177, 261, 295.
— cubensis Griseb. 690.
— lanuginosa (Michx.) Pers. var. rigida
— lycioides (L.) Gaertn. 509.
— microphylla Grb. 690, 692, 693, 694, 695.
— spinosa Wats. (= lanuginosa (Michx.) Pers. var. rigida Gray) 642
— tenax Willd. 433.
Bupleurum ranunculoides L. 197, 563.
Burmannia 680.
Burria 274, 281, 612.
Bursera 687.
— angustata Griseb. 674.
— gummifera Jacq. 230, 661.
— microphylla Gray 637, 639.
Buxus 680.
— bahamensis Baker 329, 694.
Byrsonima lucida (Sw.) DC. 229, 693, 694.
Cabomba 177, 443, 454, 455.
— aquatica Aubl. 659.
— caroliniana Gray 447.
Cacalia atriplicifolia L. 488, 525.
— decomposita Gray 583, 643.
Cactus Opuntia L. 301.
— (Mammillaria) viviparus Nutt. 238, 527.
Caesalpinia 177, 242.
— (Guilandina) Bonduc Roxb. 686.
— (Guilandina) Bonducella Flem. 686.
— crista L. 229.
— gracilis Bentham. 637.
— lucida Urban 329.
— ovalifolia Urban 329.
— placida 638.
— vesicaria L. 695.
Cajanus cajan (Linn.) Millsp. 690, 695.
Cakile 379, 398.
— aequalis L'Her. 689.
— fusiformis Greene 444.
— lanceolata (Willd.) O. E. Schultz 703.
— maritima Scop. 229, 646, 667.
— maritima Scop. var. geniculata 444.
Calamagrostis 260, 532, 621.
— aleutica Bong. 604, 605.
— Bolanderi Thurb. 605.
— breviseta (Gray) Scribn. 407.
— caespitosa Steud. 558.
— canadensis (Michx.) Beauv. 368, 373, 397, 400, 407, 496, 500, 524, 540, 561.
— Calamagrostis confinis (Willd.) Nutt. 561.
— crassiglumis Thurb. 605.
— Langsdorffii (Link) Trin. 373, 377, 591.
— (Calamovilfa) longifolia Hook. 399, 499, 524, 532, 534.
— neglecta (Ehrh.) Gaertn. 591.
— orizabae Steud. 655.
— Pickeringii Gray 315, 377.
— purpurascens R. Br. 564.
Calamintha (= Clinopodium) 274.
— caroliniana Michx. 474.
— Clinopodium Bentham. 463.
— cocinea Bentham. 427.
— Palmeri Gray 623.
Calamovilfa brevipilis (Torr.) Hook. 423.
— longifolia (Hook.) Hack. 537.
Calandrinia 281, 340, 612.
— acaulis H. B. K. 655.
— maritima Nutt. 282, 624, 640.
— nevadensis Gray. 195.
— pygmaea Gray (= Oreobroma Grayi (Britt.) Rydb.) 195, 563, 565, 566.
Calceolaria 304, 340, 671.
Calea albida Gray 647.
— elegans DC. 647.
Calla palustris L. 355, 358, 367, 385, 481.
Calliandra 289, 293, 638, 646.
— criophylla Bentham. 634.
— haematomma Bentham. 694.
Callicarpa americana L. 227, 431, 433, 487, 508, 700.
Callirhoe alcaeoides (Michx.) Gray 527.
— digitata Nutt. 530.
— involucrata (Torr. & Gray) Gray 527.
— pedata Gray 530.
— triangulata (Leavenw.) Gray 520, 522.
Callithamnion 428.
— americanum Harv. 384.
— Baileyi Harv. 384.
— Barreri Ag. 384.
— byssoidenum Arn. 384.
— corymbosum Lyngb. 384.
— Daviesii Harv. 384.
— plumula Lyngb. 384.
— seirospermum Harv. 384.
— Turneri Ag. 384.
Callitriche autumnalis L. (= bifida (L.) Morong) 538, 563.
— heterophylla Pursh 387, 442.
— verna L. 558.
Callophyllum 351.
Calluna vulgaris Salisb. 380.
Calochortus 576, 627.
— albus Doug. 626.
— catalinae Wats. 626.
Calochortus Dunnii 273, 628.
— eurycarpus Wats. 561.
— flexuosus Wats. 571.
— Gunnisoni Wats. 545, 557, 567.
— lilacinus Kellogg 608.
— Nuttallii Torr. & Gray 545, 570.
— Plummerae Greene 275, 628, 629.
— splendens Doug. 275, 628.
— venustus Benth. var. oculatus 608.
— Weedii Wood 275, 628.
Calophaneslinearis Gray 530.
Calophyllum Calab Jacq. 677, 679, 704.
Calopogon 501.
— (Limodorum) multiflorus Lindl. 446.
— pallidus Chapm. 450. [699].
— pulchellus R. Br. (= Limodorum tuberosum L.) 401, 402, 426, 437, 441, 482, 500, 692.
Calothrix conifericola (Roth) Ag. 384.
— gypsothrix 560.
— scopulorum (Web. & Mohr.) Ag. 384.
Calthia biglora DC. 618.
— leptosepala DC. 192, 538, 561, 563, 564.
— natans Pall. 357. [573, 601, 620].
— palustris L. 312, 347, 355, 387, 424, 463.
— palustris L. var. sibirica 591. [525].
Calycanthus 200, 473.
— (Butneria) floridus L. 320, 451, 490.
— glaucus Willd. (= Butneria fertilis Britt.) 320.
— occidentalis Hook. & Arn. 607, 617.
Calycocarpum Lyonii Nutt. 453, 492.
Calycocetes protractus Griseb. 675.
Calycoseris 289.
Calyptranthes 675, 676.
— pennisetifolia Griseb. 694.
Calyptridium 274.
Calypso 274.
Camassia esculenta Lindl. 524, 569.
Campanula 244.
— americana L. 512.
— aparineoides Pursh 368, 371, 402, 525.
— divaricata Michx. 486, 496. [541].
— exigua Rattan 611.
— linnaeofolia Gray 605.
— Parryi Gray 292, 581.
— petiolata DC. 558.
— rotundifolia L. var. alaskana Gray. 592.
— rotundifolia L. var. Langsdorfhiana (A. DC.) Britt. 408.
— Scheuchzeri Vill. 582.
— Scouleri Hook. 259.
Campanula uniflora L. 189, 193, 562, 564.
— Wilkionsiana Greene 196, 258, 615.
Camplosorus rhizophyllus (L.) Link 394, 468, 470, 481, 484, 486, 508, 515, 525.
Campylococcus crivosus 396.
Campyloneuron (Polypodium) angustifolium Fée 674.
— (Polypodium) latum Moore 674.
— (Polypodium) phylliditis (L.) Presl 674.
Canavalia obtusifolia DC. 215, 674, 703.
Canella Winterana (L.) Gaertn. 229.
Canna 679.
Canotia 289, 290, 293, 585.
— holacantha Torr. 200, 251, 635.
Caparia biflora L. 687.
Capsella divaricata Walp. 287.
Capsicum frutescens L. 431.
Caraguata 679.
Cardamine bellidifolia L. 315, 372, 373, 376.
— bellidifolia L. var. pachyphylla Coville
— hirsuta L. 541. [257, 616].
— Leibergii Holz. 192.
— paucisecta Benth. 606.
— pennsylvanica Muhl. 387, 511.
— rhomboidea Pers. (= bulbosa (Schreb.) B. S. P.) 463, 464, 523.
Cardiospermum microcarpum H. B. K. 704.
Carduus eriophalus Gray (= scopulorum Greene) 555.
— ochrocenturus (Gray) Greene 238.
— Pitcherii (Torr.) Porter 399.
— spinosissimus Walt. (= horridulus Michx.) 430.
Carex 177, 302, 388, 401, 605, 653.
— acutina Bailey 563.
— aematorhyncha Dew. (= filiformis L.)
— aestivalis M. A. Curtis 495, 496. [572].
— affinis R. Br. (= obtusata Lilj.) 573.
— alata Torr. 448.
— alboluteescens Schwein (= subulata Michx.) 202.
— alpina Sw. 563, 565.
— ampullacea Good. 572.
— aquatilis Wahl. 357, 561, 572.
— arctata Boott. var. Faxonii Bailey 372.
— Asa-Grayi Bailey (= Grayi Carey) 389.
— atrata L. var. ovata Boott (= atratiformis Britt.) 372, 378.
— atratiformis Britt. 550.
— aurea Nutt. 254, 557, 563.
— barbarae Dewey 275, 628.
— bermudiana Hemsl. 331, 701, 703.
— bicolor All. 392.
— Bigelovii Torr. 378, 407.
— Breweri Boott. 254, 257, 601, 616.
— brunnescens (Pers.) Poir. 407, 493, 563.
Carex brunnescens (Pers.) Poir. var. gracilior
-- bullata Schk. 482. [492.
-- caespitosa L. 315.
-- canescens L. 315, 353, 407.
-- canescens L. var. alpica (= brunnescens) 371.
-- canescens L. var. vulgaris 366.
-- capillaris L. 377, 504.
-- capitata L. 315, 377, 565.
-- cherokeeensis Schwa. 609.
-- chordonhiza L. f. 386.
-- communis Bailey (= pedicellata Dep.
-- comosa Boott. 397, 525. [wey] 372.
-- conjuncta Boott. 497, 524.
-- concinna R. Br. 565.
-- Crawei Dewey 501.
-- crinita Lam. 389.
-- crus-corvi Shutt. 456, 524.
-- cryptocarpa C. A. Mey. 591, 593.
-- debilis Michx. var. Rudgei 378.
-- debilis Michx. 496.
-- decomposita Muhl. 456.
-- Deweyana Schwa. 504.
-- Douglasii Boott. 561.
-- eburnea Boott. 204.
-- echinata Murr. 353, 591.
-- exilis Dewey 386, 500.
-- festiva Dewey 255, 562.
-- filifolia Nutt. 255, 562.
-- filiformis L. 367, 397, 400, 402, 403, 500, 501, 525.
-- filiformis L. var. lanuginosa 541.
-- flava L. 371, 372.
-- folliculata L. 386, 424, 425.
-- Frankii Kunth (= stenolepis Torr.) 511.
-- fusca All. 386.
-- Geyeri Boott. 553, 569.
-- gigantea Rudge 699.
-- Gmelini Hook. 590.
-- gravida Bailey 524.
-- gynocrates Wormsk. (= Redowskyana C. A. Mey.) 500, 591.
-- gynodynamia Olney 605.
-- Hallii Olney 632.
-- Houghtonii Torr. 390, 392.
-- hystricinca Muhl. 524, 558.
-- incurva Lightf. 254.
-- interior Bailey 366.
-- intumescens Rudge 402, 456, 492.
-- Jamesii Schwein. 561.
-- juncea Willd. 496.
-- laevigata Sm. 316.
-- lagopina Wahl. 365.
-- lanuginosa Michx. 397, 572.
-- laxiflora Lam. 397, 472.
-- lenticularis Michx. 392.

Carex leporina L. 561, 573.
-- leptalea Wahl. 371, 372.
-- limosa L. 500.
-- livida (Wahl.) Willd. 386, 424, 605.
-- lupulina Muhl. 397.
-- lurida Wahl. 448.
-- macrocephala Willd. 593.
-- macrochaeta C. A. Mey 592.
-- magellanica Lam. 185, 353, 367, 376, 386, 407, 500.
-- maritima Muell. 368, 382.
-- Meadii Dewey 518.
-- melanoccephala Turcz. (= alpina Sw.)
-- mendocinensis Olney 605. [563.
-- monile Tuckerm. 525.
-- Muhlenbergii Schk. 390.
-- muricata L. 316.
-- nardina Fries 189, 601.
-- nebraskensis Dewey 632.
-- nigricans C. A. Mey. 550, 592.
-- nova Bailey 565.
-- obtusata Lilj. 557.
-- Oederi Retz. 370, 501.
-- oligosperma Michx. 366, 386, 402, 403.
-- ovata Rudge (= atrattiformis Britt.) 392.
-- pauciflora Lightf. 373, 376, 386, 407, 500.
-- pennsylvaniaica Lam. 469, 512, 518, 527.
-- petasata Dewey (= leporina L.) 564.
-- phyllomanica W. Boot. 605.
-- polytrichoides Muhl. 525.
-- Preslii Steud. 268, 633, 636.
-- pseudoscorpoidea Rydb. 550.
-- pyrenaica Wahl. 502, 601.
-- Raynoldsi Dewey 561.
-- reticulata Mill. 185.
-- retroflexa Muhl. 512.
-- rigida Gooden. 376, 561, 565, 573.
-- riparia W. Curtis 316, 525. [377.
-- rosea Schk. var. radiata Dewey 492.
-- rostrata var. ambiguia 366.
-- rupestris Rydb. 550, 562.
-- salina Wahl. var. mutica 605.
-- saltuensis Bailey 386.
-- Schweinitzii Dewey 397.
-- scirpoidea Michx. 315, 373, 376, 377, 407.
-- scoparia Schk. 400, 492, 524. [505.
-- scopulorum 563.
-- setifolia (Dewey) Britt. 515.
-- Shortiana Dewey 497.
-- siccata Dewey 390, 558.
-- silicea Olney 369, 382.
-- sparsiflora Steud. 353.
-- spissa Bailey 275, 628.
-- stenolepis Torr. (= Frankii Kth.) 397, 486.
-- stenophylla Wahl. 531, 534, 537.
-- sterilis Willd. 407.
Caryocar umbilicatum Willd. var. excelsior Bailey 366.
— stipata Muhl. 397, 524, 531.
— stipata Muhl. var. maxima 456.
— straminea Willd. 524.
— stricta Lann. 366, 367, 387.
— striata Michx. 423, 541.
— tenella Schkuhr 295, 386, 402.
— tenuiflora Wahl. 385, 402.
— tenuirostris Olney 501.
— tenuis Rudge 492, 496.
— teretiuscula Gooden. 385, 402, 500, 525.
— Torreyi Tuckerm. 456.
— tribuloides Wahl. 397.
— trisperma Dewey 366, 373, 386, 407, 424, 482.
— utriculata Boott. 357, 482, 558.
— utriculata Boott. var. minor 366.
— vallicola Dewey 605.
— variabilis Bailey 563.
— verrucosa Muhl. 436, 442, 699.
— vesicaria L. 572.
— vesicaria L. var. jejuna 366.
— virescens Muhl. 490.
— viridula Franch. & Sav. 558.
— vulgaris Fries var. hyperborea (= Bige
dovii Torr.) 371.
— vulpinoidae Michx. 397, 524.
— Walteriana Bailey 426.
— Watsoni Olney 287, 572.
Caritha 298.
Carita papaya L. 688, 700.
Car ludovica microphylla Oerst. 670.
Carminatia 638.
Carpenteria 274.
— californica Torr. 200.
Carphephorus 436.
Carpinus 177, 295, 303, 459, 509.
— americana Michx. 295, 513.
— grandis Ung. 174.
Carpodiptera cubensis Grisb. 675.
Carya (Hicoria) 175, 295, 449, 452, 513.
— amara Nutt. (= Hicoria minima [Marsh.
— aquatica Nutt. (= Hicoria aquatica
(Michx. f.) Britt.) 217, 448, 455.
— microcarpa Nutt. (= Hicoria odorata
Marsh.) 401, 457, 466, 489.
— myristicaeformis Nutt. 452, 453, 649.
Carya olivaceaformis Nutt. (= Hicoria Pecan
— porcina Nutt. (= Hicoria glabra (Mill.)
— sulcata Nutt. (= Hicoria laciniosa
(Michx. f.) Sarg.) 457, 511.
— tomentosa Nutt. (Hicoria alba (L.)
Casearia bahamensis Urban 330. [511.
— hirta Sw. 673.
— spinescens Griseb. 675.
Cassandra 180, 373, 388.
— (Chamaedaphne) calyculata Don. 205, 207, 304, 365, 368, 378, 385, 402, 424.
Cassia 175, 177, 300, 301, 637, 646, 648.
— alata L. 307.
— armata Wats. 290, 585.
— atomaria L. 307.
— bacillaris L. f. 307.
— bicapsularis L. 307.
— biflora L. 307.
— caribaea Northrop 329.
— Chamaecrista L. 307, 417, 494, 506, 520.
— chrysoscarpa Desv. 675. [524.
— Covesei Gray 290, 634.
— diphylly L. 307.
— emarginata L. 676.
— grandis L. 307.
— lineata Sw. 690.
— marylandica L. 512.
— multipinnata Poll. 453.
— sericea Sw. 307.
— spectabilis DC. 307.
— tagera L. 307.
— virgata Sw. 307.
Cassiopea 258, 274, 376, 550.
— lycopodioides Don. 180, 592.
— Mertensiana (Bong.) Don. 194, 196, 589, 592, 601, 602.
— Stelleriana DC. 589, 592.
— tetragona (L.) Don. 180, 194, 348, 391, 592.
Castalia 177.
— americana Raf. (= dentata (Marsh.)
Borkh.) 223, 472, 476, 477, 478, 480.
— pemila (L.) Mill. 223, 434, 451, 459, 467.
— Unger Heer 174. [472, 483.
Index of Plants.

Castanopsis 177, 270, 317.
 — chrysophylla (Hook.) A. DC. 266, 267, 272, 508, 603, 605, 606, 608, 617, 619, 629, 633.
 — chrysophylla (Hook.) A. DC. var. minor Castela 660. [598, 620.
 — erecta Turp. 687.
Castilleja 260, 295, 373, 612, 621.
 — affinis Hook. & Arn. 197, 258, 615.
 — breviflora Gray (= brachyantha Rydb.)
 — coccinea (L.) Spreng. 496, 525. [194.
 — confusa Greene 557, 558.
 — densa 655.
 — inconspicua 621.
 — integra Gray 557, 643.
 — irasuenis Oerst. 671.
 — lithospermoides H. B. K. 656.
 — miniata Doug. 197, 550, 562, 570, 588.
 — minor Gray 559. [632.
 — occidentalis Torr. 194, 562.
 — oreophila Greene 194.
 — oreopola Greenan 601.
 — pallida Kunth. 312, 315, 375, 551, 555.
 — pallida Kunth var. septentriionalis Gray (= acuminata Pursh) 372, 376, 377, 565.
 — parviflora Bong. 625.
 — Schaffneri Hemsll. 652.
 — sessiliflora Pursh 520, 524, 527, 531.
 — sulphurea Rydb. 558.
 — tenuiflora Benth. 652, 656.
 — tolucensis H. B. K. 654, 655.
Castilloa elastica Cerv. 664, 670.
Cassytha 691.
 — filiformis L. 229, 693, 694.
Casuarina 177.
Catalpa 177, 200.
 — speciosa Warder 457.
Catasetum 664.
Catenella opuntia 687.
Catesbaea fasciculata Northr. 602.
Catharinea crispa James (= Atrichum crispm James). 422.
Cattleya 662.
Caulanthus 274.
Caulerpa plumaris (Forsk.) Ag. (= sertularioides (Gmel.) Howe 687, 702.
 — crassifolia (Ag.) J. Ag. 701.
 — crassifolia (Ag.) J. Ag. var. mexicana
 — cupressoides (Vahl) Ag. 687. [687.
 — cupressoides var. mamillosa (Mont.) Weber van Bosse. 701.
 — racemosa (Forsk.) Weber van Bosse 702
 — racemosa var. occidentalis J. Ag. 701.
 — verticillata J. G. Agardh. 687.
Caulophyllum thalictroides (L.) Michx. 366, 468, 477, 485, 488, 521, 544.
Cavendishia veraguensis Hemsl. 670.
Ceanothus 177, 200, 472, 607, 611, 623.
 — arboreus Greene 377.
 — azureus Desf. 641, 651, 656.
 — californicus Kellogg (= integerimus Hook. & Arn.) 617.
 — crassifolius Torr. 629, 630. [633, 639.
 — cuneatus Nutt. 607, 616, 625, 629, 630.
 — divaricatus Nutt. 617, 625, 629, 630.
 — divergens Parry 607.
 — Fendleri Gray 250, 292, 507, 572, 583.
 — foliosus Parry 272, 608. [641.
 — Greggii Gray 582, 586, 649.
 — hirsutus Nutt. 629.
 — incanus Torr. & Gray 607.
 — parvifolius (Wats.) Releaser 641.
 — pinetorum Coville 620, 630.
 — (Cerastes) prostratus Benth. 614, 618, 619, 620.
 — prostratus Bentham var. divergens 272,
 — reclinatus L’Her. 674. [608.
 — sanguineus Pursh 250, 553, 569, 596.
 — sorediatus Hook. & Arn. 625.
 — velutinus var. laevigatus 272, 608.
 — vestitus Greene 629.
Cebatha 177.
Cecropia 303.
 — peltata L. 676, 688.
Cedrela 670.
 — odorata L. 604, 670, 675, 676, 682.
Cedroxylon 177.
Ceiba (= Eriodendron) 688.
Celastrphyllum 177.
Celastrus 177.
Celtis 177, 470, 507, 513, 514, 637.
 — mississippiensis Bosc 455, 456, 457, 506, 530, 704.
 — mississippiensis Bosc. var. reticulata Sarg. 642, 660.
 — occidentalis L. var. reticulata Torr. 248,
Cembra 176.
Cenchrus 426, 445.
— incertus M. A. Curtis 216, 444.
— tribuloides L. 216, 398, 410, 430, 499, 524, 689, 690.
— tribuloides var. macrocephalus 429, 444.
Centaura americana Nutt. 531.
— melitensis L. 628.
Centella asiatica (L.) Urban 429.
— repanda Small 690, 691.
— Centradenia 671.
Centropogon costaricanus Pl. & Oerst. 670.
Centrosema (Bradburya) virginianum (L.) Benth. 226, 429, 675, 682.
— Plumieri Benth. 675.
Centunculus minusimus L. 316, 639.
Cephalis punicea Vahl (= elata Schrad.) 680.
Cephalanthus 200, 463, 473.
Cephalocereus macrocephalus 647.
— senilis (Harv.) K. Sch. 644.
Cephalotaxopsis 177.
Ceramium 428.
— arachnoideum Ag. 384.
— diaphanum Roth. 384.
— fastigiatum Harv. 384.
— rubrum Ag. 383, 384, 588.
Cerastium 632.
— alpinum L. var. Behringianum 292, 583.
— andinum Benth. 655.
— arvense L. 292, 584.
— Behringianum C. & S. 621 (see ante).
— nutans Rafin. 506.
— oblongifolium Torr. 470.
— oreophilum 557.
— orthiales Schlecht. 653.
— sericum Wats. 583.
— texanum Britt. 578.
— trigynum Will. 652.
— viscosum L. 487, 652.
— vulcanicum Schlecht. 653.
— vulgarum L. 496.
Ceratola ericoides Michx. 438, 444, 450, 696.
Ceratophyllum 426.
— arachnoideum Ag. 384.
— diaphanum Roth. 384.
— fastigiatum Harv. 384.
— rubrum Ag. 383, 384, 588.
Cerastium 632.
— alpinum L. var. Behringianum 292, 583.
— andinum Benth. 655.
— arvense L. 292, 584.
— Behringianum C. & S. 621 (see ante).
— nutans Rafin. 506.
— oblongifolium Torr. 470.
— oreophilum 557.
— orthiales Schlecht. 653.
— sericum Wats. 583.
— texanum Britt. 578.
— trigynum Will. 652.
— viscosum L. 487, 652.
— vulcanicum Schlecht. 653.
— vulgarum L. 496.
Ceratola ericoides Michx. 438, 444, 450, 696.
Ceratophyllum 426.
— arachnoideum Ag. 384.
— diaphanum Roth. 384.
— fastigiatum Harv. 384.
— rubrum Ag. 383, 384, 588.
Cerastium 632.
— alpinum L. var. Behringianum 292, 583.
— andinum Benth. 655.
— arvense L. 292, 584.
— Behringianum C. & S. 621 (see ante).
— nutans Rafin. 506.
— oblongifolium Torr. 470.
— oreophilum 557.
— orthiales Schlecht. 653.
— sericum Wats. 583.
— texanum Britt. 578.
— trigynum Will. 652.
— viscosum L. 487, 652.
— vulcanicum Schlecht. 653.
— vulgarum L. 496.
Ceratola ericoides Michx. 438, 444, 450, 696.
Ceratophyllum 426.
Chamaecyparis 177.
— Lawsoniana (Murr.) Parl. 594, 606.
— nootkatensis (Lamb.) Spach. 263, 589, 590, 595, 596, 598, 602. [185, 388.
— spheroidea Spach (= thyoides) 184.
Chamaedaphne (Cassandra) calyculata Moench 205, 482.
Chamaedorea 304, 661, 664, 670.
— pacaya Oerst. 671.
Chamaelirium luteum (L.) Gray 486.
Chamaeops (Rhapidophyllum) 175.
Chamaesaracha 274.
— coronopus (Dunal) Gray 530.
Champia parvula Harv. 384.
Chapitula 333.
— (Thrysanthema) semifloscularis Walt. (= tomentosa Vent.) 446.
Chara 177, 498, 542, 563.
— contraria A. Br. 541.
— coronata Ziz. 396, 541.
— foetida var. longibraeata 541.
— fragilis Desv. 387, 396, 541.
— gymnophile var. Michauxia 397.
Characium ambiguum A. Br. 395.
Cheilanthes 653.
— abalamensis (Buckl.) Kunze 487.
— Feei Moore 579.
— Fendleri Hook. 579.
— gracill Mett. (= Feei Moore) 238.
— gracillima Eat. 618.
— lanuginosa Nutt. (= Feei Moore) 515.
— leucopoda Link 650. [516, 535.
— myriophylla Desv. 651.
— Lindheimeri Hook. 579.
— tomentosa Link 486, 487, 579.
— tomentosa Link var. Eaton Baker 579.
— vestita Sw. 486, 487, 509.
Cheilosporum californicum 593.
— frondescens 593.
— Cheiranthus perennis Coville 258.
— Cheirostemon 667.
— Chelone 295.
— glabra L. 406, 469, 525.
— Lyon Paris 448.
— Cheno podium album L. 238, 399, 420.
— ambrosioides L. 628, 687.
— anthelminthicum L. 430.
— Berlandieri Moq. 446.
— rubrum L. 381, 539, 576.
— Chinopsis linearis (Cav.) Sweet (= saligna Don.) 269.
— saligna Don. 245, 251, 262, 270, 642, 649.
— Chimaphila 271, 555.
— maculata (L.) Pursh 424, 469, 473, 509.
— Menziesii Spreng. 257, 615. [652, 653.
Chimaphila umbellata (L.) Nutt. 240, 257, 364, 405, 424, 473, 479, 491, 615.
— parvifolia Wullschl. (= racemosa L.)
— racemosa L. 674, 697. [695.
— solitaria Rydb. 224.
— virginicala L. 438, 440, 451, 486.
— Chionelaena 302, 655.
— lavandulifolia Benth. & Hook. 671.
— Chionophila Jamesii Benth. 194, 654.
— Chitonix mexicana Moq. & Sesse 339.
— Chlamydomonas 395.
— Chlorella 396.
— Chloris 289, 681.
— elegans H. B. K. 635.
— Chruogalum pomeridianum Kunth 611.
— Chlorosphaera 396. [625.
— Chroothylum mammillosum 506.
— Chodatella citriformis Snow. 396.
— Chondrophora virgata (Nutt.) Greene 225.
— Chondrophylla americana Engelm. (= Gentiana prostrata var. americana Hook.)
— Chondrus 351. [194.
— crispus (L.) Stack. 383, 384.
— norvegicus Lyngb. 383.
— Chorda filum L. 349, 370, 588.
— Chordaria abietina 588.
— divaricata Ag. 384.
— flagelliformis Ag. 383, 384, 588.
— Chorizanthus 337, 571, 627.
— brevicornu Torr. 287.
— Clevelandi Parry 607.
— commissuralis 337.
— Fernandiana Wats. 275, 628.
— fimbrata Nutt. 275, 628.
— laciniata Torr. 275, 628.
— Parryi Wats. 275, 628.
— rigid Torr. & Gray 287, 585, 586, 635.
— staticoides Benth. 626.
— Chorizanthopsis 337.
— Chroococcus 306.
— cohaerens (Bréb.) Naeg. 542.
— Chryanthelimum procumbens A. Rich. 675.
— Chrysantheme arcticum L. 312, 347, 350.
— leucanthemum L. 487.
— Chrysobalanus fellocarpus Meyer 690.
— iaca L. 229, 686, 690, 698.
— oblongifolius Michx. 427, 699.
— Chrysona 444.
— pauciflosculosa (Michx.) Greene 216, 444.
— pinifolia Greene 629, 630.
Chrysogonum virginianum L. 473.
Chrysophyllum glabrum Jacq. 677.
— oliviforme Lam. (= monopyrenum Sw.) 230.
Chrysothemnus avenaceus (Michx.) Benth. 421.
— nutans (L.) Benth. 499, 523. [516.
— nutans var. Linneanus (= Sorghastrum Hack.) 225, 226.
Chrysopsis 281, 612.
— Breweri Gray 254.
— camporum Greene 524.
— falcata (Pursh) Ell. 219, 380, 421, 422, 423, 424.
— graminifolia (Michx.) Nutt. 215, 225, 227, 432, 473, 494.
— hispida (Hook.) Nutt. 599.
— mariana (L.) Nutt. 219, 421, 422, 424.
— oregana (Nutt.) Gray 609. [494.
— villosa (Pursh) Nutt. 523, 532, 534, 537.
— var. canescens 238.
— villosa (Peh.) Nutt. var. hispida Gray 238.
— villosa (Peh.) Nutt. var. sessilifolia 238.
Chrysophyllum Americanum Schwein 463.
— Beringianum Rose 350.
Chrysothamnus 645.
— Bloomeri (Gray) Greene 257, 616.
— (Bigelovia) graveolens (Nutt.) Greene 247.
— plattensis Greene 537.
— viscidiflorus (Hook.) Nutt. 246.
Chyliuma 289.
Chysis 664.
Cicca 688.
Cicutu 591.
— bulbifera L. 502, 387, 403, 525.
— maculata L. 368, 387, 447, 463, 524, 525.
— vagans Greene 572. [540, 546, 558.
Cimicifuga racemosa (L.) Nutt. 469, 472, 479, 488.
Cinna arundinacea L. 407, 523, 544.
— pendula Trin. (= latifolia (Trev.) Griseb. 372, 496.
— latifolia (Trev.) Griseb. 407, 469.
— (Deyeuxia) toluccensis H. B. K. 654.
Cinnamomum 175, 177, 183.
Circea 271.
— lutetiana L. 316, 388.
Cirisium (Carduus) muticum Michx. var. monticolum 365.
Cissampelos pareira L. 688.
Cissites 177.
Cissus 175, 177, 447.
— (Ampelopsis) arborea L. 444.
— bipinnata Nutt. 216, 431.
— Cissus sculpta L. 489.
— Cissus sicyoides L. 688, 692.
— stans Pera (= Ampelopsis arborea (L.) 327.
— trifoliata L. 687, 688. [Rusby. 432.
— Citharexylum cinereum L. 687.
— quadrangulare Jacq. 695, 704.
— Citrosa 662.
— Citrus aurantium L. 700.
— limonium Risso (= Medica L.) 703, 704.
— Cladonia 691.
— effusum Torr. 446, 447, 448, 690, 692.
— armata (L.) Willd. 395.
— cornucopoides (Michx.) Wain. 395.
— Cristatella Tuck. 395.
— deiformis (L.) Hoffm. 395.
— fimbriata (L.) Hoffm. 516.
— fimbriata var. apolepta (L.) Wain. 395.
— fimbriata var. radiata (Schb.) Nyl. 395.
— fimbriata var. subulata (L.) Wain. 395.
— furcata (Huds.) Schrad. var. paradoxa (Wain.) Fink. 395.
— gracilis (L.) Willd. 395.
— pyxidata (L.) Hoffm. 395.
— sylvatica (L.) Hoffm. 395, 526, 562.
— squamosa (Scop.) Hoffm. 395.
— uncialis (L.) Hoffm. 368, 395.
— verticillata Hoffm. var. evoluta 395.
— Cladophlebis 177.
— Cladophora 397, 563.
— albida (Huds.) Kütz. 384.
— arcta (Dillw.) Kütz. 384.
— flexuosa (Griff.) Harv. 383, 384.
— fracta (Dillw.) Kütz. 384.
— glomerata (L.) Kütz. 395.
— gracilis (Griff.) Kütz. 384.
— (Spongormorpha) lanosa (Roth) Kütz. 384.
— rupestris (L.) Kütz. 349, 383, 624.
— scopaeformis Harv. 609.
— uncialis Harv. 383.
— Cladothrix 289.
— oblongifolia 585.
— Chlorophora 200.
— tinctoria Raf. (= lutea (Michx. f.) Koch Clarkia 281, 612. 486, 508, 509.
— pulchella Pursh 570, 625.
Clitocybe trullisata Ellis. 414.
Collomia longiflora Gray 645.
Coelobanthus 304.
— quinclusis Bartl. 340.
Colpomenia sinuosa (Roth) Derb. & Sol. 702.
Columnnea 680.
— Schiedeana Schlecht. 661.
Colutea 177.
Comandra livida Richards 353, 372.
— umbellata Nutt. 512, 518, 527.
Comarum 498, 571.
— palustre L. 207, 493.
Commelina agraria Kunth 704.
— dianthifolia DC. 530, 583.
— hirta Vahl 226.
— hirtella Vahl 440.
— nudiflora L. 468, 513.
— virginica L. 465, 468, 530.
Comocladia ilicifolia Sw. 687.
Comparretia falcata Poepp. & Endl. 670.
Comptonia 177, 424.
— (Myrica) aspleniifolia L. 221, 390, 393.
Condalia 289, 660.
— obovata Hook. 245, 251, 642, 644, 645.
— spathulata Gray 645.
Confera 463.
Conium maculatum L. 525.
Conohearia 511.
Conocarpus 691.
— erectus L. 229, 639, 673, 686, 687, 703.
— erectus L. var. sericea DC. 691.
Conocephalum conicum (L.) Dumort. 515.
Conoclinium coelestinum (L.) DC. 440.
Conopholis americana Wallr. 661.
— mexicana Gray 651.
— silvatica 661.
Conostegia 671.
Conostomum boreale Swartz 375.
Conradina canescens Gray 444.
Constantinella rosamarina (Gmel.) Post &
Consallaria majalis L. 486. [Rupr. 351, 587.
Convulvulus americana (Sims) Greene 431.
— macrostegius Greene 623.
— occidentalis Gray 623.
— occidentalis, var. tenuissimus Gray 625.
— sepium L. 280, 379, 399, 458, 506.
— soldanella L. 282, 604, 624.
— spithamaeus L. 458.
Conya zycecochala Hemsl. 647.
Cooperia 529.
— Drummondii Herb. 530, 531.
— pedunculata Herb. 531.
Copernicia hospita Mart. 675.
Coprinus comatus Fries 484.
Coptis 379.
— asplenifolia Salisb. 591.
Corallina aculeata Yendo 593.
— arbuscula Saunders 588.
— officinalis L. 384, 624.
— pilulifera Post. & Rupr. var. filiformis
Saunders 588.
— vancouveriensis Yendo 593.
Corallorhiza 270.
— Bigelowii Wats. 258, 615.
— innata R. Br. 501.
— Mertensiana Bong. 597, 602.
— multiflora Nutt. 292, 424, 479, 545, 583.
— odontorhiza (Wild.) Nutt. 469, 477, 500.
— striata Lindl. 545.
Corchorus 687.
— hirsutus L. 673, 687, 693.
— siliculosus L. 675.
Cordia 687.
— bahamensis Urban. 330, 693.
Cercopis auriculata L. 227.
— (Bidens) discoidea Torr. & Gray 499.
— lanceolata L. 453, 522.
— major Walt. (= senifolia Michx.) 227,
— nudata Nutt. 437.
— palmata Nutt. 518, 522.
— rosea Nutt. 219, 421, 422, 423.
— senifolia (= major) 509.
— (Bidens) trichosperma Michx. 525.
Corethogynne 281, 612.
— californica DC. var. obovata Benth. 604.
— filaginifolia (Hook. & Arn.) Nutt. var.
— robusta Greene 622.
Coriaria thymifolia Humb. & Bonpl. 340.
Corispermum hyssopifolium L. 398, 499, 500, 539.
Cornus 177, 200, 295, 359, 546, 662.
— alternifolia L. f. 394, 458, 467, 478, 485, 493, 522, 525.
— asperifolia Michx. 510, 513, 515.
— Baileyi Coutl. & Evans 399, 499.
— candidissima Marsh. (= paniculata L’Her.) 394.
— cirrina L’Her. 394, 522, 526.
— Drummondii C. A. Mey. 515.
— occidentalis (Torr. & Gray) Coville
(= pubescens Nutt.) 591.
Cornus pubescens Nutt. (= occidentalis)
 — 392, 397, 399, 401, 499, 502, 525, 553.
 — stricta Lam. 447, 456. [555, 566.
 — suecica L. 315, 353, 360, 392.
 — unalaskensis Ledeb. 350.
Coryanthes 664.
Corydalis glauca Pursh (= Capsnoides sempervirens [L.] Borck.) 364, 486.
Corylus 177, 589.
 — americana Walt. 389, 466, 502, 506,
 — 512, 513, 520, 521, 544.
 — insignis 174.
 — Mac Quarrii (Forbes) Heer 174.
 — rostrata Ait. 240, 249, 321, 364, 365.
 — 472, 566, 618.
 — rostrata Ait. var. californica A. DC.607.
Cosmarium 396, 563.
 — bioulatum Brèb. 542.
 — conspersum Ralfs. 542.
 — Meneghinii Brèb. 542.
 — nitidum De Not. 542.
 — pulcherrimum Nord. 542.
 — undulatum Corda 542.
Cosmos diversifolius Otto 647.
Costaria 593.
 — Turneri 587.
Cotula pygmaea Benth. & Hook. 647.
Cotyledon 627.
 — linearis Greene 640.
Covillea tridentata (DC.) Vail (= Larrea mexicana Moric.) 634.
Cowania 286.
 — mexicana D. Don. 251, 292, 580, 582.
 — plicata D. Don 649.
Crantzia lineata Nutt. (= Lilacopsis lineata (Michx.) Greene) 340.
Crataegus 177, 200, 447, 448, 471, 472, 492, 513.
 — aestivalis (Walt.) Torr. & Gray 427.
 — apiifolia (Marsh.) Michx. 491, 509.
 — berberifolia Torr. & Gray 450.
 — brevispina Dougl. (= Douglasii Lindl.
 — 510, 572.
 — columbiana Howell 247.
 — crus-galli L. 450, 457, 458, 491, 509.
 — Douglasii Lindl. (= brevispina) 247,
 — 553, 555, 570.
 — macracantha (Lindl.) Lodd. 247, 597.
 — mollis (Torr. & Gray) Scheele 450, 522,
 — 543, 544.
 — parviflora Ait. (= tomentosa L. = uni-
 — flora Muench.) 421, 422, 424.
Crataegus punctata Jacq. 185, 522.
 — rotundifolia (Ehrnb.) Borck. 224.
 — spathulata Michx. 491, 509.
 — subvillosa Torr. & Gray (= mollis
 — (T. G.) Scheele) 457.
 — tomentosa L. 248, 458.
 — uniflora Muench (= parvifolia) 219,
 — 224, 225.
 — viridis L. 450, 454, 456.
Crepis 271.
 — Andersoni Gray 287.
 — intermedia Gray 258, 615.
 — intermedia, var. pleurocarpa Gray 254.
 — nana Richards 193, 254, 259, 312, 347.
 — occidentalis Nutt. 599.
 — occidentalis Nutt. var. nevadensis Kel-
 — logg. 599.
 — runcinata (James) Torr. & Gray 238,
 — 391, 557.
Crescentia 666.
 — cuffe L. 687.
Cressa creepica L. 276.
 — truxillensis H. B. K. 636.
Cristatella Jamesii Torr. & Gray 239, 524.
Cromia 202.
Crossopteralum coriaceum North. 329.
Crossosoma 276, 621.
 — californica Nutt. 277, 622.
Crotalaria incana L. 677.
 — pumila Ortega 675.
 — retusa L. 675.
 — sagittalis L. 506, 646.
Croton 274, 431, 643, 662, 687, 690.
 — argyranthemus Michx. (= punctatus
 — Jacq.) 427.
 — astroides Dryand. 687.
 — californicus Muell. Arg. 612, 638.
 — capitatus Michx. 424.
 — corymbulosus Engelm. 529, 531.
 — eluteria (L.) Sw. 694.
 — flavens L. 687.
 — glandulosus L. 225.
 — Hjalmarsonii Griseb. 329.
 — linearis Jacq. 229, 699.
 — lucidus L. 694.
 — maritimus Walt. 216, 430, 431, 696.
 — punctatus Jacq. (= argyranthemus
 — 658, 703.
 — (Eremocarpus) setigerus Hook. 612.
 — tenuis Wats. 628.
 — texensis (Klotzsch) Muell. Arg. 531, 532.
Crotonopsis linearis Michx. 225, 227, 424.
Crudia Schreberi J. F. Gmel. 678.
Cryptsinna stricta Fourn. (= Epicampes
 — macroura Benth.) 656.
Cryptsanthe Fendleri (Gray) Greene 534.
Cryptogramma 271.
— densa Diels 365.
— Stelleri (Gmel.) Prantl 590.
Cryptopsiphonia Grayana J. Agardh 588.
Cryptotaenia canadensis DC. 544.
Ctenium americanum Spreng. (= aromaticum (Walt.) Hitchc.) 436.
Cucurbita foetidissima H. B. K. 531, 628.
— palmata Wats. 636.
Cunninghamiites 177.
Cuphea 295.
— balsamona Cham. & Schlecht. 307.
— Parsonia R. Br. 675.
— spicata Cav. 307.
Cupressinoxylon 177.
Cupressus 176, 274.
— arizonica Greene 578, 642, 643.
— Goveniana Gord. 605, 606.
— guadalupensis Sarg. (= arizonica) 244, 251, 623, 639, 649.
— Macnabiana A. Murr. 607.
— macrocarpa Hartweg 609, 610.
— (Chamaecyparis) nootkatensis Lamb. 262, 264, 266.
— (Chamaecyparis) thyoides L. 184.
Curatella americana L. 671, 672.
Cureuligo scorzoneraefolia Baker 673.
Cuscuta Gronovii Willd. 442.
— subinclusa Dur. & Hilg. 626.
Cyathea 679.
— arborea (L.) Sm. 680.
Cycadeoidea 177.
Cycadeospermum 177.
Cycadites 177.
Cyclademia 270.
— humilis Benth. 258, 615.
Cyclanthera 638.
Cycloloma atriplicifolium (Spreng.) Coult. (= platyphyllum Moq.) 524, 532, 539.
Cyclospathe Northropi Cook 229, 329, 691.
Cyclotella 396.
— floccosa 396.
Cynathere triplicata (Post & Rupr.) J. Ag. 587.
Cynmatopleura solea (Bréb.) W. Sm. 396.
Cymbella 396.
— gastroides Kütz. 542.
Cynomopterus (Oreoxis) alpinus Gray 564.
— cinerarius Gray 196.
— glomeratus Raf. (= acaulis (Pursh) Rydb.) 537.
— montanus Torr. & Gray 238, 287, 537.
— nevadensis Gray 196.
— terebinthinus (Hook.) Torr. & Gray 196, 257, 616.
Cynoctionum Mitreola (L.) Britt. (= Mitreola petiolata Torr. & Gray) 227.
— sessifolia (Walt.) Gmel. 450.
Cynodon dactylon (L.) Knz. 430, 433, 530.
Cynoglossum virginicum L. 469, 512. [530
Cynosciadium digitatum DC. 456.
Cyperacites 177.
Cyperus 177, 442, 445, 524, 671.
— aristatus Rottb. (= inflexus Muhl.)
— articulatus L. 659. [499.
— brunneus Sw. 690, 696.
— cylindricus (Ell.) Britt. 216, 219, 422.
— diandrus Torr. 511. [432.
— diandrus Torr. var. castaneus Torr. 280.
— echninus (Ell.) Wood 226.
— erythrorhizos Muhl. 280, 448.
— filiculmis Vahl 389, 390, 499, 524, 536.
— flavescens L. 511, 703.
— Nuttallii Eddy. 415.
— ovalaris (Michx.) Torr. 509.
— pseudovegetus Steud. 436.
— rivilaris Kunth 499.
— sesleroides H. B. K. 651.
— speciosus Vahl (= ferax Rich.) 499.
— stenolepis Torr. 280.
— strigosol. L. 448.
— unioides R. Br. (= Pycreus angulatus
— viscosus Ait. 687. [Nees] 651.
Cypripedium acaule Ait. 366, 380, 405, 424, 469, 480, 486, 490, 501.
— candidum Muhl. 501, 525.
— spectabile Salisb. (= reginae Walt.) 500, 501, 522.
Cystoclonium purpurascens (Huds.) Kütz. 383, 384.
Cystophyllum lepidium Saunders 588.
Cystopteris 271, 351, 471.
— jamacensis Underw. 680.
— Cytisus 177.
Dacryodes hexandra Griseb. 683.
Dactyllococcus infusionum Naeg. 396.
Dahlia coccinea Cav. 651.
— dissecta Wats. 650.
— gracilis Orteg. 647.
Dahlia Merckii Lehm. 651.
— variabilis Desf. 651.
Dalbergia 177.
— campechiana Bentham. 659.
— ecastrophylleum (L.) Taub. 690.
Dalea 289, 337, 638, 646.
— alpeceuroides Willd. 672.
— (Parosela) aurea Nutt. 239, 528.
— (Parosela) Emoryi Gray 290.
— (Parosela) enneandra Nutt. (= laxiflora Pursh.) 531.
— (Parosela) formosa Gray 579, 645.
— (Parosela) Fremontii Torr. 290.
— (Parosela) Johnsoni Wats. 571.
— (Parosela) Parryi Torr. & Gray 290.
— (Parosela) polyadenia Torr. 290, 586.
— (Parosela) Schottii Torr. 290.
— (Parosela) spinosa Gray 270, 390, 638.
Dalibarda repens L. 371, 404, 482, 501.
Damasonium californicum Torr. 620.
Danaca 679, 680.
— alata Sm. 679.
— elliptica Sm. 679.
— jamaicensis Underw. 679.
— nodosa (L.) Sm. 679.
Danthonia 270, 436.
— californica Boland. 569, 604.
— compressa Aust. 496.
— domingensis 682.
— intermedia Vasey 365.
— sericea Nutt. 224, 225, 226, 431, 473, 197.
— Shrevei 680. [494.
Darbya umbellulata Gray (= Neotestra umbellulata Raf.) 491.
Darlingtonia californica Torr. 323, 618.
Dasya elegans Ag. 384, 428.
Dasyllion 293, 300, 635, 637, 669.
— acrotrichum Zucc. 335, 648.
— texanum Scheele 576, 645.
Datura meteloides DC. 628.
— Stramonium L. 506.
— tatula L. 506.
Daubentonla longifolia (Cav.) DC. (= Sesbania Cavaniilessis Wats.) 447, 659.
Daucus 634.
— brachiatus Sieber 340.
Davallia 177, 680.
— cicutarioides Baker 679.
Davilla rugosa Poir. 675.
Decodon (Nesaea) verticillatus (L.) Ell. 387, 388, 397, 426, 501.
Decumaria barbara L. 224, 226, 438, 447.
Delpninum 243, 260, 621.
— azureum Michx. (= carolinianum
— bicolor Nutt. 550. [Walt.) 524.
— californicum Torr. & Gray 611.
Delphinium carolinianum Walt. (= azureum
— exaltatum Ait. (= urceolatum Jacq.) 496.
— Menziesii DC. = pauciflorum Nutt.
— pauciflorum Nutt. (= Menziesii DC.
— scopolorum Gray 583. [192.
— Sonnei Greene 615.
— tricorne Michx. 510.
Dendrium (Leiophyllum) buxifolium (Berg.)
— Desv. 203.
Dendrocercos 679.
Dendromecon rigidum Bentham. 608, 617, 622, 630.
Dendropanax arboreum Deane & Planch.
Dendropemon Krug & Urb. 682. [661.
— parvifolius Steud. 682.
— pycnochlorus Krug & Urb. 682.
Dendrophthora 682.
Dendrophyllx Lindeni Bentham. 699.
Dennstaedtia punctilobula (Michx.) Moore
— 477, 479, 490.
Dentaria laciniata Muhl. 469, 472, 506, 510,
— Denticula valida Pec. 561. [512, 513.
Delessaria 351.
— alata Lam.'x. 383.
— alata Lam.'x. var. angustissima Harv.
— Baerii Rupr. 588. [370.
— (Apoglossum) depiens Saunders 58.
— denticulata 383.
— sinuosa (Good. & Woodw.) Lamour
— 370, 383, 384, 388.
Deschampsia 604.
— atropurpurea (Wahl.) Scheele 372.
— caespitosa (L.) Beauv. var. longiflora
— calycina Presl 570. [Beal 592.
— (Leiophyllum) Vasey 572.
— flexuosa (L.) Trin. 371, 407, 496.
Desmanthus 646.
— brachylobus Bentham. (= Acuan illinoensi
— viridis Lam.'x. 384, 588.
Desmarestia aculeata Lam.'x. 349, 588.
— viridis Lam.'x. 384, 588.
Desmodium (Meibomia) 295, 436, 638.
— bracteosum (Michx.) DC. (= cuspidat
— canescens (L.) DC. 506, 512.
— ciliare DC. 682.
— Dillenii Darl. 506, 512.
— illinoensis Gray 518, 522.
— laevigatum Nutt. 219, 421, 422.
— marylandicum (L.) DC. 516.
— nudiflorum (L.) DC. 512.
— paniculatum (L.) DC. 506, 516.
— rotundifolium (Michx.) DC. 507.
Desmodium sessilifolium (Torr.) Torr. & Gray 497.
— strictum (Pursh) DC. 424, 432, 436.
— viridiflorum (L.) Beck. 219, 421, 422.
Desmoncus 664.
Deutzia 295.
Deyeuxia recta H. B. K. 653.
Diapensia 502.
Dianthera 398.
— americana L. 440, 442, 486.
— humilis Engelm. (= ovata Walt.) 456.
Diarrhena americana Beauv. (= diandra Michx.) Wood 189.
Dicentra canadensis (Goldie) Walp. 477.
— chrysantha Walp. 607, 630.
— cucullaria (L.) Bernh. 468, 477, 486, 512, 521, 526, 544.
— eximia (Ker.) Torr. 178, 479, 486.
— formosa DC. 602, 618.
— uniflora Kellogg 257, 616.
Dicerandra linearifolia (Ell.) Benth. 427.
Dichaea 664.
Dichloria viridis Grev. 349.
Dicksonia 177.
— punctilobula Kze. (= Dennstaedtia punctilobula (Michx.) Moore 405.
Diciplotera 638.
— assurgens Juss. 658, 674.
Dicroia 289.
— Brandegei Gray 575, 635.
Dicranella heteromalla Schimp. 536.
Dicranum 260, 367, 394, 405, 621.
— fulvellum Smith 375.
— fulvum Hook. 392.
— fuscescens Turn. 480, 492, 549.
— longifolium Hedw. 480.
— spurium Hedw. 367, 392.
Dichromena colorata (L.) A. S. Hitch.
— latifolia Baldwin 427,437. [593,699,702.
— leucocephala Michx. (= colorata) 427.
Dictyoneuron 593. [436.
Dictyosphaerium 395.
Dictyosiphon foeniculaceus Grev. 349, 384, 587.
Dictytota dichotoma (Huds.) Lam’x. 428.
Didymodon 653.
Diefenbachia 679.
Dieluca (Dicentra) uniflora Kellogg 195.
Diervilla 490.
— rivularis Gatt. 490.
— trifida Moench 365, 371, 373, 394, 522.
Digenea simplex (Wulf.) Ag. 701.
Dilsea arctica Saunders (= Sarcophyllum arctica Kjellm.) 588.
Dilsea callifornica Saunders (= Sarcophyllum californica J. Ag.) 588.
Dioecia Boykinii Gray 456.
Diodia 445.
— crassifolia Bentham. 638.
— teres Walt. 216, 382, 430, 432.
— virginiana L. 216, 227, 429, 487.
Dioonites 177.
Dioscorea 177.
— pyrenaica Bub. & Bordèrc 194.
— villosa L. 458, 457, 472, 485, 506.
Diospyros 175, 200, 295, 511.
— texana Scheele (= Brayodendron tex- num (Scheele) Small) 650, 660.
Diphyleia cymosa Michx. 485, 488.
Diplazium Laffanianum (Bak.) C. Chr. 704.
Diploderma minutum Ag. 349.
Diplonema percursum Ag. 349.
Diplopappus alpinus Nutt. (= Aster scopulorum Gray) 193.
— (Doellengeria) linearifolius 424, 523.
Diplostephanum canum Gray 623.
Dirca 274.
— palustris L. 393, 485, 490, 511.
Discoleura (Ptiliumnum) capillacea DC. 409, 418, 448, 532.
Dispersion lanuginosum Nichols. 490.
Disanthelium sclerocloideum Fourn. 655.
Distichlis 340, 446.
— maritima Raf. (= spicata (L.) Greene) 216, 283, 691, 696.
— spicata (L.) Greene var. stria (Torr.) Scribn. 528, 538.
Dithyreus (Biscutella) californica Harv.
Doassania Epilobii 375. [282, 625.
Docidium baculum Bréb. 542.
Dodecatheon 558, 563, 591, 592.
— alpinum (Gray) Greene 600, 620.
— Jeffreyi Moore 601, 630.
— Meadia L. 591, 618.
— pauciflorum (Dur.) Greene 194, 558.
— radicatum Greene 545. [567.
Dodonaea viscosa Jacq. 703.
Dolicholos (Rhynchosia) parvifolius (DC.) Mail 699.
Dondia linearis (Ell.) Heller 696.
Douglasia arctica Hook. 312, 347.
— laevigata Gray 601.
— montana Gray 194, 564, 565.
— nivalis Lindl. var. dentata Gray 602.
— nivalis Lindl. 194.
Draba 302.
Index of Plants.

Draba alpina L. 563, 564, 565.
— aretoides H. B. K. 654, 655.
— aurea Vahl 192, 292, 562, 565, 583, 600.
— brachycarpa Nutt. 506, 510.
— Breweri Wats. 195, 258, 616.
— caroliniana Walt. 506, 510, 522, 526.
— chrysanth Wats. 192. [527.
— corrugata Wats. 633.
— crassifolia Graham 192, 515, 564, 565.
— cuneifolia Nutt. 531.
— densifolia Nutt. 192, 621.
— frigida Saut. (= tomentosa Clairv.) 197.
— glacialis Adams 192.
— (Nesodraba) grandis Langsd. 350.
— hirta L. 189, 192, 350, 391.
— incana L. 192, 334, 378.
— incana L. var. confusa 590.
— jorullensis H. B. K. 655, 656.
— laevipes DC. (= tomentosa Clairv.) 192.
— Lemmoni Wats. 254.
— micrantha Nutt. 527.
— myosotidioi Hemsl. 654.
— nemoralis Ehrb. (= nemorosa L.) 192.
— nemorosa L. (= nemoralis Ehrb.) 192.
— nivalis Lilj. 551. [573.
— oligosperma Hook. 192.
— popocateptelensis Hems. 654.
— ramosissima Desv. 486.
— stellata Jacq. 573.
— stenoloba Ledeb. 255.
— streptocarpa Gray 192, 553, 562.
— toluensis H. B. K. 653, 655.
— tomentosa Clairv. (= laevipes DC.) 192.
Dracoccephalum mexicanum H. B. K. 652.
Draperia 274.
— systyla Torr. 618.
Drimys 304, 340.
— Winteri Forst. 670.
Drosera 177, 368, 388.
— brevifolia Pursh 446.
— capillaris Poir. 446.
— filiformis Raf. 219, 415, 422, 425, 426.
— intermedia Hayne (= longifolia L.)
385, 425, 426, 450, 481, 501.
— longifolia L. (= intermedia Hayne) 373.
—Tracy Macf. 446, 450.
— rotundifolia L. 180, 185, 257, 353, 355,
371, 372, 373, 385, 402, 406, 425, 481,
501, 557, 600, 605.
Dryas 592.
— Drummondii Richards 192, 357, 550.
— integrifolia Vahl 348, 357, 376.
— octopetala L. 191, 192, 392, 550, 551,
562, 564, 565.
Drypetalon runcinatum Gray 579.
Dryopteris 177.
— (Aspidium) ampla (Willd.) Kuntze 704.
— Dryopteris (—) filix mas (L.) Schott 579.
— floridana (Hook.) Kuntze 473.
— (Aspidium) fragrans (L.) Schott 355,
366, 394.
— novo-boracensis (L.) Gray 389, 404.
— simulata Dav. 490.
— spinulosa (Müll.) Kuntze 595.
— (Nephradium) thelypteris (L.) Gray 205,
482.
Drypetes crocea Poit. (= lateriflora (Sw.) Urb.
230.
Dugalea Hoopesii (Gray) Rydb. 578.
Dulichium arundinaceum (L.) Britt.
(= spathaceum Pers.) 205, 442.
— spathaceum Pers. (= arundinaceum)
386, 402, 403, 421, 481, 525.
Dumontia filiformis (Fl. Dan.) Grev. 588.
Dumortiera 487.
Dupontia Fischeri R. Br. 181.
Duranta 681.
— repens L. (= Plumieri Jacq.) 693, 694.
Dysodia 638.
— chrysanthemoides Lag. (= papposa
(Vent.) A. S. Hitchc.) 507, 576.
— Cooperi Gray 576.
Eatonia obtusata (Michx.) Gray 239, 499,
518, 523, 526, 527, 532, 577, 682.
— pennisylvanica (DC.) Gray 496.
Echenais (= Cnicus) 317.
Echeveria (= Cotyledon) 300, 648.
— gibbiflora DC. 655.
— mucronata Schlecht. 653.
Echinacea angustifolia DC. 522.
— purpurea Moenh. 524.
Echinocactus 296, 640.
— (Stenocactus) coptonogonus Lem. 646.
— cylindraceus Engel. 586, 635.
— flavescens 647.
— grandis 647.
— helophorus Lem. 646.
— (Thelocactus) hexaedrophorus Lem.646.
— hexaedrus Scheidw. 646.
— ingens Zucc. 644, 646, 648.
— latispinus Hemsil. 646.
— Lecontei Engel. 638.
— (Ancistrocactus) longihatatus Gal.645,
— macrodiscus Mart. 646. [646.
— myriostigma Salm-Dyck. 646.
— pectiniferus Lab. 646.
— polyccephalus Engel. & Bigel. 585.
— quadrinatus Weg. 646.
— rhodophthalmus Hook. 646.
— robustus Otto 647, 648.
— tricuspidatus Scheidw. (= phylacan-
— uncilatus Gal. 646. [thus Mart.]646.
— (Cephalocactus) Wislizeni Engel. 638.
Index of Plants. 733

Echinocereus Fendleri Rumph. 634.
— viridiflorus Engelm. 537.
Echinocystis fabacea Naud. 626.
— (Micrampelis) lobata (Michx.) Torr. & Gray 458, 467, 544.
— macrocarpa Greene 630.
Echinodorus radicans (Nutt.) Engelm. 455.
— subulatus Engelm. (= E. tenellus Buchen.) 392.
Echinopanax (Fatsia) horridum (Smith) Dec. & Pl. 188, 246.
Echinosperrum deflexum Lehm. 561.
— deflexum Lehm. var. americanum 567.
— floribundum Lehm. (= Lappula floribunda (Lehm.) Greene) 550.
— Redowskii Lehm. 590.
— virginianum L. 567.
Eclipta rosea A. DC. 675.
— suberecta Jacq. 687.
Eclipta 511.
— alba (L.) Haussk. 280, 497.
— erecta L. 431.
Ectocarpus littoralis Lyngb. 384.
— siliculosus (Dillw.) Lyngb. 383, 384, 428.
Ehretia elliptica DC. 650.
— mexicana Wats. 657.
— tinifolia L. 675.
Eichhornia azurea Kunth 650, 659.
— crassipes Solms (= speciosa Kunth) 443.
Elachista fucicola Fries 383, 384.
Elaeagnus 177.
Elaeodendron Laneanum A. H. Moore 704.
— xylocarpum DC. 686, 687.
Elaphoglossum 680.
— Eggersii (Bak.) Christ 683.
— leptophyllum (Fée) Moore 683.
Elatine americana (Pursh) Arn. 464, 558.
— triandra Schk. 558. [572]
Eleocharis 382.
— acicularis (L.) R. & S. 450, 498, 499, 572.
— acuminata (Muhl.) Nees (= compressa Sull.) 511.
— arenicola Torr. 572.
— cellulosa Torr. 691.
— Engelmanni Steud. 511.
— glaucescens (Willd.) Schultes 429.
— intermedia (Muhl.) Schultes 499, 511.
— melanocarpa Torr. 219, 421, 422.
— ovata (Roth) R. & S. 442, 511.
Eleocharis pauciflorus Link 385.
— tenuis (Willd.) Schultes 400, 509, 511.
— tortilis (Link) Schultes 436, 442.
Elephantella 563.
— groenlandica (Retz.) Rydb. 558.
Elephantopus carolinianus Willd. 473.
— nudatus Gray 436.
— tomentosus L. 225.
Elionurus barbicularmis Hack. 635.
— ciliaris (Trin.) Beal 530.
Elliottia racemosa Muhl. 178.
Elodea 177.
— campanulata Pursh (= Triadenum virginicum (Linn.) Raf.) 403.
— (Philotria) canadensis Michx. 185, 387, 397, 442, 462, 463, 498.
— minor 511.
Elymus 622.
— arenarius L. 392, 588, 604.
— canadensis L. 398, 399, 400, 499, 523.
— condensatus Presl 509. [616]
— (Sitanion) elymoides Raf. 538.
— glaucus Buckl. 569, 594, 607, 632.
— (Sitanion) longifolius J. G. Smith 569.
— Macounii Vasey 577.
— mollis Trin. 312, 347, 350, 591, 593.
— (Sitanion) multisetus J. G. Smith 607.
— (Sitanion) planifolius J. G. Smith 607.
— Sitanion Schultes (= Sitanion elymoides Raf.) 573.
— striatus Willd. 399, 496, 545.
— triticeoides (Nutt.) Buckley 632.
— viriginicus L. 453, 522, 539, 540, 546.
Emmenanthe 571.
— pendumflora Bentham. 607.
Empetrum 350, 356, 368, 373, 589.
Encelia 274.
— conspersa Bentham. 640.
— eriocephala Gray 585.
— farinosas Gray 268, 275, 630, 634.
— lagascaeformis Gray 647.
Encephalartopsis 177.
Encephalartos 177.
Encyonema prostratum Rafls. 185, 396.
Endocladi um muricata (Harv.) J. Ag. 593.
Endocarpus pusillum Hedes 395.
Engelhardia 177.
Engelmannia pinnatifida Torr. & Gray 537.
Enslenia albida Nutt. (= Gonolobus laevis Michx.) 508.
Enteromorpha 428.
— clathrata (Roth) Grev. 383.
— compressa (L.) Grev. 349, 383, 384.
Enteromorpha Hopkirkii Harv. (= plumaosa Kütz.) 383, 384.
— intestinalis (L.) Grev. 383, 384, 593.
— linza (L.) J. G. Agardh 593.
Ephedra 280, 300, 575, 636, 639, 643, 648.
— antisymphilitica C. A. Mey. 530, 579, 635;
— aspera Engel. 649.
— californica Wats. 585.
— trifurca Torr. 530, 634.
— viridis Coville 586.
Epicampes macroura Benth. 653.
— rigens Benth. 635.
Epidendrum 664, 679.
— altissimum Bateman 329.
— ancipticaulon 662.
— bicornutum Hook. 664.
— bletioides Griseb. 680.
— bahamense Griseb. 329.
— Candollei Lindl. 662.
— ciliare L. 670, 688.
— cockleatum L. 674.
— conopseum R. Br. 447.
— fragrans Sw. 680.
— gracile Lindl. 329.
— nocturnum Jacq. 229, 699.
— piliferum Reichb. 670.
— polybulbon Sw. 680.
— radicans Pav. 670.
— rigidum Jacq. 662, 670, 699.
— rufum Lindl. 329.
— virens Lindl. & Paxt. 662.
Epigaea 202.
Epilobium (Chamaenerion) 244, 354.
— alpinum L. 193, 196, 373, 376, 573.
— alpinum L. var. majus Wahl. (= origanifolium Lam.) 315, 377.
— anagallidifolium Lam. 196, 255, 372, 375, 376, 551.
— (Chamaenerion) angustifolium L. 359, 399, 406.
— Bonplandianum H. B. K. 652.
— brevistylum Barb. 615.
— californicum Haussk. 280.
— clavatum Trelease 196, 258.
— coloratum Mühl. 508, 525.
— Drummondii Haussk. 567.
— glaberrimum Barb. 632.
— glandulosum Lehm. 594.
— holosericeum Trelease 280.
— Hornemanni Ricchenb. 371.
— lactiflorum Haussk. 590.
— latifolium L. 550, 565.
— leptocarpum Haussk. 550.
— lineare Mühl. (= densum Raf.) 368, 385, 525, 541.
— Epilobium luteum Pursh 550.
— nova-mexicanum Haussk. 577.
— obcordatum Gray 196, 254, 357, 573.
— oregonense Haussk. 615.
— origanifolium Lam. (= alsinifolium Vill.) 196, 197.
— palustre L. 525.
— paniculatum Nutt. 280, 567, 582, 625.
— Pringleanum Haussk. 257, 615.
— saximontanum Haussk. 292, 583.
— spicatum Lam. (= angustifolium) 615.
Eripactis gigantea Dougl. 572, 607, 618, 632, 636.
— Epiphegus (Leptaminum) virginiana (L.) Bart. 468, 477.
— Epithemia Argus (Ehrenb.) Kütz. 561.
— gibba Kütz. 542.
— Hyndmanni 561.
— turgida (Ehrenb.) Kütz. 542.
Equisetum 177, 351, 356, 671.
— arvense L. 627.
— hyemale L. 401.
— —, var. intermedium 499, 572, 627.
— laevigatum A. Br. 497.
— littorale Kuchl. 499.
— pratense Ehrh. 549.
— scirpoides Michx. 195, 353.
— sylvaticum L. 185.
— Telmateja Ehrh. 627.
— variegatum Schlisch. 499.
Eragrostis 453, 681.
— bahamensis Hitch. 329.
— capillaris (L.) Nees 453, 526.
— ciliaris (L.) Link 672.
— Elliottii Wats. 228.
— Frankii Steud. 536.
— hypnoides (L.) B. S. P. 511.
— lugens Nees 635.
— major Host 532.
— neo-mexicana Vasey 635.
— pectinacea (Michx.) Steud. 413, 518, 524, 527.
— Purshii Schrad. 453.
— refracta (Muhl. Scribn. (= E. campestris Trin.) 453.
— secundiflora Presl 444.
— tenuis Gray (= trichodes (Nutt.) Nash.) 532.
— trichodes (Nutt.) Nash (= tenuis) 239, 520, 524.
Erechites 340.
— hieracifolia (L.) Raf. 420.
Eremiastrium 634.
Eremocarpus 612.
— setigerus Benth. 628.
Index of Plants.

Erianthus alopecuroides (L.) Ell. 225, 226, 231.
— brevibarbis Michx. 226, 494. [494.
— contortus Ell. 226, 494.
— saccharoides Michx. 442.
Erica cinerea L. 380.
— tetralix L. 380.
Erigenia bulbosa (Michx.) Nutt. 512.
Erigeron 244, 621.
— alpinus L. 193.
— aphanactus (Gray) Greene 570.
— armerifolius Turcz. 196, 258, 616.
— asperagineus Gray 573.
— aureus Greene 600.
— bellidifolius Muhl. (= pulchellus Michx.)
— Breveri Gray 573.
— (Leptilon) canadensis L. 411, 540, 628.
— compositus Pursh 193, 196, 255, 574.
— compositus var. trifidus Hook. 258, 616.
— Coulteri Porter 193.
— Darrelian Hemsl. 331, 701.
— divaricatus Michx. 526.
— divergens Torr. & Gray 643.
— flagellaris Gray 579.
— foliosus Nutt. 611.
— glabellus Nutt. 193.
— glaucus Ker. 604.
— hyssopifolius Michx. 204, 365.
— hornatus Gray 196.
— lanatus Hook. 566.
— leiomurus Gray 193.
— leucotrichus Rydb. 193.
— melanocephalus A. Nels. 193.
— multifidus Rydb. 553.
— ochroleucus Nutt. 196.
— petrophilus Greene 611.
— philadelphicus L. 515.
— pinnatisectus (Gray) A. Nels. 564.
— radicatus Hook. 193, 564, 565.
— ramosus (Walt.) B. S. P. 518, 527.
— repens Gray 444.
— simplex Greene 551.
— subtrinervis Rydb. 545.
— superbus Greene 193.
— trifidus Hook. 558.
— uniflorus L. 193, 255, 564, 565.
— urinus DC. Eat. 561, 565.
Eriocarpum grinneloides Nutt. (= Aplo-
pappus Nutttallii DC.) 535.
— spinulosum (Pursh) Greene 527.
Eriocaulon 425, 426.
— Benthami Kunth 651.
— decangulare L. 440, 450.
— (Dupatya) flavidulum Michx. 464.
— lineare Small 440.
Eriochloa polystachya H. B. K. (= punctata (L.) W. Hamilton 635.
Eriodendron 688.
— anfractuosum DC. 675.
— tomentosum Robins. 658.
Eriodictyon californicum (Hook. & Arn.)
Torr. (= glutinosum) 608, 629, 630.
— glutinosum Benth. (= californicum)
607, 617.
— tomentosum Benth. 627, 629, 630.
Eriogonum 244, 281, 288, 337, 571, 576,
612, 626.
— angulosum Benth. 287.
— annuum Nutt. 530, 532.
— cernuum Nutt. 287, 535, 582.
— corymbosum Benth. 532.
— dasyanthemum Torr. & Gray 607.
— deflexum Torr. 287, 582.
— dichotomum Doug. 569.
— fasciculatum Benth. 626, 630.
— flavum Nutt. (= crassifolium Benth.)
534, 535, 559, 582.
— giganteum Wats. 277.
— gracile Benth. 287.
— heracloides Nutt. 570, 573.
— inflatum Torr. 287, 586, 635, 639.
— Jamesii Benth. 534, 537.
— Lobbi Torr. & Gray 273, 608, 620.
— microechum Nutt. 573, 582.
— molle Greene 640.
— multiceps Nees 535.
— ovalifolium Nutt. 562, 564, 608.
— plumatella Dur. & Hilg. 287.
— polypondium Small 258, 616.
— pyrolaefolium Hook. 257, 600, 601, 616.
— rhodanthem 621.
— rubescens Greene 622.
— saxatilie Wats. 611, 633.
— stellatum Benth. 611.
— Thurberi Torr. 628.
— tomentosum Michx. 427.
— trachygonum Torr. (= Wrightii Torr.)
611.
— umbellatum Torr. 273, 562, 573, 608.
— virgatum Doug. 607.
— virgatum Benth. 609.
— Wrightii Torr. 287.
Eriogynia (Lutkea) pectinata Hook. 592, 601, 615, 616.
Eriophorum 401.
— capitatum Host. (= Scheuchzeri Hoppe)
353, 392.
— cyperinum L. 523.
— gracile Koch 353, 367, 373, 385, 386,
402, 421, 525.
— latifolium Hoppe 353, 355.
Eriophorum polystachyon L. 180, 402, 403, 424, 557, 561.
— russeolum. Fries 392, 600.
— sphaerocephalum Wulf. (= Schencheri Hoppe) 569.
— thymoides 569.
— virginicum L. 207, 355, 402, 441.
Eriophyllum caespitosum Doug. (= Bahia integrifolia DC.) 196, 607.
— lanatum (Prush) Forbes 601.
— lanosi Gray 571.
— Nevinni Gray 277.
— (Actinolepis) Wallaci Gray 571.
Erialis 690.
— fruticos L. 686, 693, 694.
Eritrichium 283, 334, 582.
— angustifolium Torr. 287.
— (Omphalodes) aretioides DC. 194, 562, 563, 564.
— argentum W. F. Wight 564.
— Chamissonis DC. 350.
— (Kryntzkia) fulvocanescens Gray 196.
— (Kryntzkia) glomeratum Delar. 196.
— (Omphalodes) Howard (Gray) Rydb.
— micranthum Torr. 287. [566.
Erhoidea 690, 697.
— Cokeri Britt. 330, 693.
— littoralis Sw. 690, 692, 693.
Erodium cicutarium L'Herit. L. 652.
Eryngium aegyptiacum Spreng. 438.
— bromeliaefolium Delar. 652.
— proteaeflorum Delar. 653, 655.
— ranunculoides Benth. 652.
— synchaetum Cohl. & Rose 446.
— yuccaefolium Michx. 446, 497, 507, 515, 522.
Erysimum 244, 655.
— aspermum Nutt. 534, 545.
— asperum, var. arkanzananum Nutt. 239.
— asper, var. perenne Wats. 254.
— lanceolatum Pursh (= asperum) 391.
— macradenium J. Gay 655.
— (Cheiranthus) perennis Covi1. 616.
Erythea arctaucta 639.
— (Brahea) edulis Wats. 623, 663.
Erythrea Nuttalii Wats. 287.
Erythrina 670.
— herbacea L. 427.
Erythrontium 258.
— albium Nutt. 512, 544.
— americanum Ker 388, 468, 477, 544.
— giganteum Lindl. 606.
— grandiflorum Pursh. 550, 566.
— revolutum Smith 602.
Erythrobotria 428.
Erythroxylon brevipes DC. 674, 693, 695.
— reticulatum Northrop 329.
Eschscholtzia 286.
— ambigua Greene 611.
— californica Cham. 287, 612, 626, 630.
— crocea Benth. (= californica) 281.
— maritima Greene 622.
— mexicana Greene 634.
— minutiflora Wats. 585.
— Palmeri Rose 623.
— ramos Greene 640.
Eschappeda scabrida Ruiz & Pav. 308.
Eschcontra chiotilla 647.
Euastrum 396.
— verrucosus Ehrenb. 542.
Eucalyptophyllum 177.
Eucalyptus 177, 183.
Euclid de uren Parry 586.
Eudesme virescens (Corm.) J. Ag. 588.
Eudorina elegans Ehrenb. 395.
Eugenia 177, 688, 690.
— axillaris (Sw.) Willd. 675, 703.
— buxifolia (Sw.) Willd. 690, 693, 694.
— confusa DC. 690, 692, 694.
— lepidota Berg. 670.
— longipes Berg. 229.
— monticola (Sw.) DC. 229, 704.
Euglena 463.
— viridis Ehrenb. 542.
Eulophus Parishii Coul. & Rose 254.
Eun anus 281.
Euonymus 177, 200, 274, 472, 641.
— americanus L. 466.
— atropurpureus Jacq. 458, 466, 502, 512.
Eupatorium 274. [573.
— ageratifolium DC. 252.
— ageratoides L. f. 477, 502, 512, 520, 522.
— album Linn. 215, 219, 413, 421, 422, 426, 493, 494.
— altissimum L. 453, 497.
— amplifolium Gray 647.
— aromaticum L. 225, 227, 493, 494.
— azureum DC. 647.
— bahamense Northrop 330.
— capillifolium (Lam.) Small 430.
— hysoptifolium L. 219, 413, 417, 421, 422, 423, 426.
— ixiocladon Bentham. 671.
— leptocephalum DC. 446.
— leucocelis Torr. & Gray 219, 421, 422.
— linealifolium Wats. 436. [424, 433.
— perfoliatum L. 525.
— pinnatifidum Ell. 436.
— popocataetlense Schlecht. 652.
— pubescens Muhl. (= rotundifolium var. ovatum Torr.) 446, 486.
Eupatorium purpurcum L. 439, 465, 468.
— pycnocephalum Less. 652.
— resinosum Torr. 424.
— rotundifolium L. 219, 421, 422, 426, 436.
— Schaffneri Sch. 647.
— scorodonioides Gray 647.
— serotinum Michx. 453.
— sessilifolium L. 507.
Euphorbia 431, 444, 671, 696.
— albomarginata Torr. & Gray 628.
— benedicta Greene 640.
— (Dicrophyllum)bicolor Egm. & Gray 531.
— (Chamaesyce) buxfolia Lam. 673, 686.
— campestris C. & S. 652, 656. [703.
— cayensis Mills. 329.
— (Tithymalus) commutata Engelm. 484.
— (Chamaesyce) cordifolia Ell. 216.
— (Tithymalopsis) corollata L. 518, 522, 526.
— (Poinsettia) dentata Michx. 497.
— (Chamaesyce) glyptosperma Engelm. 506, 540.
— (Poinsettia) havanensis Willd. 696.
— (Poinsettia) heterophylla L. 658.
— (Zygophyllidium) hexagona Nutt. 532.
— (Chamaesyce) humistrata Engelm. 506.
— (Tithymalus) inundata Torr. 446.
— (Tithymalopsis) Ipecacuanhae L. 219, 421, 422, 424.
— leucothylla Benth. 639.
— (Dicrophyllum) marginata Pursh 540.
— misera Benth. 275, 628.
— montana Engelm. 532, 535, 643.
— (Tithymalus) obtusata Pursh 508.
— ocellata Dur. & Hilg. 275, 628.
— Palmeri Engelm. 631.
— petaloidea Engelm. 532.
— polycarpus Benth. 585.
— (Chamaesyce) polygonifolia L. 222, 379, 381, 398, 410, 411, 412, 413, 430, 444.
— robusta (Engelm.) Small 537. [499.
— serpyllifolia Pers. 280.
— vaginulata Griseb. 604.
— xanti Engelm. 638.
Euphrasia americana Wettst. 370.
— Oakesii Wettst. 372.
— officinalis L. 315.
Eurtia 289, 585, 643.
— lanata (Pursh) Moq. 533, 534, 538, 569, 571, 573, 576, 586, 628, 635.
Eustoma exaltata L. 692.
Euterpe edulis Mart. 664.
— longepetiolata Oerst. 670.
— oleracea Engelm. 679.
Eutetras Palmeri Gray 647.
Euthamia (Solidago) occidentalis Nutt. 280, 281.

Euthora cristata Ag. 383, 587.
Eutrema Edwardsii R. Br. 350.
Eva prolifera Nutt. 531.
Evernia 395.
— furfuracea (L.) Mann 653.
— vulpina (L.) Ach. 549, 615.
Evolvulus pilosus Nutt. 527.
— sericeus Sw. 693.
Exococcaria lucida Sw. 229.
Exogonium (Ipomoea) purga Lindl. 327.
Exostemma carilaeum Roem. & Schult. 230, 693, 694, 695.
Eysenhardtia orthocarpa Wats. 642.

Fagara flava (Vahl) Krug & Urb. 704.
Fagonia 280.
— cretica L. var. californica Benth. 339.
Fagopyrum 177.
Fallugia 286, 289, 290, 585.
— paradoxa (Don.) Endl. 292, 580, 581, 634.
Fatsia (Echinopanax) horrida Benth. & Hook. 188, 549, 555, 590, 591, 597, 602.
Fendlera rupeicola Engelm. & Gray 250, 571, 582, 643.
Ferraria (Tigridia) pavonia L. f. 652.
Festuca 653.
— aequipaleata Fourn. 654.
— altaica Trin. 365.
— amplissima Rupr. 654.
— brachyphylla Schultes 550.
— brachyphylla Schultes var. nana 562.
— brevifolia R. Br. (= brachyphylla) 292.
— Jonesii Vasey 593. [564, 584.
— Kingii 621.
— livida Willd. 653, 564, 655.
— microstachyxa Nutt. 569.
— octoflora Wats. (= tenella Willd.) 527.
— ovina L. var. brevifolia Wats. 255, 378, 565, 601.
— ovina L. var. caespitosa 562.
— ovina L. var. pseudovina Hack. 583.
— Richardsonii Hook. 313, 347.
— rubra L. 370, 432, 604.
— rubra L. var. arenaria 590.
— rubra L. var. baikalensis 594.
— tenella W. (= octoflora Wats.) 523, 538.
— Thurbri Vasey (= scabrella Torr.) 557.
Index of Plants.

Festuca toluicensis Ruhr. 653.
— viridula Vasey 601.
Ficophyllum 177.
Ficus 175, 177, 183, 242, 676, 681, 688.
— aurea Nutt. 700.
— carica L. 704.
— Palmeri Wats. 637.
— sapotaefolia Kunth & Bouché 692.
— segoviae Miq. 661.
Fimbriystis 646.
— autumnalis (L.) R. & S. 382, 442, 499.
— (Stenophyllus) capillaris L. 390, 525.
— ferruginea Hook. & Arn. 687.
— laxa Vahl 442.
— spadicea (L.) Vahl 429, 446, 677.
— thermalis Wats. 287.
Flaveria 340.
— angustifolia (Cav.) Pers. 533, 539.
— linearis Lag. 692.
Fleorkea proserpinacoides Willd. 468.
Fleischmannia Schaffneri Gray 647.
Flourensia 296.
— cernua DC. 576.
Fontinalis 177.
— antipyretica L. var. gigantea Sulliv.392.
— dicticha Hook. & Wils. 447.
Forestiera (= Adelia) 289, 585.
— (Adelia) acuminata Michx. 450, 454, 458.
— ligustrina Michx. 508.
— (Adelia) neo-mexicana Gray 250, 508.
— (Adelia) porulosa Michx. 431, 697, 703.
Fothergilla arborescens L. 320.
— Gardeni Murr. (= carolina (L.) Britt.)
Fouquieria 289, 293, 295, 296, 645. [320.
— spinosa Torr. 638.
— splendens Engelm. 576, 586, 634, 635, 636, 643.
Fragaria americana (Porter) Britt. 555.
— bracteata Heller. 578.
— chiloensis (L.) Duch. 588, 591, 602.
— glauca (Wats.) Rydb. 557.
— mexicana Schlecht. 652.
— vesca L. 526, 680.
Fragilaria 396.
— Harrisonii W. Sm. 542.
Frankenia 274, 637.
— Palmeri Wats. 337, 625, 638, 640.
— triandra Remy 337.
Franseria (Gaertneria) bipinnatifida Nutt. 282, 624.
— (Gaertneria) deltoidea Torr. 634.
— (Gaertneria) dumosa Gray 571, 585, 586.
Frasera 274.
— carolinensis Walt. 506.
— Parryi Torr. 631.
Fraxinus 177, 183, 200, 452, 463, 473, 501, 509, 511.
— anomalum Torr. 245, 249. [505, 509, 514.
— caroliniana Mill. (= platycarpa Michx.)
— cupidata Torr. 646. [440.
— dipetala Hook. & Arn. 617, 629.
— Greggii Gray 649, 650.
— lanceolata Borck. (= viridis Michx. f.) 240.
— nigra Marsh. (= sambucifolia Lam.) 361, 362, 504.
— oregana Nutt. 264, 266, 267, 279, 595, 596, 598, 607, 609.
— pennsylvanica Marsh. 533.
— pistaciaefolia Torr. 245, 250.
— platycarpa Michx. (= caroliniana Mill.) 217, 439, 448.
— pubescens Lam. (= pennsylvanica Marsh.) 237, 238, 248, 362, 393, 401, 457, 545.
— quadrandulata Michx. 184, 186, 457, 502, 505, 509, 512, 513, 515.
— sambucifolia Lam. (= nigra Marsh.) 186, 364, 389, 392, 401, 457, 500, 521.
Fremontia (Fremontodendron) californica Torr. 200, 617, 629, 630.
Fremontodendron(Fremontia) californicum (Torr.) Coville 269, 270.
Frezieria 671.
Fritillaria kamschatcensis Ker 591.
— pudica (Pursh) Spreng. 561.
Froelichia 444.
— campestris Small 520.
— floridana (Nutt.) Moq. 427, 532.
— gracilis Moq. 532.
Frullania 432.
Fuchsia 304, 340, 671.
— microphylla H. B. K. 652.
— thymifolia H. B. K. 652.
Fucus 177.
— digitatus 186.
— evanescens Ag. 370, 609.
— evanescens Ag. var. megacephalus 587.
— fastigiatus 609, 624.
Fucus filiformis Gmel. 349.
— furcatus Ag. 370, 383.
— Harveyanus 593, 609.
— (Ascophyllum) nodosus L. 383, 384.
— platycarpus Thur. 351.
— serratus L. 624.
— vesiculosus L. 349, 354, 370, 384, 420.
Fugosia (Ciefugosia) sulphurea Garcke 339.
Fuirena squarrosa Michx. 436, 442.
Furcraea 662, 669, 676.

Gaertneria (Franseria) tomentosa (Gray) Kuntze 532.
Gaillardia aristata Pursh 569, 570.
— pinnatifida Torr. 529.
— pulchella Foug. 453, 530, 531, 537.
Galactia 464.
— Elliottii Nutt. 699.
— glabella Michx. (= regularis (L.) B. S. P.) 424.
— Rudolphioides (Griseb.) Benth. & Hook.
— volubilis (L.) Britt. 699. [692]
Galax aphylla L. 483, 486, 487, 493, 495.
Galeottia (Zygodetalum) grandiflora Rich.
Galium 503, 671. [662]
— Andrewsii Gray 607.
— angulosum Gray 623.
— aparine L. 403, 469, 526.
— bermudense L. 703.
— bermudianum L. 331.
— boreale L. 239, 526.
— catalinense Gray 277.
— circaezans Michx. 502, 508, 509.
— Claytoni Michx. 432.
— hispidulum Michx. 432, 433, 693.
— latifolium Michx. 490.
— miguelense Greene 622.
— multiflorum Kellogg 573, 608.
— trifidum L. 508, 525, 541.
— triflorum Michx. 469, 545.
Galpinia 333.
Garrya 639.
— Fadyenii Hook. 683.
— flavescens Wats. 586.
— Veatchii Kellogg 586, 629, 630.
Gatesia laetevirens Gray 487.
Gaultheria 2, 200, 274, 334, 652.
— humifusa (Graham) Rydb. 551, 651.
— myrsinites Hook. 246, 259, 561, 600.
— Oerstediana 671.
— ovatifolia Gray 597.
— shallon Pursh 591, 594, 605, 606, 607.
Gaura cocinea Pursh 527, 531, 557, 579.
— Michauxii Spach 453.
Gaura parviflora Doug. 539, 540, 579.
— suffulta Engelm. 531.
Gaylussacia 177.
— frondosa (L.) Torr. & Gray 380, 424, 425, 434, 438, 475, 495.
— resinosa (Ait.) Torr. & Gray 221, 380, 390, 403, 408, 421, 424, 467, 475, 495, 500, 502.
Gayophytum diffusum Torr. & Gray 618.
— pumilium Wats. 618.
— racemosum Torr. & Gray 573.
— ramosissimum Torr. & Gray 569, 618.
Gelidium 428, 609.
— corneum Lam. 384.
Genipa americana L. 677.
— caruto H. B. K. 675.
— clusiifolia (Jacq.) Griseb. 229, 290, 692.
Gentiana 260, 271, 334, 621.
— acuta Michx. 391, 557.
— (Dasytephana) affinis Griseb. 194, 292, 553, 572.
— amarella L. var. acuta (Michx.) Herder (= acuta Michx.) 370, 378.
— Andrewsii Griseb. 524, 525.
— arctophila Griseb. 194.
— (Anthopogon) barbella Engelm. 194.
— calycosa Griseb. 601. [583]
— crinita Froel. 501, 525.
— detonsa Rottb. (= serrata) 559.
— Forwoodii Gray 559.
— humilis Stev. 563.
— linearis Froel. 406, 482.
— Menziesii Griseb. 605.
— Newberryi Gray 191, 196, 254, 259.
— nivalis L. 197.
— oregana Engelm. 605.
— (Dasytephana) Parryi Engelm. 194, 557.
— porphyro J. F. Gmel. 424. [574]
— propinqua Richards 194.
— prostrata Haenke 334.
— prostrata Haenke var. americana Hook. (= Chondrophylla americana Engelm.)
— puberula Michx. 518, 523, 528. [194.
— quinqueflora Lam. 488.
— (Dasytephana) Romanzovii Lede. 194.
— serrata Gunn (= detonsa Rottb.) 558.
— serrata Gunn var. holopetalia Gray 196, 257, 615. [254.
— tenella Gray (= Amarella monantha A. Nels.) 194, 562, 583.
— villosa L. 473.
Index of Plants.

Gilia Harknessii Curran 608.
— iberidifolia Bent. 535.
— inconspicua (J. E. Smith) Sweet (=parviflora Gray) 337, 571.
— intertexta Steud. 337.
— involucrata Phil. 337.
— lacinata Ruiz & Pav. 337.
— leptomeria Gray 571.
— longiflora (Torr.) Don. 337.
— Matthewsi 290.
— micrantha Steud. 276, 622.
— minima Gray 337.
— montana 621.
— multicaulis Bent. 337.
— multiflora Nutt. 582.
— Navarretia Steud. 337.
— Nevinii Gray 277.
— nudicaulis Gray 563.
— Nuttallii Gray 196, 254.
— polycladon Torr. 571.
— pumila Nutt. 535.
— pungens (Torr.) Bent. 569, 573, 608.
— pungens var. caespitosa 535. [633.
— pusilla Bent. 337.
— Schottii Wats. 290, 636.
— setosissima Gray 290, 571.
— spicata Nutt. 535.
— tenuiflora Bent. 290.
— tricolor Bent. 585.
— Veatchii Parry 640.
Gilibertia arborea E. March. 674.
Gillenia trifoliata (L.) Moench 674.
Ginkgo 177.
Glaux maritima L. 369, 381.
Gleditschia 177, 200, 503, 507, 511.
— aquatica Marsh. 506.
— inermis Mill. (= monosperma WALT.) 455.
— monosperma WALT. (= aquatica) 457.
Gleichenia 177, 680.
— dichotoma Hook. (= linearis (Burm.) Clarke) 679.
— furcata (L.) Spr. 680.
— pectinata (Willd.) Pr. 679.
— pubescens H. B. K. (= furcata) 679.
Gliricidia platycarpa Griseb. 674.
Gloeocapsa 560.
— fenestralis Kütz. 396.
— violacea (Corda) Rabenh. 561.
Glocycystis ampla Rabenh. 395.
Gloeotrichia 396.
Gloioptelis furcata (P. & R.) J. Ag. 588.
Gloisiphonia californica (Jarl.) J. Ag. 588.
Glossopetalon (= Forsselbria) 289, 585.
— nevadensis Gray 200.
Glyceria 271, 426.
Glyceria (Puccinellia) airoides Nutt. 559.
— borealis Nash 366.
— canadensis (Michx.) Kuntze 500.
— elongata (Torr.) Kuntze 496.
— (Panicularia) fluitans (L.) R. Br. 312, 347, 387.
— nervata (Willd.) Trin. 373, 525, 541, 632.
— (Panicularia) obtusa (Muhl.) Trin. 219, 421, 422, 423.
— pallida (Torr.) Trin. 442.
— pauciflora (Presl) Kuntze 255, 591.
Glycyrrhiza glutinosa Nutt. 280.
— lepidota (Nutt.) Pursh 506, 531, 540.
Glyptopleura 289, 571, 585. [572, 646.]
— marginata D. C. Eat. 287.
Glyptostrobus 177, 242.
— Unger Heer 174.
Gnaphalium californicum DC. 281, 607, 613.
— gracile H. B. K. 647.
— Helleri Britt. 486.
— lavandulaceum DC. (= Chionolaena lavandulifolia Benth. & Hook.) 655.
— obtusifolium L. (= polypephalum Michx.) 536.
— oxyphyllum DC. 647.
— palustre Nutt. 280.
— polypephalum Michx. 523.
— popocatspecium 655.
— purpureum L. 219, 421, 422, 652.
— Sprengelii Hook. & Arn. 559.
— sylvaticum L. 391.
Godetia viminea Spach 608.
Golenkinia fenestra Schrad. 395.
Gomphocarpus cordifolius Benth. 607.
— tomentosus (Torr.) Gray 625.
Gomphonema 396.
— clavatum Ehrb. 542.
— constrictum Ehrb. 542.
Gomphosphaeria aponina Kütz. 396.
Gongora 664.
Gongylocarpus fruticulosus T. S. Brande-Gonolobus maritimus R. Br. 687. [gee640.
Goodyera Menziesii Lindl. 602.
— (Peramium) pubescens Willd. 354, 366, 469, 480, 486.
— (Epipactis) repens L. 362, 405, 480, 501.
Gordonia 200.
— lasianthus (L.) Ell. 440, 441.
Gossypianthus rigidiflorus Hook. 597.
Gossypium barbadense L. 692.
Gouania domingensis L. 229, 641, 694.
— tomentosa Jacq. 675.
Govenia speciosa 652.
Gracilaria confervoides (L.) Grev. 428.
Gratiola pilosa Michx. 436.
— quadridentata Michx. 437.
Gratiola sphaerocarpa Ell. 227.
— subulata Baldw. 216.
— virginiana L. 456, 572.
— viscosa Schwein. 227.
Grayia 289.
— polyaloides Hook. & Arn. (= spinosa (Hook.) Moq.) 573, 569, 586.
— spinosa (Hook.) Moq. (= polyaloides) Grewia 177. [571.
Grewiopsis 177.
Grias cauliflora L. 678.
Griffithsia corallina Ag. 384.
Gralmidalia bar bifrons Bisch. 536.
— rupestris 515.
Grimmia 490.
— apiculata 654.
— Olneyi Sulliv. 392.
Grindelia 281, 612.
— robusta Nutt. 628.
— squarrosa (Pursh) Dunal. 537, 540.
Grinnellia americana Harv. 384, 428.
Guaiacum Coulteri Gray 339, 637, 639, 643.
— officinale L. 339, 664, 682.
— parvifolium Planch. 339.
Guarea trichilioides L. 377, 680, 685.
Guazuma ulmifolia Lam. 675.
Guettarda scabra Lam. 692.
Gutierrezia 244, 528, 576.
— Berlandieri Gray 647.
— eriocarpa Gray 530.
— Euthamiae Torr. & Gray (= Sarothrae (Pursh) B. & R.) 533, 537.
— Sarothrae (Pursh) B. & R. 537.
— texana Torr. & Gray 531.
Gymnanthes lucida Sw. 230, 693, 694, 695.
Gymnocladus 200, 511.
— canadensis Lam. (= dioica (L.) Koch) 237, 457, 478, 512, 514, 521, 522, 543.
Gymnocybe’ turgida Linb. 375.
Gymnogongrus 351.
Gymnogonasp. 177.
— (Gymnopoteris) Ehrenbergiana Kl. 576.
— triangularis 627.
Gymnopogon ambiguus (Michx.) B. S. P. (= racemosus Beauv.) 225, 226.
Gymnopoteris (Leptochilus) aliena Pr. 679.
— (Neurogramma) hispida Mett. 579.
Gynnosperma scoparium DC. (= corymbosum DC.) 647.
Gynnostomum 394.
— curvirostrum Hedw. 516.
Gyrophora 356.
Gyrostachys stricta Rydb. (= Spiranthes Romanzoffiana Cham.) 239.
Habenaria 501, 591, 620.
— (Blephariglottis) blephariglottis(Willd.)
— bracteata (Willd.) R. Br. 379, 486.
— ciliaris (L.) R. Br. 426, 490.
— cristata (Michx.) R. Br. 424, 426, 436.
— dilatata (Pursh) Gray 373, 376, 385, 406, 500, 538, 592.
— fimбриata (Ait.) R. Br. 371.
— gracilis Wats. 600.
— hyperborea (L.) R. Br. 558, 559.
— lacera (Michx.) R. Br. 379, 385, 402, 473, 491.
— leucophaea (Nutt.) Gray 500, 524.
— leucostachys (Lindl.) Wats. 257, 613, 618, 632.
— nivea (Nutt.) Spreng. 437, 446.
— (Lysia) obtusata (Pursh) Richards
 376, 565.
— (Lysia) orbiculata (Pursh) Torr. 405, 485, 488.
— (Blephariglottis) peramoena Gray 488.
— psycodes (L.) Sw. 485.
— Thurbri Gray 583.
— tridentata Hook. (= clavellata (Michx.)
 Spreng.) 500.
— (Piperia) unalaschensis (Spreng.) Wats.
 257, 592, 615.
— virescens Spreng. (= flava (L.) Gray)
 Haematoxylon 681. [508]
— campechianum L. 659, 664, 678, 687, 694.
Halenia crassiuscula Rob. & Seat. 655.
— (Tetragonanthus) deflexa (J. E. Smith)
 Halesia 402. [Griseb. 567]
— (Mohrodendron) carolina L. (= tetrap-teras L.) 320.
— (Mohrodendron) diptera L. 320, 447, 451.
— tetraptera L. (= carolina L. 485, 504.
Halidrys osumdacea 609.
Halimeda opuntia (L.) Lam.'x. 658.
— tridens (Ell. & Soland.) Lam.'x. 687, 701.
— tuna (Ell. & Soland.) Lam.'x. 687, 701.
Halosaccion 568.
— hydrophora Bail. & Harv. 593, 609.
— ramentaceum (L.) Ag. 383.
Halostachys 283.
— occidentalis Wats. 283.
— virginiana L. 223, 310, 389, 408, 438, 458, 466, 467, 479, 484, 485, 500.
Hamamelities 177. [501, 502, 504.
Hamelia lutea Rohr 674.
— patens Jacq. 682.
Harbouria (Cicuta) trachypleura (Gray)
 Coulh. & Rose, 534, 545.
Harfordia fruticosa Greene & Parry 640.
Harpagonella Palmeri Gray 623, 634.
Hastingsia 620.
Hedeoma Drummondii Benth. 538, 635.
— pulegiodes (L.) Pers. 473.
Hedera 177.
— helix L. 176.
— Mac Clurii Her. 174.
— ovalis Lesq. 176.
Hedophyllum 593.
— sessile (Ag.) Setch. 588.
Hedwigia 490.
— ciliata Ehrh. 392.
Hedychiun 679.
Hedysomum calloso-serratum Oerst. 670.
Hedysarum boreale Nutt. (= americanum
 (Michx.) Britt.) 204, 366, 563.
— Mackenzii Richards 360.
Heleniastrum rivulare Greene 618.
Helenium brevifolium Gray 450.
— Hoopesii Gray 196, 254.
— nudiflorum Nutt. 227.
Heliantha castanea Greene 611.
— Douglasii Torr. & Gray 569.
— mexicana Gray 647.
— Parryi Gray 555, 557.
— quinquenervis (Hook.) Gray var. arizo-
— Helianthemum 295, 390. [nica Gray 578.
— arenicola Chapm. 431, 444.
— canadense (L.) Michx. 413, 424, 432, 526.
— carolinianum Michx. 440. [536.
— majus (L.) B. S. P. 379, 390, 520, 567.
— scoparium Nutt. 605.
Helianthus 641.
— amplexicaulis DC. 647.
— angustifolius L. 219, 226, 227, 421, 422.
— annuus L. 506, 540, 628. [424.
— atrorubens L. 494.
— Californicus DC. 280.
— giganteus L. 424, 524.
— grosse-serratus Martens 497.
— heterophyllum Nutt. 446.
— hirsutus Raf. 435, 497, 507, 512.
— Maximilian Schrad. 518, 582.
— mollis Lam. 497, 507.
— occidentalis Riddell 497, 520, 523, 525.
— Oliveri Gray 275, 628.
— orgyalis DC. 513.
— Parisii Gray 275, 628.
— parviflorus Bernh. (= microcephalus
 Torr. & Gray) 507.
— petiolaris Nutt. 528, 532, 534.
— rigidus Desf. (= scaberrimus Ell.) 507,
 523, 525.
— scaberrimus Ell. (= rigidus Desf.) 518.
— tuberosus L. 506. [528.
— tuberosus L. var. subcanescens 513.
Heliconia 670, 679.
— Bihai Linn. 679.
Helicteres spiralis Northrop 329, 694.
Helietta parvifolia Benth. 650.
Heliopsis laevis Pers. 464.
Heliotropium curassavicum L. 280, 444, 628, 659, 687, 702.
— namum Northrop 330.
— tenellum (Nutt.) Torr. 508.
Helonias bullata L. 422, 426.
Hemicarpia 270.
— micrantha (Vahl) Britt. 499.
Hemitelia 670.
— grandifolia 670.
— horrida 670.
Hemizonella 271.
Hemizonia clementina T. S. Brandegee 277.
— (Hartmannia) frutescens Gray 623.
— Greeneana Rose 623.
— Palmeri Rose 623.
— Streetsii Gray 640.
— virgata Gray 275, 281, 612, 628.
— Wheeleri Gray 254.
— (Deinandra) Wrightii Gray 275, 628.
Hepatica 202, 503.
— acuta (Pursh) Britt. 521.
— acutiloba DC. 477, 486.
— triloba Chaix 469, 472, 477.
Heracleum 271.
— lanatum Michx. var. vestitum 590.
Hernandia 680.
— sonora L. 684.
Herpestis acuminata (Walt.) Kunze 686.
— (Monniera) caroliniana Walt. 437.
— Monniera (L.) Britt. 429, 431, 687, 702.
— (Monniera) rotundifolia Michx. 540.
Hesperaloe funifera Trel. 646.
— parviflora 286.
Hesperocallis 274.
— montana 636.
Hesperochiron 274.
Hesperocnide 274.
Heteranthera 511.
— dubia (Jacq.) Mac M. 500.
— graminea Vahl. (= dubia) 397, 498, 659.
— limosa (Sw.) Willd. 511.
— reniformis R. & P. 455.
Heterogaura 271.
Heteromelis arbutifolia (Poir.) Roem. 267.
Heterospermum 638. [270, 622.
Heterotheca 274.
— grandiflora Nutt. 628.
— subaxillaris (Lam.) B. & R. 444.
Heuchera 258, 270.
— americana L. 394, 468, 472, 481.
— Heuchera cylindrica Dougl. 574.
— glabra Willd. 537, 590, 591.
— Hallii Gray 565.
— hispida Pursh 358, 394, 515, 545.
— orizabensis Hemsl. 654.
— parviflora Bartl. (= villosa Michx.) 635.
— parviflora Nutt. 562, 567.
— pubescens Pursh 474.
— Rugelii Shuttlw. 480, 487. [633.
— villosa Michx. 486, 496.
Hibiscus 289, 687.
— Boryanus DC. 682.
— californicus Kell. 280, 613.
— militaris Cav. 455.
— vitifolius L. 682.
Hicoria (= Carya) 177.
— alba (L.) Britt. (= Carya tomentosa Nutt.) 380.
— minima (Marsh.) Britt. (= Carya amara Nutt. = C. cordiformis (Wang.) K. Koch) 217, 453.
— ovata (Mill.) Britt. (= Carya alba Nutt.) 185, 453.
— albilorum Hook. 196, 258, 616.
— alpinum L. 197.
— Breweri Gray (= horridum Fries) 196, 682. [618.
— Fendleri Sch. Bip. 567, 583.
— gracile Hook. (= triste var. gracile Gray) 193, 196, 258, 601, 616.
— Gronovii L. 469.
— horridum Fries 258, 616, 633.
— irasuense Benth. (= lagopus D. Don) longipilum Torr. 518, 523. [671.
— niveopappum Fries. 654.
— paniculatum L. 469.
— praecatum Vill. 366.
— prenanthoides Vill. 197.
— scabrum Michx. 469, 512.
— Scouleri Hook. 561.
— triste Cham. 592.
— venosum L. 424, 469, 473, 491, 682.
— vulgatum Fries 391.
— (Savastana) macrophylla Thurb. 606.
— (odorata) (L.) Wahlenb. 558, 591.
— odorata pauciflora R. Br. 312, 347.
Hilaria 289.
Hilari a cenchroides H. B. K. 529, 530, 635.
— Jamesi (Torr.) Benth. 529, 576, 586, 635.
— mutica (Buckl.) Benth. 529, 530, 634, 635.
— rigida (Thurb.) Scribn. 635.
Hippomane 332.
— Mancinella L. 229, 230, 686, 691.
Hippuris 271, 558, 591.
— vulgaris L. 363, 379, 558.
Hirtella 685.
Hoffmania pedunculata Sw. 680.
Hoffmannsegia 289, 576, 645, 646.
— stricta Benth. 529.
Hofmeisteria 289, 586.
— fasciculata Walp. 639.
— laphamioides Rose 639.
Hohenbergia 680.
Holodiscus (Spiraea) ariaefolius (Smith) Greene 555.
— discolor (Pursh) Maxim. 252, 257, 553, 579, 582, 611, 633.
— dumosus (Nutt.) Hell. 557, 568.
Homalobus caespitosus Nutt. 535.
— montanus (Nutt.) Britt. (= Astragalus kentrophytus Gray) 535.
— jubatum L. 369, 539, 540.
— pratense Huds. (= nodosum L. = secalinum Schreb.) 316.
— pusillum Nutt. 239.
Horkelia 621.
— Gordonii Hook. 192.
Hormidium 395.
Hormatrichum Youngianum (Harv.) Dillw. (= penicilliformis (Roth) Fries) 384.
Horsfordia 289.
Hosackia (Lotus) crassifolia Benth. 611, 618.
— (Lotus) glaber Torr. 626, 630.
— gracilis Benth. (= Lotus formosissimus Greene) 605.
— (Lotus) Heermini Dur. & Hilg. 287.
— maritima Nutt. 640.
— nevadensis Wats. 631.
— oblongifolia Benth. 632.
— ornithopus Greene 623.
— puberula Benth. 646.
— Purshiana Benth. (= Lotus americana (Nutt.) Bisch) 532.
Hottonia inflata Ell. 387, 455.
Houstonia 493.
— caerulea L. 375, 376, 406.
— longifolia Gaertn. 491.
— Palmeri Gray 652.
— patens Ell. 446, 508.
— purpurea L. 394, 496.
— rotUNDifolia Michx. 431.
— serpyllifolia Michx. 486, 488, 492, 493.
— tenuifolia Nutt. 491. [496.]
Hudsonia ericoides L. 219, 380, 389, 421, 422, 423, 424.
— montana Nutt. 178, 203.
Hulsea 271, 274. [499.]
— algida Gray 196, 254.
— Larseni Gray (= nana Gray var. Larseni Gray) 258, 616.
— nana Gray 258, 565, 600, 616.
Humulus Lupulus L. 458, 506.
Hunnemannia 286.
Hura 688.
— cre pati ans L. 670, 688.
Hutchinsia (Smelowskia) calycina Desv. 192.
Hydrangea arborescens L. 458, 470, 473, 491, 492.
— arborescens L. var. cordata Torr. & Gray 490.
— cinerea Small 320, 492.
— quercifolia Bartl. 320, 427, 492, 494.
— radiata Walt. 320, 490, 492.
Hydrastis 555.
— corymbosus (Torr.) 230, 274, 686.
Hydrochloa fluitans (Michx.) Torr. 447.
Hydrocotyle 334, 445.
— (Centella) asiatica L. 702.
— prolifera Kellogg 280.
— ranunculoides L. f. 448.
— (Centella) repanda Pers. 437.
— umbellata L. 419, 429.
— verticillata Thumb. 440, 448.
Hydrodictyon 396, 463, 496.
— reticulatum (L.) Lagerh. 395.
Hydrolea spinosa L. 675.
Hygrophila lacustris Nees 456.
Hydrophyllum capitatum Doug. 573.
— Fendleri (Gray) Heller 545.
— virgincum L. 468, 521, 602.
Hylocomium proliferum Lindb. 492, 493.
— pyrenaicum (Spruce) Lindl. (= Oakesii Sulliv.) 480.
— squarrosum (L.) B. & S. 375.
— triquetrum (L.) B. & S. 492.
— umbratum (Ehrh.) B. & S. 480.
Hymenaea 177.
Hymenatherum 576.
Hymenocallis 677, 681.
— arenicola Northrop 329, 690.
— caymanensis Herb. 697. [453.
— occidentalis (Le Conte) Kth. 447, 448.
Hymenoclea monogyra Torr. & Gray 637.
— salsola Torr. & Gray 571, 585, 586.
Hymenopappus 271, 576.
— corymbosus Torr. & Gray 531.
— flavescens Gray 527.
— mexicanus Gray 582.
Index of Plants. 745

Hymenophyllum 177, 680.
Hyalotheca dissiliens (Sm.) Brêb. 396.
Hypelate paniculata Camb. 693, 694.
— trifoliata Sw. 229, 693, 695.
Hypericum 271, 295.
— anagalldoides C. & S. 605, 607.
— Ascyron L. 508.
— aureum Bart. 510.
— canadense L. 567.
— concinnum Benth. 272, 605, 607, 608.
— densiflorum Pursh 227, 424.
— Drummondii (Grev. & Hook.) Torr. &
— formosum H. B. K. 577.
— galoideus Lam. 436.
— graveolens Buckl. 496.
— Kalmianum L. 501.
— maculatum Walt. 516.
— majus (Gray) Britt. 532, 541.
— muticum L. 280, 506, 525, 613.
— myrtifolium Lam. 437, 438.
— nudicaule Walt. (= Sarothra) 389, 390.
— opacum Torr. & Gray 438.
— perforatum L. 506.
— pilosum Walt. 436.
— Scouleri Hook. 618.
— sphaerocarpum Michx. 453, 510.
— virgatum Lam. 227, 436, 437.
— virgatum, var. ovalifolium Britt. 424.
Hypnea musciformis (Wulf.) Lam’x. 383,
Hypnum 177, 260, 350, 367, 621. [427.
— aduncum Hedw. var. graciescens Bruch.
— cordifolium Hedw. 403. [& Schimp. 56.
— crista-castrensis L. 371, 405.
— dilatatum 375.
— elegans Hook. 601.
— fertile Sendt. 492.
— fluitans L. 375.
— reptile Michx. 492.
— Schreberi Willd. 367, 371, 403, 493, 549.
— splendidus Hedw. 405.
— stramineum Dicks. 375.
Hyposes erecta L. (= hirsuta (L.) Cov.)
Hyptis 289. [426, 469, 473.
— (Mesosphaerum) Emoryi Torr. 635.
— gonocephala Wright 675.
— (Mesosphaerum) pectinata Poir. 672.
Ibervillea sonora Greene (= Maximowiczia sonorae Wats.) 638.
Ichthyomethia piscipula (L.) Kuntze (= Pis-
cidia erythrina L.) 693, 694, 695.
— ambigu (Michx.) Chapm. 447.
— caroliniana Ashe. 450.
— Cassine L. 432, 433, 447, 459.
Ilex coriacea (Pursh) Chapm. (= lucida (Ait.)
Torr. & Gray) 451.
— Dahoon Walt. (= Cassine) 438.
— decidua Walt. 450, 454, 456, 458, 509.
— mollis Gray 490.
— monticola Gray 486, 490, 494.
— myrtifolia Lam. 437, 443, 451.
— opaca Ait. 223, 380, 412, 413, 414, 416,
— 425, 426, 430, 432, 434, 438, 440, 441,
— 452, 461, 490, 495, 504.
— verticillata (L.) Gray 207, 425, 454, 482.
— vomitoria Ait. (= Cassine Walt.) 430.
Ilicium 177. [432, 433, 703.
— floridanum Ell. 451, 452.
Ilysanthes 511.
— grandiflora (Nutt.) Bentham. 438.
— gratioloides Bentham. 436.
Impatiens 377, 503.
— biflora Walt. (= fulva Nutt.) 418.
— fulva Nutt. (= biflora) 388, 404, 439,
— pallida Nutt. (= aurea Muhl.) 468, 486,
— Indigofera caroliniana Walt. 436. [508.
— leptosepala Nutt. 531.
— Lindheimeriana Scheele 646.
— tinctoria L. 675.
Inga 177.
— ingoides Willd. 678.
— spuria Humb. & Bonpl. 659.
— vera Willd. 678.
— xylocarpa DC.
Ipomoea 431, 647, 697.
— acosseafoenia Roem. & Sch. 216, 444, 639.
— acuminata Roem. & Schult. 308.
— arenaria Roem. & Schult. 687.
— capillacea Don. (= armata Roem. &
Schult.) 308.
— cathartica Poir. 308.
— cocinea L. 458.
— hederacea (L.) Jacq. 308, 506.
— lacunosa L. 506, 524.
— leptophylla Torr. 528, 532, 537.
— (Batatas) litoralis (L.) Boiss. 229, 431,
— 696.
— longicuspis Meissn. (= bicolor Lam.) 380.
— muricata Jacq. 657.
— pandurata (L.) Mey. 219, 421, 422, 506.
— pes-caprae (L.) Sweet 216, 229, 431, 444,
— 638, 658, 673, 677, 681, 689, 696, 703.
— purpurea (L.) Roth 308, 506, 704.
— quinquefolia L. 308.
— repanda Jacq. 693.
— sagittata Cav. 448, 690.
— setifera Poir. 308.
Ipomoea sidafolia Choisy 308.
— sinuata Ortega 308.
— tenuissima Choisy 675.
— umbellata Mey. 308, 675.
Iridaea 593.
— laminariaeoides Bory 609.
— membranacea J. Ag. 587.
Iris 258. 270.
— macropsiphon Torr. 608.
— missouriensis Nutt. 545, 569, 582, 618.
— prismatica Pursh 382.
— sibirica L. 591.
— Tolmeana Herb. (= missouriensis) 572
— tridentata Pursh 392.
— versicolor L. 363, 368, 379, 387, 440.
Isetes 177, 620. [463, 525, 591.
— Bolanderi Engelm. 558.
— echinospora Dur. var. Braunii (Dur.)
Engelm. 373.
— Engelmanni A. Br. var. valida Engel.
— flaccida Shuttlew. 440. [490.
— heterospora A. A. Eat. 373.
— lacustris L. var. paupercula 563.
— riparia Engelm. 395, 464.
Isnerdia palustris L. 280.
Isomeris 274.
— arborea Nutt. 282, 625, 630.
Isopyrum bitematum (Raf.) Torr. & Gray
Itea 442. [506, 512, 526.
— virginica L. 224, 424, 425, 426.
Iva 445.
— ciliata Willd. 539, 540.
— Hayesiana Gray 282, 625.
— frutescens Man. ed. 6, not L. (= oraria
Bartlett) 382, 409, 416, 428, 446.
— imbricata Walt. 216, 229, 439, 431, 444.
Ivesia 258, 260, 621. [445, 689, 696, 697.
— depauverata Gray 582.
— (Horkelia) Gordonii Hook. 195, 564, 565.
— (Horkelia) Kingii Wats. 287.
Jacaranda bahamensis R. Br. 330.
— caerulea Juss. 330.
Jacquemontia 690.
— jamaicensis (Jacq.) Hall 690, 694.
Jacquinia armillaris Jacq. 686.
— keyensis Mez 690, 694.
— linearis Jacq. 675.
— pungens Gray 637.
Jamesia americana Torr. & Gray 251, 545.
Jasminum gracile Andr. 704.
Jatropha 645, 662.
— cardiophylla Muell. 637.
— macrorhiza Benth. 660.
— multifida L. 660.
— spathulata Muell. 637.
— stimulosa Michx. (= urens L.) 432, 473.
Jaumea 274.
— carnosu Gray 276, 282, 624.
Jeffersonia diphylla (L.) Pers. 485.
Juanulloa parasitica Ruiz & Pav. 661.
Juglandiphyllum 177.
Juglandites 177.
Juglans 177, 201, 401.
— bilinica Ung. 175.
— californica Wats. 245, 280, 612, 634.
— cinerea L. 237, 362, 393, 400, 408, 457.
— foliosa Regelii 245, 277, 478, 484, 485, 492, 501.
— keyensis 502, 504, 512, 513, 520, 521, 522.
— longifolia Heer, 175.
— mexicana Wats. 650.
— procera Engelm. 423.
— balticus W. 499, 558, 572, 576, 577, 586.
— balticus Willd. var. littoralis Engel.
— buforius L. 239. [499.
— canadensis J. Gray 367, 382, 400, 402.
— castaneus Smith 564.
— Cooperi Engelm. 586, 636.
— Drummondii E. Meyer 565.
— effusus L. 402, 415, 442, 492.
— Elliottii Chapm. 446.
— filiformis L. 407.
— Gerardi Loisel. 369, 382, 419.
— Greenei Oakes & Tucker. 202, 220,
382, 421, 475.
— Lescurii Bolander 593.
— marginatus Rostk. 446.
— marginatus Rostk. var. aristulatus
(Michx.) Coville 423.
— Mertensianus Bong. 550, 558.
— mexicanus Willd. 632.
— militaris Bigel. 202, 424, 475.
— nodosus L. 511, 541.
— oreganus Wats. 600.
— orthophyllum Coville 254, 259.
— Parryi Engelm. 255, 257, 550, 565, 573,
601, 616.
— pelocarpus E. Mey. 202, 219, 421, 422,
— repens Michx. 442. [424.
— Roemerianus Scheele 428, 446.
— Regelii Buchenau 558.
— scirpoide Lam. (= scirpoide var. mac-
rostema Engelm.) 422, 497, 511.
Index of Plants.

Juncus scirpoideus Lam. var. macrostema — setaceus Rostk. 436. [Engelm. 219, 421.
— subtriflorus (E. Mcy.) Coville 255, 563.
— supiniformis Engelm. 605.
— tenuis Willd. 400, 524, 541.
— tenuis Willd. var. congesta Engelm. 559.
— Torreyi Coville 541.
— triglumis L. 561.
— trigonocarpus Steud. 450.
— Vaseyi Engelm. 370.

Juniperus 176, 177, 432.
— bermudiana L. 331, 702, 703, 704.
— californica var. osteosperma Torr. 623.
— californica Carr. var. utahensis Engelm. 251, 292, 571, 580, 620, 635.
— cerrosianus Kellogg 640.
— communis L. var. alpina Gaud. (=communis L. var. montana Ait. = nana Willd.) 390, 406, 561.
— communis L. var. nana (= praec.) 589.
— flaccida Schlcht. 581, 640. [592.
— monosperma (Engelm.) Sarg. 252, 579, 580, 581, 635, 642.
— nana W. 240, 249, 356, 359, 562, 596, 615.
— occidentalis Hook. var. conjugens En
gelm. 646.
— occidentalis Hook. var. monosperma Engelm. (= monosperma) 251, 292, 643.
— Sabina L. 356, 394, 399, 400, 555.
— Sabina L. var. procumbens Pursh 249, 357, 370, 381, 500, 549. [250.
— sabinoides Nees (= mexicana Spreng.)
— (sabina) scoporum Sarg. 237, 244, 248, 532, 533, 534, 545, 553, 555, 562.
— tetragona Schlecht. 641, 651, 653.
— tetragona var. oligosperma 649.
— utahensis (Engelm.) Lemm. 586.
— virginiana L. var. humilis 354.

Jussiaea decurrans (Walt.) DC. 227.
— diffusa Forsk. 448.
— diffusa Forsk. var. californica Wats. 280.
— natans Humb. & Bonpl. 659.
— repens L. 463, 511, 674.

Justicia 638.
— (Adhatoda) organoides Griseb. 673.

Kalmia 177, 200, 261, 274, 473.
— glauca Ait. var. microphylla Hook. 196, 247, 257, 549, 560, 562, 620.
— hirsuta Walt. (= Kalmiella hirsuta (Walt.) Small) 437.

Karwinskia Humboldtiana Zucc. 200, 659.

Kellermannia yuccogena Ell. & Ev. 537.

Kellooggia 271.

Kirchneriella 395.

Kobresia odorata Vahl 446.

Kochia 280, 585.
— americana Wats. 539, 573.
— prostrata Schrad. 287, 571.

Koeberlinia spinosa Zucc. 575, 642, 644, 645.

Koehleria crista (L.) Pers. 239, 518, 523, 524, 526, 527, 528, 532, 537, 538, 561, 569, 570, 577, 583.

Koellia hyssopifolia (Benth.) Britt. 436.

Kosteletzya virginica (L.) Presl 409, 429.

Krameria 289, 637. [448.
— parvifolia Benth. 585.
— secundiflora DC. 529, 531.

Krigia (Adopogon) montana (Michx.) Nutt. 492, 496. [695.

Krugiodendron ferreum (Vahl) Urb. 694.

Krynitzkia (Cryptanthem) ambigua Gray 640.
— Allocarya) californica F. & M. 558.
— (Cryptanthem) foliosa Greene 623.
— (Cryptanthem) leiocarpa F. & M. 626.
— (Cryptanthem) maritima Greene 640.

Kuhnia eupatorioides L. 497, 518.

Kuhnista (Petalostemon) candida Willd. 518, 527.
— (Petalostemon) candida Willd. 518, 527.
— (Petalostemon) purpurea Vent. 518, 527.

Kyllinga pumila Michx. 226.

Lachnanthes tinctoria (Walt.) Ell. (=Gyro
theca capitata Walt.) 423, 424, 426, 437.
Lactuca canadensis L. 411.
— pulchella (Pursh) DC. 358, 531.
Laguncularia racemosa (L.) Gaertn. f. 639,
Laminaria 354. [673, 681, 687, 696.
— Andersonii 593.
— atrofulva J. G. Ag. 349.
— Bongardiana Post & Rupr. 587, 588.
— bullata Kjellm. 587, 588, 593.
— Clustoni (Edm.) Le Jolis 593.
— cuneifolia J. G. Ag. 349.
— dermatodea J. G. Ag. 383.
— digitata (L.) Lam’x. 370, 383, 384.
— fascia Ag. 383, 384.
— longicurulis De la Pyl. 349, 370, 383, 384.
— longipes Kjellm. 351.
— phyllitis auct. 383.
— saccharina (L.) Lam’x. 370, 383, 384.
— Sinclairii (Harv.) Farl. 593. [588.
— solidangula J. G. Ag. 588.
Lantana 690.
— crocea Jacq. 694.
— camara L. 659, 660, 687, 703, 704.
— involucrata L. 687, 690, 693, 694, 703.
— odorata L. 704. [704.
Laportea canadensis (L.) Gaud. (= Urtica-strum divaricatum Ktze.) 469, 484.
Lappula (= Echinospermum) 271.
Laricopsis 177.
Larix 177, 356.
— americana Michx. (= laricina (Du Roi
Koch) 186, 207, 280, 281, 351, 352, 355,
356, 358, 359, 361, 362, 364, 368, 373,
374, 392, 393, 401, 403, 404, 405, 476,
481, 482, 500, 501, 549.
— Lyallii Parl. 244, 247, 262, 548, 549, 553,
594, 596.
— occidentalis Nutt. 244, 246, 262, 264,
548, 549, 551, 553, 555, 594—596, 598.
Larrea (= Covillea) 289, 296, 586, 635, 636,
637, 643, 645.
— mexicana Moric. (= Covillea tridentata
(DC.) Vail.) 200, 252, 283, 286, 296, 338,
339, 530, 568, 569, 576, 584, 585, 586,
620, 630, 634, 635, 643, 644, 645.
Lasiocroton macrophyllus Griseb. 677.
Lastarriaca 274.
— chilensis Remy 337, 628.
Lasthenia (= Baeria in part.) 274.
— Coulteri Gray 624.
Lastrea 177.
Lathyrus 337.
— arizonicus Britt. 292, 583.
— graminifolius (Wats.) White 578.
— Jepsonii Greene 280, 613.
— laetiflorus Greene 275, 628.
Lathyrus maritimus (L.) Bigel. 222, 350, 354,
369, 379, 381, 382, 400, 411, 498, 499, 588.
— ochroleucus Hook. 359, 522, 567.
— ornatus Nutt. var. flavescens 532.
— palustris L. 387, 397.
— polymorphus Nutt. (= decaphyllus
Pursh) 354.
— splendens Kellogg (= vestitus Nutt.)
— venosus Muhl. 522, 524. [275, 628.
— vestitus Nutt. 611.
— violaceus Greene 630.
Laurentia 274.
Laurinoxyon 177.
Laurophyllum 177.
Laurus 175, 177, 183.
— (Lindera) Benzoin L. 453.
Lavatera 276, 621.
— assurgentiflora Kellogg 277, 622.
— occidentalis Wats. 623.
— venosa Wats. 640.
Layia glandulosa Hook. & Arn. 571.
— heterotricha DC. 585.
— platyglossa Gray 626.
Leathesia diffiformis Aresch. 588.
— tuberiformis S. F. Gray 384.
Leavenworthia aurea Torr. 510.
— tomentosa 510.
— uniflora (Michx.) Britt. 510.
Lecanora 395.
— calcarea (L.) Nyl. var. contorta (Hofsm.
— privigna var. pruinosa (= Biatorella
simpex pruinosa (J. E. Smith) Fink
— subfuscus (L.) Ach. 395.
— (Acarospora) xanthophana Nyl. 395.
Lechea major Michx. (= villosa) 515, 526.
— maritima Legg. 379, 412, 429, 430.
— minor L. 379, 389, 424.
— racemulosa Michx. 203, 220, 475, 486.
— tenuifolia Michx. 536.
— villosa Ell. 421.
Lecidea 432, 653.
— atro-alba Fr. 653, 654.
— vitrina 654.
Ledum 354, 359, 368, 373.
— columbiaum Piper 600. [605.
— glandulosum Nutt. 196, 426, 554, 573.
— groenlandicum Oeder (= latifolium Ait.)
189, 349, 378.
— latifolium Ait. (= groenlandicum) 189,
207, 221, 353, 355, 356, 358, 360, 364—
366, 371, 372, 376, 378, 385, 392, 401,
406, 407, 476, 482, 500, 549, 589, 600.
— palustris L. 348, 353, 358, 360, 589.
Leersia (Homalocenchrus) lenticularis
— virginica Willd. 522. [Michx. 524.
INDEX OF PLANTS

749

Leiophyllum (Dendrium) buxifolium (Berg.) Ell. 203, 424, 495, 496.
Leitneria floridana Chapm. 454.
Lejeunia 432.
Leptachne 177, 447, 558.
— cyclotidea Ell. (= minor L.) 702.
— minor L. 387, 396, 454, 463, 498, 500, 511, 541, 702, 703.
— perpusilla Tor. 511.
— trisulca L. 387, 396, 401, 498, 500, 541.
— valdiviana Phil. 511.
Leimurus sibiricus L. 682.
Lepidomarhum (Vent.) 453.
— Tagetes Gray 537. [507, 522.
Lepicytys (Polypondium) murorum Hook.
Lepidium 645. [683.
— alyssoides Gray 287.
— flavum Torr. 287.
— Fremontii Wats. 287, 571, 585.
— intermediate Gray (= medium Greene) 539.
— virginicum L. 682, 703.
Lepidomorphum Yendory 588.
Leptarrhena amplifolia (Sternb.) Ser. 531.
Leptochloa 289.
Leptotaenia multifida Nutt. 569.
Leptothrix (Hyphothrix) laminosa 560.
Leptosyne Bigelovii Gray 583.
— gigantea Kellogg 276, 621.
Lepepeda 430.
— angustifolia (Pursh) Ell. 426.
— capitata Michx. 390, 417, 494, 506, 518.
— frutescens (L.) Britt. 494. [536.
— Nuttalliil Darl. 494. [473, 475, 493, 494.
— procumbens Michx. 507.
— repens (L.) Bart. 426, 493.
— striata (Thunb.) Hook. & Arn. 509.
— violacea (L.) Pers. 502, 506.
— virginica (L.) Britt. 494.
Lesquerella alpina (Nutt.) Wats. (= Vesi-
caria alpina Nutt.) 192, 535.
— intermedia (Wats.) Heller 576.
— Ludoviciana Wats. (= argentea (Pursh)
Mac. M.) 534.
— (Vesicaria) montana (Gray) Wats. 534.
— purpurea (Gray) Wats. 579. [545.
— spathulata Rydab. 507.
Lessoniopsis littoralis 593.
Leucaena 687.
— esculenta Benth. 664.
— glavea (L.) Benth. 687, 694.
— lanceolata Wats. 641.
— pulverulenta (Schlecht.) Benth. 649.
Leucobryum 394.
Leucocorymum montanum Nutt. 239, 534, 537, 567.
Leucophyllum texanum Benth. 660.
Leucothoe 177.
— acuminata (Ait.) Don. 320. [451.
— axillaris (Lam.) D. Don. 320, 439, 447.
— Catesbaei (Walt.) Gray 320, 473, 485.
— Davisia Torr. 254.
— racemosa (L.) Gray 320, 424, 438, 440, 441, 467.
— recurva (Buckl.) Gray 495.
Leuchtenbergia 296.
Lewisia brachycarpa Engelm. (= brachy-
calyx Engelm.) 195.
— rediviva Pursh 338, 611.
Liatris 524, 527.
— (Lacinaria) cylindracea Michx. 523.
— (Lacinaria) graminifolia (Walt.) Willd. 226, 227, 424.
— (Lacinaria) punctata Hook. 527, 531, 537.
— (Lacinaria) pycnostachya Michx. 523, 524, 529.
— (Lacinaria) regimontis Small 493.
— (Lacinaria) scariosa Willd. 507, 518, 523, 524, 525, 527.
— (Lacinaria) spicata (L.) Willd. 424, 496.
— (Lacinaria) squarrosa Willd. 497, 518.
Lobedrurus 270, 273. [527.
Ligusticum 382. [631, 632, 639.
— canadense (L.) Britt. 490.
— Grayi Coult. & Rose, 258, 616.
— Portieri Coult. & Rose 577.
— scopulorum Gray 361, 583.
— scoticum L. 354, 369, 379.
Lilaeopsis 419.
— lineata (Michx.) Greene 420.
Lilium 260, 621.
— canadense L. 469, 524, 525.
— carolinianum Michx. 224, 494.
— Grayi Wats. 178, 496.
— maritimum Kellogg 605.
— montanum A. Nels. 537.
— pardinum Kellogg 607, 608.
— Paryi Wats. 632, 643.
— parvum Kellogg 615, 618.
— philadelphicum L. 476, 524.
— Washingtonianum Kellogg 618.
Limnanthemum aquaticum (Walt.) Britt. (= trachysperma Gray = Nympho-
ides aquaticum (Walt.) Fernald) 443.
— Humboldtianum Griseb. 659.
— lacunosum (Vent.) Griseb. (= Nym-
Limonium (Statice) carolinianum (Walt.) Britt. 419.
Index of Plants.

Limosa aquatica L. 464, 558.
Linaria canadensis (L.) Dumont 520, 532.
Lindera (Benzoin) 201.
Lindleya mespiloides H. B. K. 649.
Lindsaya clavata Mett. 682.
Linnaea 274, 366, 379, 555, 592.
Linum bahamense Northrop 329, 693.
— Berlandieri Hook. 530.
— californicum Bentham. 607.
— floridanum (Planch.) Trelease 436, 446.
— medium (Planch.) Britt. 412, 436.
— mexicanum H. B. K. 652.
— puberulum (Engelm.) Heller 576.
— rigidum Pursh 530, 532, 579.
— spergulinum Gray 607.
— sulcatum Riddell 453, 518, 522, 528, 536.
— virginianum L. 473, 516.
Liochlaena 432.
Liparis liliifolia (L.) Richard 469, 486, 510.
— elata Lindl. 679.
Lipocarpha macrocarpa Torr. 442.
Lippia 333.
— americana L. 308.
— cuneifolia Steud. 238, 280.
— geminata H. B. K. 308.
— graveolens H. B. K. 645.
— lanceolata Michx. 280, 417, 497.
— lycioides Steud. (= ligustrina (Lag.) Britt.) 645, 660.
— (Phyla) nodiflora L. 216, 429, 431, 703.
— reptans H. B. K. 308.
— stoechadifolia H. B. K. 693.
— europaeum Al. Br. 175.
— integrifolium Lx. 176.
— protensum Ung. 175.
— Procaccinii Unger 175. (490, 502.
Lirioidendropsis 177. [505, 507, 509.
Liriophyllum 177.
Listera 258.
— australis Lindl. 500.
Listera convallarioides (Sw.) Torr. 354, 485, 602.
Lithophila (Philoxerus) vermiculata (L.) Ulne 216, 659, 691.
Lithophragma (Tellima) tenella Nutt. 193.
Lithophyllum 351.
— Farlowii Foslie 588.
Lithospermum 244.
— angustifolium Michx. (= linearifolium Goldie) 518, 522, 524, 527, 531, 534.
— canescens (Michx.) Lehms. 510, 515, 518, 522, 524, 527.
— hirtum Lehms. (= Gmelini (Michx.) A. S. Hitchc.) 499, 522, 532.
— pilosum Nutt. 599.
— tuberosum Rugel. 510.
Lithothamnion 351.
— compactum Kjellm. 588.
— glaciare Kjellm. 349, 588.
— laeve (Stroemf.) Foslie 588.
— polymorphum (L.) Aresch. 349.
Lloydia serotina (L.) Sweet (= alpina Salisbl.) 312, 562, 563, 565, 573.
Loasa triphylla Juss. 338.
Lobelia 295, 558.
— Boykini Torr. & Gray 443.
— Canbyi Gray 424.
— cardinalis L. 418, 424, 440, 468.
— Cliffortiana L. 438.
— Dortmannia L. 373, 387.
— fulgens Willd. 651, 652.
— Kalmii L. 501.
— nana H. B. K. 652, 654.
— spicata (Lam.) Gray 567.
— syphilitica L. 397, 469, 502, 512.
— Loeflingia texana Hook. 535.
Loeselia 274.
Loiseleuria (= Chamaecistus) 354, 376.
Lomaria 680.
Lomatia 177.
Lonchocarpus hondurensis Bentham. 659.
— sericeus H. B. K. 675.
Lonicera 200, 652.
— ciliosa (Pursh) Poir. 248, 597.
— conjugalis Kellogg 196, 254, 259.
— flava Sims 487.
— glaucescens Rydb. 356.
— hirsuta Eaat. var. glaucescens 567.
— involucrata (Rich.) Banks 249, 254, 259, 356, 582, 591, 594, 597.
<table>
<thead>
<tr>
<th>Index of Plants.</th>
<th>751</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lupinus pusillus Pursh 287.</td>
<td></td>
</tr>
<tr>
<td>— rivilaris Dougl. 582.</td>
<td></td>
</tr>
<tr>
<td>— sericeus Pursh 569.</td>
<td></td>
</tr>
<tr>
<td>— Sileri Wats. (= Kingii Wats.) 571.</td>
<td></td>
</tr>
<tr>
<td>— sparsiflorus Benth. 625.</td>
<td></td>
</tr>
<tr>
<td>— subalpinus 601.</td>
<td></td>
</tr>
<tr>
<td>— sulphureus Dougl. 570.</td>
<td></td>
</tr>
<tr>
<td>— texensis Hook. 531.</td>
<td></td>
</tr>
<tr>
<td>— truncatus Nutt. 625.</td>
<td></td>
</tr>
<tr>
<td>— vaginatus Cham. & Schlecht. 654, 655.</td>
<td></td>
</tr>
<tr>
<td>— villosus Willd. 446, 447.</td>
<td></td>
</tr>
<tr>
<td>— Wyethii Wats. 569.</td>
<td></td>
</tr>
<tr>
<td>Luzula 271, 653.</td>
<td></td>
</tr>
<tr>
<td>— (Juncoides) arcuata Wahl. 315, 375, 392.</td>
<td></td>
</tr>
<tr>
<td>— (Juncoides) campestris (L.) DC. 469, 496.</td>
<td></td>
</tr>
<tr>
<td>— (Juncoides) comosa E. Mey. 602.</td>
<td></td>
</tr>
<tr>
<td>— (Juncoides) hyperborea R. Br. 189.</td>
<td></td>
</tr>
<tr>
<td>— (Juncoides) parviflora (Ehrb.) Desv. 407, 592.</td>
<td></td>
</tr>
<tr>
<td>— (Juncoides) spicata, var. tenella 365.</td>
<td></td>
</tr>
<tr>
<td>— Lychnis (Viscaria) alpina L. 197, 354, 365.</td>
<td></td>
</tr>
<tr>
<td>— apetala L. 350.</td>
<td></td>
</tr>
<tr>
<td>— californica Wats. 255.</td>
<td></td>
</tr>
<tr>
<td>— Drummondii (Hook.) Wats. 239.</td>
<td></td>
</tr>
<tr>
<td>Lycium Andersoni Gray 268, 287, 585, 630.</td>
<td></td>
</tr>
<tr>
<td>— Berlandieri Dunal. 645.</td>
<td></td>
</tr>
<tr>
<td>— californicum Nutt. 640.</td>
<td></td>
</tr>
<tr>
<td>— carolinianum Walt. 444, 446, 576, 645.</td>
<td></td>
</tr>
<tr>
<td>— Fremontii Gray 634.</td>
<td></td>
</tr>
<tr>
<td>— puberulum Gray 645.</td>
<td></td>
</tr>
<tr>
<td>— Torreyi Gray 638.</td>
<td></td>
</tr>
<tr>
<td>Lycoperdon Turneri Ell. & Everh. 414.</td>
<td></td>
</tr>
<tr>
<td>Lycopodium 177, 351, 477.</td>
<td></td>
</tr>
<tr>
<td>— alopecuroides L. 423, 436, 437, 450, 473.</td>
<td></td>
</tr>
<tr>
<td>— alpinum L. 355, 592.</td>
<td></td>
</tr>
<tr>
<td>— annotinum L. 363, 405, 407, 469, 479, 549, 590.</td>
<td></td>
</tr>
<tr>
<td>— carolinianum L. 423, 425, 446.</td>
<td></td>
</tr>
<tr>
<td>— cernuum L. 447.</td>
<td></td>
</tr>
<tr>
<td>— dendroideum Michx. (= obscursum L.) 355, 363, 469, 479.</td>
<td></td>
</tr>
<tr>
<td>— inundatum L. 202, 221, 421—423, 473.</td>
<td></td>
</tr>
<tr>
<td>— inundatum L. var. Bigelovii Tuckerm. 219, 387.</td>
<td></td>
</tr>
</tbody>
</table>
Lycur us phleoides H. B. K. 530.
Ly cominus sinuatus Ell. (= americanus Mulli) 280, 417, 523. — rubellus Moench 439.
ly ricanus L. var. pauciflorus Benth.
Lyngby a Wallii Farlow 396.
Ly rocarpa Xanti T. S. Brandegee 638.
Ly sic hiton 274, 317. — kantschacense Schott 549, 591, 595.
Lys imachia nummularia L. 468. — quadrifolia L. 487. — stricta Ait. (= terrestris (L.) B. S. P.) 368, 426, 482.
— (Naumburgia) thrysiflora L. 397, 567.

Maba caribaea Hiern. 694.
Mach aeranthera (Aster) shastensis Gray
Mac lura (= To xylon) 178, 261. [258. — aurantiaca Nutt. (= pomifera (Raf.) Schneider = To xylon pomiferum Raf.) 184, 186, 217, 451, 504, 514. — (Chlorophora) tinctoria D. Don. 682.
Macro cystis py rifer (Turn.) Ag. 588, 609.
Macronema (Apolop appus) pygm eae (Torr. & Gray) Greene 564.
Macor rhynchus tro ximoides Torr. & Gray. (= Tro ximon (Agoseris) aurantiacum
Madaria 281, 612. [Hook.] 193.
Madia 281, 612. — Bolanderi Gray 258, 615. — sativa Molina 626.
Mahonia (Berberis) aquifolium Nutt. 265.
Maianthemum (Unifolium) canadense Desf. 364, 388, 404, 495, 497, 425, 477, 493.
Malva borealis Wallm. 628.
Malvaviscus acerifolius Presl 657. — Cokeri Britt. 329.
Mamillaria scolyroides Scheidw. 646.
— sphaerotricha Lam. 646.
— strobiliformis Scheer 651.
— vivipara Haw. 635.
Marattia alata Sw. 679, 680.
Marchantia polymorpha L. 403, 407, 470.
Mariscus rufus H. Bk. 677. [536.
Marshallia lancelata Pursh var. platy-
Marsilia 177. [phylla Curtis 227.
— polycarpa Hook. 659, 674.
— quadrifolia L. 387, 650.
— vestita Hook. 558.
Marsypianthes hypoides Mart. 672.
Martyna 289, 645.
— proboscidea Glox. (= louisiana Mill.)
Masdevallia fenestrata Lindl. 680. [238.
Mastigonema aerugineum Kirch. 396.
Mastogloia Smithii Thw. 501.
Matthiola incana R. Br. 703.
Maxillaria 664.
— (Lycaste) aromatica R. Grah. 662.
Maximowiczia 660.
— (Ibervillea) Lindheimeri Cogn. 659.
— (Ibervillea) sonorae Wats. 638.
Mayaca Michauxii Schott & Endl. (=Aub-
ettiei Michx.) 447.
Maytenus buxifolia (Rich.) Griseb. 673,
694, 695.
— phyllanthoides Benth. 637, 638.
Meconopsis 274.
Medeola 366, 377.
— virginiana L. 404, 405, 469, 472, 477.
Megarrhiza guadalupensis Wats. 623.[487.
Melampodium 641.
— longicorne Gray 647.
Melampyrum lineare Lam. (=americanum
Michx.) 406, 424.
Melanthera hastata Michx. 427.
Melanthium virginicum L. 496.
Melia azederach L. 704.
Melica bromoides Gray 606.
— bulbosa Geyer 561.
— californica Scribn. 607.
— diffusa Pursh 515.
— Harfordii Boland. 607.
— mutica Walt. 473, 526.
— subulata (Bong.) Scribn. 569.
Melicocca bijuga L. 688, 694.
Melilotus alba Desr. 401.
Melobesia pustulata Lam. 428.
Melocactus 681, 692, 694.
— communis Lk. 687.
— ferox Pfeiff. 646.
Melochia 687.
— nodiflora Sw. 675.
— tomentosa L. 687.
Melosira 396.
Melosira variants Ag. 542.
Melothria pendula L. 226, 227, 432.
Menispermites 176, 177.
Menispermum canadense L. 176, 458, 467.
Menodora 200. [492, 513, 525, 544.
Mentha canadensis L. 355, 525, 541.
— piperita L. 702.
— spicata L. 465.
— viridis L. (= spicata L.) 702.
Mentzelia 333, 338.
— albaulis (Hook.) Doug. 579.
— cordata Kellogg 640.
— decapetala (Pursh) Urb. & Gil. 239.
— floridana Nutt. 431, 697.
— laevicaulis (Doug.) Torr. & Gray609.
— micrantha Torr. & Gray 607.
— nuda (Pursh) Torr. & Gray 529, 532.
— oligosperma Nutt. 515. [537.
— ornata Torr. & Gray (= decapetala)534.
— Wrightii Gray 635.
Menyanthes 177, 402, 498, 500, 591.
— trifoliata L. 180, 203, 349, 355, 358, 367,
385, 386, 402, 403, 482, 524, 525, 557.
Menziesia 274. [591.
— ferruginea Smith (= urceolaria Salisb.)
246, 259, 553, 554, 591, 597.
— glabella Gray 246, 549, 553—555, 602.
— globularis Salisb. (= pilosa (Michx.)
Pers.) 485, 492.
— pilosa (Michx.) Pers. 496.
Merismopodium 396.
— glaucum (Ehrenb.) Naeg. 542.
— violaceum (Rabenh.) Bréb. 542.
Mertensia 258, 274, 382.
— alpina (Torr.) Don. 194, 564, 565, 566.
— brachyloba Greene 534.
— ciliata (Torr.) Don. 545, 555, 557.
— lanceolata (Pursh) DC. 545.
— lateriflora Greene 557.
— maritima (L.) S. F. Gray 350, 354, 369,
379, 381.
— oblongifolia (Nutt.) Don. 194. [194.
— paniculata (Ait.) Don. var. nivalis Wats.
— paniculata (Ait.) Don. 292, 360, 563, 583.
— Parryi Rydb. (= ovata Rydb.) 194.
— sibirica (L.) Don. 391, 567.
— virginica (L.) Link 468, 510, 513.
Mesadenia (Cacalia) tuberosa (Nutt.) Britt.
Mesembrianthemum 274. [518, 522, 527.
— aequilaterale Haw. 282, 604, 624.
— crystallinum L. 282, 622, 624, 628, 640.
— nodiflorum Haw. 282, 624.
Mesocarpus 396, 463, 563.
Metastelma albiflorum Griseb. 687.
— barbatum Northrop 330.
— Eggersii Schtr. 330.
Miconia argentea DC. 671.
Index of Plants.

Miranthernemum Nuttallii Gray (= miranthernemoides (Nutt.) Wettst.) 464.

Microcala 274.

Microchla setacea R. Br. 651.

Microcladua borealis 588, 593.

Microcoleus anguiformis Haw. 396.

Microseris 340, 634.

— (Ptilocalais) nutans Geyer. 573. [647]

Microserpium nummulariaeolium Lag.

Microstilus (Achroanthes) monophyllos (L.)

Lindl. 385, 501.

— platyglossa & Greenm. 652.

— streptopetala Rob. & Greene 652.

— tenuis Wats. 652.

Microzamia 177.

Mielichhoferia nitida Nees & Hornsch. var. elongata 371.

Mikania heterophylla Small 690, 693, 699.

— orinocensis H. B. K. (= scandens) 675.

— scandens (L.) Kunze 417, 429.

Milla bibora Cav. 651.

Mimosa 293, 300, 646, 648, 662.

— bahamensis Bent. 329, 694.

— biuncifera Bent. 581, 645.

— borealis Gray 645.

— fragrans Gray 645.

— invisa Mart. 672.

— pudica L. 672, 675.

Mimusulus 260, 621, 641.

— Bigelovii Gray 573, 618.

— Bolanderi Gray 607.

— cardinalis Doug1. 577, 635.

— glabatus H. B. K. 654.

— (Diplacus) glutinosus Wendl. 627, 640.

— impexus Greene 197, 258.

— Langsdorffi Sims 572, 591.

— Langsdorffii Sims var. Tilingi (Regel)

— Lewisii Pursh 550, 600, 601.

— luteus Pursh 558, 567, 618, 635, 652.

— moschatus Doug1. 549, 618.

— pilosus Wats. 609.

— primuloides Benth. 197, 257, 608, 618,

— ringens L. 398. [632.

Mimusops Sieberi A. DC. 694.

Mirabilis 274, 638.

— californica Gray 287, 640.

— multiflora Gray 293, 575, 626, 635.

— oxybaphoides Gray 557.

Mitchella 202.

— repens L. 354, 364, 377, 393, 404, 405,

— 424, 433, 439, 469, 472, 477, 479, 480,

— 485, 488, 509.

Mitella Breweri Gray 195, 551, 602.

— caulescens Nutt. 602.

— diphylia L. 469, 477, 493, 522, 526.

— nuda L. 366.

— trifida Graham 193, 602.

Mitocarpum 638.

Mium Menziesii Muell. 602.

Moehringia (Arenaria) lateriflora (L.) Fenzl

Mohavia 289. [345, 588.

Mollinedia 340.

Mollugo verticillata L. 216, 445.

Monanthochloë littoralis Engelm. 282, 444,

446, 624, 696.

Monarda Bradburyana Beck. 515.

— citriodora Cerv. 239, 453, 531, 538.

— didyma L. 487.

— fistulosa L. 502, 512, 520, 522.

— punctata L. 413, 424, 433, 473.

Monardella hypoleuca Gray 275, 628.

— lanceolata Gray 631.

— odoratissima Benth. 197, 272, 608, 616,

619, 633.

— Pringlei Gray 275, 628.

Moneses uniflora (L.) Gray 292, 363, 591.

Monoclea 679.

Monolepis pusilla Torr. 287.

Monoptilon 289, 585.

Monostrorna Blyttii Aresch. 349.

— fuscum Post & Rupr. 349.

Monotropa 274, 591.

— uniflora L. 355, 371, 377, 405, 469, 477,

513, 602, 661.

Montia Chamissonis (Eschs.) Greene 632.

— fontana L. 254, 359, 353, 379.

Morinda roiyac L. 693.

Morisonia americana L. 688.

Mormodes 664.

Morus 175, 177, 295, 303, 473, 513, 704.

— microphylla Buckl. (= celtidifolia) 245,

251.

— rubra L. 223, 237, 414, 431, 432, 434,

457, 458, 466, 470, 484, 503, 504, 512,

515, 520, 521, 522.

— (Chlorophora) tinctoria L. 664.

— urticaefolia 649.

Mougeotia 498.

Muehlenbeckia 340.

Muhlenbergia 641.

— arenicola Torr. 530.

— capillaris (Lam.) Trin. 226.

— diffusa Schreb. 456, 512.

— filipes M. A. Curtis 430.

— glomerata Trin. (= racemosa (Michx.)

B. S. P. 500, 525, 536.
Muhlenbergia gracillima Torr. 537, 635.
— mexicana (L.) Trin. 456, 561.
— Porteri Scribn. 582, 635.
— pungens Thurb. 239, 532.
— quadridentata Trin. 654.
— racemosa (Michx.) B. S. P. 546, 558.
— sylvaica Torr. 512.
— tenella Trin. 672.
— texana Thurb. 530, 635.
Munroa squarrosa Torr. 532, 537. [704.
— Musa Cavendishii Lamb. (= chinensis Sweet)
Mussenion tenuifolium Nutt. 534, 535.
— Musenium alpinum Coult. & Rose 655.
Myelophybus intestinalis Saunders 587,588.
— Myginda ilicifolia L. 673.
— Myrcia 177, 242.
— (Comptonia) asplenifolia L. 363.
— californica Cham. 270, 600, 605.
— carolinensis Mill. 222, 370, 380, 382,
— 388, 409, 411, 413, 415, 416, 417, 430,
— 431, 432, 434.
— cerifera L. 228, 432, 447, 451, 691, 693,
— 699, 702.
— cerifera L. var. pumila Michx. 438.
— gale L. 355, 358, 363, 364, 365, 367, 373,
— 380, 386, 388, 432, 445, 591, 600.
Myriophyllum 271, 355, 454, 558.
— alterniflorum DC. 366.
— ambiguum Nutt. (= humile (Raf.) Mor-
— rong.) 387.
— heterophyllum Michx. 442.
— spicatum L. 387, 397, 498, 500, 541.
— tenellum Bigel. 202, 387.
— verticillatum L. 315, 463, 552.
Myrsine 177.
— rapania C. & S. (= Rapania guyanen-
— sis Aubl.) 671, 697.
Myrstiphyllyum ligustrifolium Northrop 330.
Myrtus 177.
— Oerstedii Hemsl. 670, 671.
Nabalus (Prenanthes) Bootii DC. 189.
— (Prenanthes) nanus (Bigel.) DC. 189.
Naias flexilis (Willd.) Rost. & Schm. 316,
— 387, 397, 398, 498, 500, 511, 541.
— guadalupensis (Spreng.) Morong. 674.
— indica Cham. var. gracillima A. Br.
— (= gracillima (A. Br.) Magnus) 387.
— Naias major All. 316.
— marina L. 498.
Nama 571.
— demissum Gray 571.
— undulatum H. B. K. 645.
Nardosmia capitata 347.
— corymbosa Hook. (= Petasites frigida
— (L.) Fries) 312.
— (Petasites) frigida L. 348.
— Nardus stricta L. 355.
— Narthecium (Abama) 426, 620.
— americanum Ker 424.
— Nassula 396.
— Nasturtium (Roripa, Radicula) 511.
— dictyotum Greene 280.
— lacustre Gray 455, 498.
— lyratum Nutt. 287, 572.
— officinale R. Br. 541, 674.
— orizabae Cham. & Schlecht. 653.
— palustre L. 463, 522, 541.
— Navaretta (Gilia) Brewer (Gray) Greene
— Navicula limosa Kütz. 396. [254, 570.
— major Kütz. 542, 561.
— producta W. Sm. 542.
— viridis Kütz. 561.
— viridis Kütz. var. amphigompus Ehr.542.
Negundo 177, 200, 459, 473, 513, 531, 546.
— aceroides Moench (= Acer Negundo L.)
— 237, 238, 240, 245, 249, 322, 456, 457,
— 466, 504, 513, 514, 522, 525, 533, 543,
— 580, 642.
— californicum Torr. & Gray (=Acer cali-
— fornicum (Torr. & Gray) Dietr. = A.
— negundo L. var. californicum Sarg.)
— Negundoïdes 177. [270, 609, 612.
— Neillia (Opulaster, Physocarpus) opulifolia
— Nelumbium 177. [L. 566, 597, 602.
— Nelumbo 443.
— lutea (Willd.) Pers. 397, 426, 455, 463.
— Nemacaulis 274. [541.
— Nuttallii Benth. 628.
— Nemoclados ramosissimus Nutt. 571.
— Nemopanthes canadensis DC. (= fascicu-
— laris Raf. = Liliocedrus mucronata Britt.
— = Nemopanthes mucronata (L.) Trel.)
— 354, 490.
— fascicularis Raf. 207, 364, 365, 370, 403.
— Nemophila 281, 612. [425, 482, 500.
— insignis Dougl. 626.
— Menziesii Hook. & Arn. 626.
— microcalyx (Nutt.) F. & M. 447, 508.
— Neomeris dumetosus Lamour. 701.
— Neopogon integri folio Wats. 650.
— Neottia (Spiranthes) aurantiaca La Llave
— & Lex. 652.
— Nepeta Glechoma Benth. (= Glechoma
— hederacea L.) 487.

48*
Nephrocytium Agardhianum Naeg. 395.
Nephrodium (Aspidium, Dryopteris) 470, 653, 680.
— acrostichoides Michx. (= Polystichum acrostichoides [Michx.] Schott 468, 508, 653.
— bermudianum Bak. 331. 512, 515.
— cristatum L. 403.
— Dryopteris Michx. 359, 363, 549, 567.
— Goldieanum Hook. 488.
— hexagonopterum (Michx.) Diels 488.
— marginale Michx. 468, 486, 487, 490, 509.
— (Polystichum) munitum Kaulf. 595, 602.
— noveboracense L. 482, 488. 606.
— patens Swartz 438, 447.
— spinulosum Desv. 359, 407, 468, 590.
— spinulosum Desv. var. intermedium (Muhl.) D.C. Eaton 403, 488, 492, 509.
— spinulosum Desv. var. dilatatum (Hoffm.) Hook. 522, 549.
— (Dryopteris) thelypteris L. 205, 402, 432, 525, 541.
Neptunia oleracea Lour. 659.
Nereocystis Luetkeaana (Mertens) Post & Rupr. 351, 593, 609.
— priapus Saunders 588.
Nerium oleander L. 703, 704.
Nertera depressa Banks & Soland. 340.
Neuropteris 177.
Neviusia alabamensis Gray 178, 492.
Nicotiana 340.
— attenuata Torr. 287, 609, 635.
— Bigelovii Wats. 626.
— glauca Graham 627.
— trigonophylla Dunal 586, 635.
Niederleinia juniperoides Hieron. 337.
Nitella 463.
— flexilis Ag. 387.
Nitophyllum 351, 609.
— ruthenicum (Post. & Rupr.) Kjellm. 588.
Nitrophila occidentalis Wats. 586.
Nitschia sigmoidea (Nitsch.) W. Sm. 396.
Nolina 289, 295, 635, 637, 669.
— georgiana Michx. 427.
— texana Wats. 530, 581.
Nopalea 681, 684.
Notholaena 653.
— Aschenborniana Kl. 650.
— dealbata Pursh 579.
— Fendleri Kunze 557.
— furruginea (Desv.) Hook. (= bonariensis Willd.) 579, 651.
— Hookeri D. C. Eaton 579.
— sinuata (Lag.) Kfi. 579, 650.
— sinuata var. integerrima Hook. 579.
Nothosculum striatum Kunth (= bivalve Nostoc 481. [(L.) Brit. 531.
Nostoc pruniforme (L.) Ag. 542.
Nuphar 455.
— Kalmianum Ait. 373, 387, 481.
— (Nymphaeaceae) polysepalum Engelm. 558.
— sagittaeolium Pursh 447. 591, 618.
Nuttallia (Osmorhiza) cerasiformis Torr. & Gray 595.
Nyctaginia capitata Choisy 530.
Nymphaea (Castalia) 455.
— ampla (Salisb.) DC. 655, 691.
— ampla (Salisb.) DC. var. pulchella (DC.) elegans Hook. 659. [Casp. 674.
— gracilis Zucc. 651.
— Kalmiana Sims (= Nuphar Kalmianum Ait.) 366.
— mexicana Zucc. 650.
— odorata Ait. var. minor Sims. 373.
— reniformis 498.
— tetragona Georgi 358.
— tuberosa Paine 397, 541.
— tussilaginfolia Prlg. (= Pringlei Rose) 650.
— Nysa 174, 177, 200, 261, 380, 433, 441, 487.
— biflora Walt. (= sylvatica Marsh. var. biflora Sarg.) 439, 440, 443, 448, 450.
— multiflora Wang. (= sylvatica Marsh.) 466, 491.
— ogeche Marsh. 440.
Oakesia (Uvularia) sessilifolia (L.) Wats. Obolaria virginica L. 486. [469.
Obione (Atriplex) canescens Pursh 238.
Ochroma lagopus Sw. 677.
Ocotea Catesbyana (Michx.) Sarg. 694.
Odonthalia 351.
— aleutica (Agardh) J. Agardh 587, 588.
— dentata (L.) Lyingb. 370.
— Kamtschatica (Rupr.) J. Agardh 588.
— Oerstedii Reichb. f. 671.
— Schleiperianum Reichb. f. 670.
Oedogonium 397, 463, 496, 563.
Oenanthe californica Wats. 608.
— guadalupensis Wats. 623.
Oenothera 281, 288, 340, 571, 576, 638, 645.
— Anogra albicaulis Pursh 238, 532, 571.
— arborea Kellogg 640. [576.
— (Onagra) biennis L. 379, 399, 400, 540.
Oenothera (Pachyphlus) caespitosa Nutt. 534, 535.
 — cheiranthesia Hornem. var. suffruticosa Wats. 624.
 — (Kneiffia) fruticosa L. 496, 522.
 — (Kneiffia) glauca Michx. 483.
 — (Galpinia) Hartwegi Benth. 537.
 — (Sphaerostigma) hirtella Greene 611.
 — (Onagra) Hookeri Torr. & Gray 583.
 — humifusa Nutt. 411, 413, 430, 431, 444.
 — (Sphaerostigma) nitida Greene 622.
 — (Onagra) Oakesiana Gray 366.
 — (Chylisma) Parryi Wats. 571.
 — rhombipetala Nutt. 520.
 — (Meriolix) serrulata Nutt. 524, 532.
 — sinuata L. 426, 453.
 — (Hartmannia) speciosa Nutt. 531.
 — (Hartmannia) tetaptera Cav. 655.
 — (Sphaerostigma) viridescens Leh. 624.
 — viridescens Hook. (= cheiranthesia Hornem.) 282.

Oldenlandia uniflora L. (= glomerata Olea 177.

[Michx. 216.

Onleya tesota Gray 245, 270, 289, 635, 637.

Oncidium 662, 664. [638.

— spachelatum Lindl. 662.

— stramineum Batem. 662.

Onoclea 177, 448.

— struthiopteris (L.) Hoffm. 365, 366, 526.

Onosmodium molle Michx. 518, 531.

Onychyonema laeve Nordst. 396.

Oocystis 395.

Ophiocystium capitatum Wolle 395.

Ophioglossum 177.

— crotalophoroides Walt. 446, 473.

— vulgatum L. 499.

Oplismenus 676.

— hirtellus (L.) Roem. & Schult. 447, 675.

— setarius Roem. & Schult. 432.

— arborescens Engelm. 530, 537, 575, 579, 586, 642, 643.

— basilaris Engelm. 585, 633, 636.

— Bernardina Engelm. 275, 628.

— Bigelovii Engelm. 634, 636.

— curassavica Mill. 688.

— Dillenii Haw. 682, 694.

— echinocarpa Engelm. 572, 585, 636, 639.

— Engelmanni Salm-Dyck 626, 627, 644.

— fragilis (Nutt.) Haw. 239.

— fulgida Engelm. 576, 634, 638, 642.

— leptocaulis DC. 644, 646.

— Lindheimeri Engelm. 660.

Opuntia missouriensis DC. (= polyacantha Haw.) 358, 527, 535, 539.

— Nashii Britt. 694.

— pes corvi Le Conte 217, 430, 431, 433, 445, 697.

— polyacantha Haw. (= missouriensis DC.) 534, 537, 545.

— prolifera Engelm. 275, 282, 625, 626, 628, 638.

— Rafinesquii Engelm. 380, 490, 510.

— ramosissima Engelm. 586, 635.

— rotundifolia T. S. Brandegee 638.

— rufida Engelm. 646.

— rutila Nutt. 572.

— Schottii Engelm. 646.

— serpenina Engelm. 282.

— spinosior (Engelm.) Toumey 634.

— spinosissima Mill. 678, 681, 688.

— tana (L.) Mill. 674, 676, 680, 686, 687.

— tunicata Lk. 639, 646. [692, 694.

— versicolor Engelm. 634.

Orchis rotundifolia Banks 385, 550.

— spectabilis L. 469, 486, 544.

— Oreastrum (Aster) alpinigern (Torr. & Gray) Greene 258.

— Haydeni (Porter) Rydb. 193.

— Oreochara nevadensis (Gray) Howell 254.

— triphylla (Wats.) Howell (= Claytonia triphylla Wats.) 257.

— Oreochara fulvocanescens (Gray) Greene 535.

— suffruticosa (Torr.) Greene (= Krynitzkia Jamesii Gray) 535.

— Oreedoxa 678, 688.

— oleracea Mart. 664.

— Oromyrrhis 340.

— andicola Endl. 340.

— andina Hemsl. (= andicola Endl.) 655.

— Oreopanax Oerstedianum March. 671.

— Ormosia 680.

— Ornithogalum umbellatum L. 468.

— Ornithopteris adiantoides (Sw.) Presl 693.

— Orobancha ludoviciana Nutt. 239.

— Orochaenactis thysanocarpa (Gray) Coweille 254.

— Orthocarpus 260, 281, 612, 621.

— luteus Nutt. 555.

— Parryi Gray (= pallescens Gray) 561.

— pilosus Wats. 197, 257, 566, 616.

— Orthrosanthus 340.

— Orthrosira orichalcea Sm. 396.

— Oryzopsis 177.
Oryzopsis (Eriocoma) cuspidata Nutt. 532, 534, 573.
— micrantha (Trin. & Rubr.) Thurb. 576.
Oscillaria 542.
Oscillatoria 396.
Osmanthus americanus (L.) Benth. & Hook. 433, 438, 447.
Osmorrhiza (Washingtonia) longistylis Torr. 469, 508, 513, 544.
— nuda Torr. 567.
Osmunda 171, 447, 448.
— interruptaMchx. (=Claytoniana L.) 404.
Ostrya 177, 303, 513, 662.
Oxalis 377.
— corniculata L. var. repens Thunb. (=repens Thunb.) 652.
— decaphylla H. B. K. 651.
— Eggersii 682.
— oregana Nutt. 265, 606.
— recurva Ell. 490.
— stricta L. 469.
— vespertilionis Zucc. 579.
— violacea L. 469, 512, 518, 522, 527, 652.
Oxandra (Bocagea) virgata A. Rich. 676.
Oxybaphus angustifolius Sweet (= Allionia linearis Pursh) 287, 292, 530, 581.
— (Allionia) hirsutus Pursh 537, 557.
— laevis Benth. 585.
— (Allionia) linearis Pursh 537.
— nyctagineus Michx. 394, 400, 510, 520.
Oxyccoccus 177, 368.
— palustris Pers.=Vaccinium OxyccoccusL.
Oxydendrum arboreum (L.) DC. 224, 434, 449, 451, 452, 472, 483, 484, 491, 492, 495, 507.
Oxytropis 293. [601, 616, 621, 633.
— acerosa Nutt. 575, 635.
— Oxytropis (Aragallus) alpica Rydb. 551.
— (Aragallus) campestris DC. 312, 347, 366, 503, 574, 599.
— Oxytropis (Aragallus) campestris DC. var. caeruleus (Koch) Heller 354.
— (Aragallus) foliolosus Hook. 192.
— (Aragallus) Lamberti Pursh 292, 536, 545, 564, 581.
— (Aragallus) Lamberti Pursh var. sericea Nutt. 360.
— (Aragallus) multiceps Nutt. 192, 534.
— (Aragallus) nana Nutt. 561.
— (Aragallus) nigrescens Fisch. 312, 347.
— podocarpa Gray 354.
— uralensis DC. 312, 347.
Pachystima Canbyi Gray 486.
— myrsinites Raf. 250, 549, 561, 566, 572, 595, 596, 602.
Padina pavonia (L.) Gaill. 428, 668, 701.
Palafoxia 289.
— arenaria T. S. Brandegee 639.
Paliocourea pavetta DC. 682.
Paliurus 177.
Pandora morum (Müll.) Bory 395.
Panicularia (Glyceria) elongata (Torr.) Kunz 405.
— amarum Ell. 229, 415, 417, 429, 430, 431, 444, 696.
— angustifolium Ell. 226.
— austmale Bosc 453.
— bulbosum H. B. K. 582.
— ciliatum Ell. 432.
— cognatum Schultes 520, 524.
— colonum L. 635.
— commutatum Schultes 473, 509.
— commutatum Schultes var. latifolium Scribn. 486.
— (Echinochloa) crus-galli L. 238, 416, 522, 539, 572, 703.
— depauperatum Muhl. 515, 516, 518.
— dichotomum L. 499.
— dichotomum L. var. pubescens 559.
— digitarioides Carpenter (= hemitonum Schult.) 441.
— flexile (Gatt.) Scribn. 453.
— gibbous Ell. (= Sacciolepis gibba Ell.) 226, 442, 447, 494.
— gymnocarpum Ell. 448.
— Hallii Vasey 530.
— halophilum Nash (= Gouini Fourn.) 529.
— lanuginosum Ell. 433. [216, 445.
— laxiflorum Lam. 432.
— leucocephalus H. B. K. (= insulare (L.) maximum Jacq. 672. [Meyer) 530, 675.
— microcarpon Muhl. 469.
— neuranthus Griseb. 430.
— obtusum H. B. K. 530, 635.
— polyanthes Schultes 450.
Panicum pubescens Lam. 518.
— repens L. 216, 444, 445.
— Scribnerianum Nash 239, 518, 524, 527.
— sphaerocarpum Ell. 413. [532.
— sphagnicola Nash 432.
— unciphyllum Trin. (= tenueMuhl.) 605.
— verrucosum Muhl. 219, 421, 422, 442.
— virgatum L. 499, 409, 412, 413, 415, 429, 432, 516, 524, 525, 527, 539, 540, 698.
— viscidum Ell. 226, 413, 442, 494.
Pannaria 395.
Papaver 274.
— nudicaule L. 189, 354, 565.
— radicatum Rotb. (= nudicaule L.) 350.
Pappophorum Wrightii Wats. 530, 635.
Parietaria 274.
— debilis Forst. f. 432, 586.
— pennsylvanica Muhl. 544.
Paritium elatum G. Don (= Hibiscus elatus Parkinsonia 200, 289, 646. [Sw.] 677.
— aculeata L. 644, 645, 659, 660, 687.
— microphylla Torr. 534, 638, 642.
— (Cercidium) texana Gray 659, 660.
— (Cercidium) Torreyana Wats. 245, 634.
Parmelia 395, 432. [635, 636, 642.
— caperata (L.) Ach. 516.
— centralis 653.
— centrifuga (L.) Ach. 364.
— conspersa (Ehrh.) Ach. 536.
— Ehrharti 654.
— elegans 654.
— encausta (Sm.) Nyl. 653.
— Fahlunensis 364.
— fimбриata 592.
— physodes (L.) Ach. 367.
— saxatilis (L.) Ach. 367.
— stygia (L.) Ach. 364.
Parmentiera cerifera Seem. 324.
Parnassia 591.
— asarifolia Vent. 486.
— californica (Gray) Greene 258.
— caroliniana Michx. 501, 525.
— fimбриata Banks. 558, 559, 573.
— grandifolia DC. 224.
— palustris L. 353, 358.
— parviflora DC. 192, 550.
Parosela spinosa (Gray) Heller 636.
Paronychia 444.
— argyrocoma (Michx.) Nutt. 376, 493.
— herniarioides Nutt. 427. [496.
— Jamesii Torr. & Gray 535.
— pulvinata Gray 564.
Parrya 274.
— arctica R. Br. 312, 347.
— arenicola Hook. f. 313, 347.
Parthenium argentatum Gray 647.
— hysterophorus L. 531, 682.
Paspalum 453, 671, 672, 681.
— distichum L. 429, 453, 672, 686.
— glabratum (Engelm.) Mohr 450.
— irrigatum 672.
— laeve Michx. 453.
— longipedunculatum Le Conte 226.
— paniculatum L. 675.
— praeox Walt. 446.
— purpurascens Ell. (= Boscianum Fluegge) 226, 494.
— setaceum Michx. 520, 524, 532.
— undulatum Poir. 699.
— vaginatum Sw. 689.
Passiflora 177.
— adenopoda (Moq. & Sesse) DC. 307.
— ciliata Dryand. 675.
— foetida L. 692.
— incarnata L. 431.
— lunata Willd. 307.
— lutea L. 458.
— pectinata Griseb. 330.
— sexflora Juss. 307.
— suberosa Jacq. 307, 675, 697.
Pauullinia 661.
Paurotis androsana Cook 329, 691.
Pavonia bahamensis Hitchc. 329.
— typhalaeae Cav. 674.
Pecopteris 177.
Pectis 289, 534, 576.
— angustifolia Torr. 532, 579.
— ciliaris L. 675.
— humifusa Sw. 687.
— linifolia L. (= Lessingii Fernald) 229.
Pectocarya linearis DC. 634.
Pediastrium 395, 396.
— angulosum (Ehr.) Meneghini 542.
— Boryanum (Turp.) Meneghini 542.
Pedicularis 258, 302, 563.
— attollens Gray 197, 254, 618.
— bracteosa Bentham 602.
— brodiaea 559.
— canadensis L. 468, 472, 487, 512, 521.
— capitata Adams 312, 347.
— densiflora Bentham. 272, 608.
— euphrasioides Stephan 357, 550.
— flammea L. 104.
— Grayi A. Nels. 579.
— (Elephantella) groenlandica Retz. 194, 558, 559, 565, 573, 600, 618.
— (Elephantella) groenlandica Retz. var.
— lanata Pall. 350. [surrecta 550.
— lanceolata Michx. 525, 526.
— Langsdorffii Fisch. 350.
— orizabae Cham. & Schlcht. 652, 653.
— palustris L. 391.
Pedicularis procer a Bunge 557.
- racemosa Doug l. 550, 558, 559.
- scopulorum Gray 194, 565.
- sudetica Will d. 197, 350, 360, 565.
- versicolor Wahl. (= Oederi Vahl) 312,
 - verticillata L. 351. [347.
Peganum mexicanum Gray 339.
Peireiska 298.
- aculeata Mill. 681.
- guatemalensis Rose (= autumnalis
 (Eichlam) Rose) 298, 299.
Pelecyphora 296.
Pellaea andromedifolia (Kf l.) Fée 627.
- atropurpurea (L.) Link 394, 486, 487,
 508, 515, 516, 579.
- dealbata (Pursh) Prantl 515.
- densa (Brack.) Hook. 607.
- gracilis Hook. 378, 481, 522, 651.
- intermedia Mett. 579.
- ornithopus Hook. 272.
- pulchella (Mart. & Gal.) Fée 650.
- (Cryptogramma) Stelleri Bak. 359.
- ternifolia (Cav.) Link 579.
- Wrightiana Hook. (= mucronata Eat.)
Peltandra 448. [579.
- sagittataeatia (Michx.) Morong 441.
- virginica (L.) Kunth (= undulata Raf.)
 202, 231, 386, 398, 426, 440, 500, 698.
Peltigera rufescens (Neck.) Hoffm. 516.
- stricta 395.
Peltostigma 677.
Peluchia trifida Wats. 639.
Penicillus capitatus Lam. 687, 701, 702.
Pentachaea 274.
Penthorum sedoides L. 397, 541.
Pentstemon 243, 260, 281, 288, 576, 612,
- acuminatus Doug l. 533. [621.
- albidus Nutt. 535.
- alpinus Torr. 558.
- ambiguus Torr. 290.
- antirrhinoideas Benth. 268, 629, 630.
- attenuatus Doug l. 570.
- azureus Benth. 607, 618.
- barbarus (Cav.) Nutt. 292.
- breviflorus Lindl. 611, 618.
- Bridgesii Gray 618.
- campanulatus Will d. 656.
- cedrosensis Kellogg 640.
- cobaea Nutt. 531.
- coerulescens Nutt. (= angustifolius Pursh)
- cordifolius Benth. 627. [535, 537.
- corymbosus Benth. 611.
- Davidsonii Greene 601, 621.
- deustus Doug l. 615, 619.
- Fendleri Torr. & Gray (= acuminatus
 Doug l.) 576.
Pentstemon fruticosus Pursh (= Menziesii
- gentianoides Poir. 652. [Hook.] 247.
- glaber Pursh 196, 535.
- glaber Pursh var. utahensis Wats. 258,
- glaucus Graham 290, 555, 557. [616.
- glaucus Graham var. stenosepalus Gray
 292, 583.
- gracilentus Gray 196, 615.
- gracilis Nutt. 239, 391, 527.
- grandiflorus Nutt. 531.
- Hallii Gray 194, 564.
- Harbourii Gray 194.
- heterophyllus Lindl. 625.
- hirsutus (L.) Will d. 512.
- humilis Nutt. 194, 545, 553.
- humilis Nutt. var. roseiflorus 553.
- labrosus Hook. 631.
- laetus Gray 618.
- Menziesii Hook. 196, 258, 656, 602, 616.
- mollis Sudw. 247.
- Newberryi Gray 197, 257, 616.
- Palmeri Gray 237, 582, 634.
- pubescens Soland. (= hirsutus (Linn.)
- puneceus Gray 571. [Will d.] 522.
- Roezli Regel 197.
- Rothrockii Gray 631.
- secundiflorus Benth. 194, 244, 534, 537.
- Smallii Heller 486. [553, 561.
- spectabilis Thurb. 625, 630.
- Torreyi Benth. 292.
- Wrightii Hook. 634.
Peperomia 676, 679.
- acuminata Ruiz & Pav. 674.
- cordifolia A. Dietr. 680.
- reflexa A. Dietr. 683.
- rotundifolia Schlecht. & Cham. 674.
- scandens Ruiz & Pav. 674.
- septentrionalis Stewardson Brown (=
 magnoliaefolia DC.) 704.
- tenerrima Schlecht. & Cham. 670.
Pera humeliaefolia Griseb. 695.
Peraphyllum ramosissimum Nutt. 252, 571.
Perezia nana Gray 579.
- oxylepis Sch. Bip. 647.
- rigida Gray 647
- runcinata Lag. 529.
- turbinata Lex. 647.
Perityle crassifolia Brandegee 638, 639.
- Emoryi Torr. 639.
- Greenei Rose 640.
- incana Gray 623.
Pernettya 302, 340.
- ciliaris D. Don. 653, 654.
- coriacea Klotzsch 671.
Persea 175, 177, 332, 441.
- borbonia (L.) Spreng. (= carolinensis
 (Michx.) Nees.) 453, 700.
Persea carolinensis (Michx.) Nees. 176, 431,
— humilis Nash 438. [432, 437, 452, 459.
— pubescens (Pursh) Sarg. (= carolinensis 457.
(Michx.) Nees var. palustris Chapm.)
Persoonia 175. [432, 434, 439, 440, 459.
Perymenium parvifolium 647.
— Tuercheimii Klett 664.
Petalonyx 289.
Petalostemon 244, 646.
— (Kuhniistera) candidus Michx. 453, 497,
522, 526, 528, 530.
— corymbosus Michx. 427.
— gracilis Nutt. 532.
— multiflorus Nutt. 530.
— purpureus (Vent.) Rydb. (= violaceus 432, 437,
Michx.) 453, 528.
— tenuifolius Michx. (= purpureus (Vent.) 274.
Petasites 497, 522, 526.
— frigida (L.) Fries 350, 592.
— (Nardosmia) sagittata (Pursh) Gray 357.
Petria scoparia Gray 646.
Petunia 274.
Peucedanum foeniculaceum Nutt. 527.
— leiocarpum Nutt. 561.
— leptocarpum Torr. & Gray 570.
— Martindalei Coul. & Rose 601.
— nudicaule (Pursh) Nutt. 527.
— tolucense Hems. 654.
Peecephyllum 289.
— Schottii Gray 636.
Peziza coccinea (Crouan) Lindau. 484.
Pfeiffera 298.
Phaca astragalina DC. (= Astragalus alpinus 191.
L.) 191.
— (Atelophragma)elegans Hook. (=Astragalus 535, 599.
orooides Hornem. var. americana
Gray) 191, 192.
Phacelia 281, 288, 571, 612, 627, 634.
— bipinnatifida Michx. 508.
— Breweri Gray 611.
— cinicina Gray (= heterophylla Pursh) 511.
— cinclatiniformis Gray 611. [535, 599.
— crassifolia Torr. 571.
— crenulata Torr. 643.
— Davidsonii Gray 275, 628.
— distans Benth. 626.
— Douglasii Torr. 275, 628.
— floribunda Greene 623.
— Fremontii Torr. 571.
— frigida Greene 258, 616.
— glandulosus Nutt. 557.
— hispida Gray 626.
— Ivesiana Torr. 290.
— Lyallii (Gray) Rydb. 564.
— Lyoni Gray 277.
— Menziesii Torr. (= lineiris (Pursh) Holz
Phacelia (Macrocalyx) micrantha Torr. 290,
— phylomanica Gray 623. [571, 586.
— pimplinelloides Gray 634, 655.
— Purshii Buckl. 486, 497, 508, 510.
— ramosissima Doug. 607.
— rotundifolia Torr. 571.
— scabrella Greene 622.
— sericea (Graham) Gray 555, 563.
— tanacetifolia Benth. 626.
Phalaris arundinacea L. 525, 540, 558.
Phanerophlebia auriculata Underw. 579.
Pharus glaber H. B. K. 688.
— latifolius L. 675.
Phaseolus lunatus L. 704.
— parvulus Greene 583.
— perennis Walt. (= polystachys (L.) B.
— Wrightii Gray 583.
Phegopteris 177, 351, 363, 468, 477, 486.
— alpestris (Hoppe) Mett. 550.
— dryopteris (L.) Fée 522.
— polypodioideas Fée (= phegopteris (L.) 522.
Phellopterus (Glehnia) 289, 317, 585.
Philactis longipes Gray 647.
Philadelphus 200, 271, 473.
— californicus Benth. (= Lewisii Pursh) 595.
— grandiflorus Willd. 320, 473, 491.
— hirsutus Schrad. 486.
— inodorus L. 320.
— Lewisii Pursh 553, 555, 597.
— microphyllus Gray 250, 553, 571.
— serpyllifolius Gray 633.
Philanthus myrtilloides Griseb. 694.
Philibertia 645.
Philodendron 679.
— giganteum Schott 688.
— lacerm Schott 674.
Philotria (Elodea) canadensis (Michx.) Britt.
Philonotis fontana L. 549, 601. [185, 511.
Philoxer (Lithophila) vermiculatus L. 687.
Phleum alpinum L. 189, 255, 292, 315.
573, 583, 592, 620, 632.
— alpinum L. var. coryphoculum 562.
— Haenkeanum J. & C. Presl (=alpinum
Phlox 621.
— amoena Sims 226.
— bryoides Nutt. 534, 535.
— caespitosa Nutt. 106, 574.
— canescens Torr. & Gray 571.
— condensata (Gray) A. Nels. 621.
— divaricata L. 512, 544.
— Douglasii Hook. 196, 235, 535, 564, 600.
— Douglasii Hook. var. diffusa Gray 257.
— glaberrima L. 524.
Index of Plants.

Physlophora Brodiei (Turn.) Agardh 384.
- membranifolia Agardh 383.

Phylospadix Scouleri Hook. 315, 593.

Physalis angustifolia Nutt. 216.
- heterophylla Nees 519, 528.
- lanceolata Michx. 239, 540.
- (Quinqua) lobata Torr. 652.
- pubescens L. 651.
- virginiana Mill. 519.
- viscosa L. 430, 431, 432.

Physcia caesia (Hoffm.) Nyl. 395, 536.
- stellaris L. 516.

Physocarpus (Opulaster) opulifolius (L.) Maxim. 249, 394, 470, 485.
- pauciflorus Torr. & Gray 569.

Torreyi (Wats.) Maxim. (= monogynus (Torr.) A. Nels.) 251, 545.

Physostegia virginiana (L.) Benth. 496.

Phytolacca decandra L. 413, 430, 506.

Picea 176, 177, 356.
- canadensis (Mill.) B. S. P. (= alba (Ait.) Link) 186, 240.
- cumbiana Lemmon 321.

Picea Engelmanni (Parry) Engelm. var. franciscana Lemmon 578.
- excelsa Link 175.
- Macclurii 176.
- mariana (Mill.) B. S. P. (= nigra (Ait.) Link) 186, 247.
- Parryana (Andre) Sargent (= pungens Engelm.) 552, 555, 556.
- pungens Engelm. 244, 249, 250.
- rubra (Du Roi) Dietr. (= rubens Sarg.) 361, 362, 363, 374, 404, 495, 478.
- sitchensis (Bong.) Carr. 188, 209, 262, 263, 264, 589, 590, 594, 595, 604, 606.

Pickeringia (= Xylothermia) 274.
- montana Nutt. 608.

Picradenia acaulis Pursh (= Tetranurus (Actinella) acaulis (Pursh) Greene) 535.

Picramnia pentandra Sw. 692, 694.

Picrorhodon arboreum Planch. 674.
- alpina 683.
- microphylla Griseb. 674.
- nudicaulis Wedd. 674.
- (Adicea) pumila (L.) Gray 388, 468, 522.
- radicans Wedd. 679.

Picrorhodon arboreum Planch. 674.
- chrysacanthus Web. 647.
- fulviceps Web. 647.
- lanuginosus Rümpl. 690.
- Schottii Lem. 260.
- Tetetzo Web. 647.

Pimpinellina (Taenidia) integerrima L. 490, 516.

Pinckneya pubens Michx. 439, 440.

Pinguicula 591, 653.
- alpina L. 353, 354.
- lutea Wilt. 446.
- pumila Michx. 446.
- villosa L. 354, 360.
- vulgaris L. 204, 353, 354, 357, 378, 501, Pinus 177, 304.
Index of Plants.

763

Pinus aristata Engelm. (= Balfouriana Wats.) 244, 252, 262, 267, 291, 292, 551, 556, 562, 583, 587.
— arizonica Engelm. 244, 245, 262, 578, 579, 583, 641, 643.
— australis Michx. (= palustris Mill.) 214.
— Balfouriana Murr. 262, 570, 571.
— Balfouriana Wats. var. aristata Engelm. (= aristata Engelm.) 251.
— caribaea Morelet var. anomala 676.
— chihuahuana Engelm. 244, 245, 251, 262, 578, 579, 641, 642, 643, 646.
— clausa (Eglm.) Sarg. 435, 438, 445, 698.
— contorta Loud. 262, 263, 589, 590, 591, 594, 595, 604, 605, 606.
— Coulteri Lamb. 269, 270, 611, 630, 631.
— echinata Mill. (= mitis Michx.) 215.
— edulis Engelm. 244, 250, 252, 551, 554, 576, 578, 579, 580, 581, 635.
— flexilis James var. macrocarpa Eglm. 292.
— flexilis James var. megalocarpa Sudw. = glabra Walt. 438, 451. [583]
— Hartwegii Lindl. 653, 654.
— heterophylla (Elliott) Sudw. (= caribaea Morelet) 231.
— inops Ait. (= virginiana Mill.) 424, 425, 434, 461, 466, 472, 482, 483, 489, 491, 493, 494, 495.
— insignis Doug. (= radiata Don.) 278, 609.
— latifolia Sarg. (= Mayriana Sudw.) 643.
— latissquama Engelm. 649.
— leiophylla Schlecht. & Cham. 651, 652.
— Mayriana Sudw. (= latifolia Sarg.) 578.
— microphylla 641.
— Montezuma Lamb. 649, 651, 654, 655, 656, 658.
— Montezuma Lamb. var. macrophylla Lindl. 652.
— monticola Doug. 244, 246, 262, 264, 266, 267, 552, 553, 555, 594, 595, 596, 598, 599, 602, 615, 619.
— muricata D. Don. 271, 604, 605, 606, 640.
— occidentalis Sw. 675, 681, 682.
— oocarpa Schiede 641, 658.
— Parryana Engelm. (= quadrifolia Parl.) 271, 639.
— ponderosa Laws. var. scopulorum Engelm. (= scopulorum (Engelm.) Lemm. 237, 239, 240, 244, 283, 533, 534, 542, 543, 544, 566, 567, 568, 586, 587.
— ponderosa Laws. var. Jeffreyi Vasey forma peninsularis 639.
— pseudo-strobus Lindl. 652, 654.
— pungens Michx. 476, 481, 483. [269.
— recurvata Rowlee 676. [623.
— reflexa Engelm. 251, 642, 643.
— resinosa Soland. 360, 361, 362, 363, 392, 393, 400, 404, 408.
— sabiniana Doug. 267, 270, 585, 607, 611, 614, 617.
Pisonia 177, 688.
— discolor Spreng. 673.
— subtcordata Sw. 687.
Pistacia 177.
Pistia stratiotes L. 443, 659.
Pithecolobium 646, 670, 690, 694.
— arbovireum Urb. (= filicifolium Benth.)
— bahamense Northrop 320. [675.
— (Zygia) brevifolium Benth. 650.
— guadalupensis Desv. 696.
— keyense Britt. 690, 693, 694.
— mucronatum Britt. 329.
— unguis-cati L. 678, 687.
Placodium 432. [536.
— aurantiacum (Lightf.) Naeg. & Hepp.
— cininum (Hedw.) Naeg. & Hepp. 395.
— vitellinum (Ehrh.) Naeg. & Hepp. 395.
— vitellinum (Ehrh.) Naeg. & Hepp. var.
— aurellum Ach. 395.
Plagiobothrys nothofulvus Gray 626.
Plagiotherium denticulatum Bruch &
— Schimp. 403.
— Muellarianum Schimp. 480.
— striatellum Linb. (= Hypnum Muehlen-
— aquatica (Walt.) J. F. Gmel. 440, 448.
— Plantago 634. [454, 455, 456, 459,649.
— decipiens Barneoud 379.
— dura Morris 277.
— eriopoda Torr. 239.
— fastigiata Morris 635.
— hirtella H. B. K. 277, 622, 652.
— linearis H. B. K. 655.
— major L. 370.
— major L. var. asiatica L. 594.
— patagonica Jacq. 599, 640, 652.
— patagonica Jacq. var. gnaphalodes (=
— Purshii Roem. & Schult.) 585.
— patagonica Jacq. var. nuda Gray 626.
— Purshii Roem. & Schult. 532, 537, 538.
— scariosa Morris 636.
Platanophyllum 177.
Platanus 200, 201, 401, 473, 513, 515.
— aceroides Goepp. 174, 175.
— Fremontii Wats. 269.
— mexicana Torr. 649, 662.
— occidentalis L. 176, 186, 200, 217, 223,
— 237, 388, 389, 430, 450, 451, 455, 457,
— 458, 461, 463, 466, 471, 477, 484, 485.
— 501, 502, 504, 505, 507, 512, 513, 514.
— 521, 522, 543, 579.
— primaeva Lesq. 176.
— racemosa Nutt. 209, 270, 279, 578, 612.
— 627, 630, 634, 635.
— Wrightii Wats. 245, 251, 642.
Platysma cicutata 348.
Index of Plants.

765

Poa reflexa Vasey & Scribn. 620.
— Sandbergii Vasey 569, 570.
— Suksdorffii Vasey 600.
— trichophylla Boiss. 189.
— Wheeleri Vasey 569, 570.
Poacites 177.
Podocarpites 177.
Podocarpus 177, 304.
— angustifolia Griseb. 304.
— aristulata Parl. 304.
— Purdieana Hook. 304, 680.
— salicifolia Klotzsch. & Karst. 668, 670.
— taxifolia H. B. K. 668, 670.
— Urbanii Pilg. 304, 680.
Podostemon ceratophyllum Michx. 387.
Podostigma pedicellata (Walt.) Vail 438.
Poeppigia procera Presl 675.
Pogonyne Douglasii Benth. 280.
— tenuiflora Gray 623.
Pogonia 426, 500.
— divaricata (L.) R. Br. 226.
— ophioglossoides Ker. (= Limodorum tuberosum L.) 385, 401, 402, 426, 500.
— pendula Nutt. (= trianthophora (Sw.) B. S. P.) 513.
— verticillata (Willd.) Nutt. 500.
Pohlia 653.
Polanisia graveolens Raf. 398, 498.
— trachysperma Torr. & Gray 239, 532.
Polemonium 271, 334.
— antarcticum Griseb. (= micranthum
— caeruleum L. 196. [Benth.] 337.
— confertum Gray 196, 254, 292, 562, 563.
— elegans Greene 600. [565, 574.
— humile Willd. 590.
— humile Willd. var. pulchellum Gray 555,
— mellitum Gray 555. [565.
— micranthum Benth. (= antarcticum
— Griseb.) 334, 337.
— montrosensis A. Nels. 621.
— pulchellum Bunge 196, 601, 616.
— reptans L. 468, 512.
— speciosum Fisch. (= humile Willd.) 564.
Polycystis (Microcystis) ichthyoblabe Kütz.
Polyedrium (= Tetraedron) 395. [396.
— trigonum (Naeg.) Hansg. var. punctatum
— (Kirchn.) Hansg. 542.
Polygala 293, 426.
— alba Nutt. 535.
— angustifolia Kunth 675.
— Boykinii Nutt. 453, 692.
— brevifolia Nutt. 424, 426.
— californica Nutt. 605.
— Chapmanii Torr. & Gray 446.
Polygala cruciata L. 421, 426.
— cymosa Walt. 437.
— Hookeri Torr. & Gray 446.
— incarnata L. 426, 509, 532.
— lutea L. 219, 421, 422, 424, 426, 436, 446.
— mariana Mill. (= fastigiata Nutt.) 426,
— Nuttallii DC. 421, 426. [436, 453.
— paludosa St. Hil. 339.
— paniculata L. 672.
— paucifolia Willd. 363, 485.
— polygama Walt. 203, 220, 380, 446, 475.
— sanguinea L. (= viridescens L.) 522.
— senega L. 508.
— senega L. var. latifolia Torr. & Gray 567.
— verticillata L. 515, 519.
— viridescens L. (= sanguinea L.) 536.
Polygonatum biflorum (Walt.) Ell. 366, 472, 473, 477, 491, 512.
— commutatum (Roem. & Sch.) Dietr. 490.
— giganteum Dietr. (= praec.) 469, 486,
Polygonella 382, 390, 444. [490.
— articulata (L.) Meissn. 381, 499.
— polygama (Vent.) Gray 444.
Polygonum acre H. B. K. 280, 506, 540.
— amphibium L. 455, 498, 526, 558, 651.
— arifolium L. 439.
— articulatum L. 382.
— bistorta (= bistortoides Pursh) 558, 573.
— bistortoides Pursh (= praec.) 255, 259, 564, 600, 608.
— camporum Meissn. 532, 536.
— Careyi Olney 202.
— cininode Michx. 392, 481.
— coarctatum Dougl. (= spergulariae-
forme Meissn.) 573.
— Davisiae Brewer 608.
— densiflorum Meissn. (= portoricense
Bertero) 454.
— Douglasii Greene 536, 570.
— emersum (Michx.) Britt. (= Muhlenbergii Wats.) 498.
— Hartwrightii Gray 280.
— hydropiper L. 539.
— hydropiperoides Michx. 428, 442, 506.
— incarnatum Ell. 540.
— lapathifolium L. 419, 506, 540.
— maritimum L. 382.
— Muhlenbergii Wats. 280, 397.
— Newberryi Hook. 258, 600, 601, 616.
— persicaria L. 539.
— ramosissimum Michx. 399, 524, 539, 540.
— sagittatum L. 421, 465, 526.
— shastense Brewer 257, 600, 601, 616.
— tenue Michx. 536.
— viviparum L. 315, 376, 549, 558, 559, 562, 565, 573, 601.
Polypodium 177, 470, 486, 653, 688.
— angustifolium Sw. 683.
— aureum L. 662.
— Friedrichsthalianum Kze. 670.
— incanum Sw. 432, 438, 439, 455, 486, 699.
— phyllitidis L. 679, 688, 699.
— plumula Willd. 674.
— polypodioides (L.) Hitchc. (= incanum
— serpens Sw. 679. [Sw.] 217, 674.
— Swartzii Bak. 688.
— tetragonum Sw. 688.
— vulgare L. var. rotundatum 567.
Polypogon monspeliensis (L.) Desf. 577,
Polypremum procumbens L. 216. [586, 632.
Polypeptis Hookeriana (Torr. & Gray) Gray
Polysiphonia 428. [529.
— affinis Harv. 384.
— arctica Ag. 588.
— bipinnata Post. & Ruapr. 587, 588.
— elongata Grev. 384.
— fastigiata Grev. 384.
— fribillosa Grev. 370, 383.
— formosa Harv. 384.
— Harveyi Bailey 384.
— nigrescens Grev. 384.
— subtilissima Mont. 384.
— urceolata Grev. 349.
— variegata Ag. 384.
— violacea Grev. 384.
Polystachya luteola Hook. 229.
Polystichum 477.
— acrostichoides (Michx.) Schott 405, 447,
— scopulinum Maxon 365. [472, 484, 488.
Polystaenia Nuttallii DC. 524.
Polytrichum 260, 394, 621.
— commune L. 357, 371, 432, 496.
— gracile Dicks. 492, 493, 563.
— juniperinum (Hedw.) Willd. 371, 403.
— ohiense 371, 492. [526.
— piliferum Schreb. 536.
— strictum Menz. 367.
Ponera striata Lindl. 662.
Pontederia 464, 523.
— cordata L. 202, 356, 386, 397, 398, 426, 428, 437, 441, 442, 443, 448, 455, 462,
— Populites 177. [498, 511.
Populophyllum 177.
Populus 177, 575.
— acuminata Rydb. 543.
— angustifolia James 249, 244, 249, 533,
— angustifolia James 249, 244, 249, 533,
— arctica Heer 174.
— balsamifera L. 175, 186, 188, 208, 210, 234, 245, 247, 262, 264, 266, 284, 351,
— 352, 355, 356, 357, 359, 361, 362, 379,
Potamogeton natans L. 186, 205, 357, 387, 397, 408, 541, 572.
— obtusifolius Mert. & Koch 316. [541.
— pauciflorus Pursh (= foliosus Raf.) 500.
— pectinatus L. 186, 357, 397, 498, 558, 559, 572.
— perfoliatus L. 186, 357, 558.
— praelongus Wulf. 357.
— pusillus L. 186, 397, 511.
— Robbinsii Oakes 397.
— rufulescens Schrad. (= alpinus Balb.) 558.
— rutilus Wolfg. 186.
— spirillus Tuckerm. 387, 392, 541.
— Vaseyi Robbins 392.
— zosteraefolius Schum. 397, 541.
Potentilla 177, 302, 621, 653.
— alpestris Hall. f. (= aurea L.) 197.
— anserina L. var. grandis Torr. & Gray 497.
— argentea L. 380. [593.
— (Drymocallis) arguta Pursh 394, 400.
— brevifolia Nutt. 192. [522, 527, 532.
— canadensis L. 496.
— candidans H. B. K. 652.
— decurrens (Wats.) Rydb. 192.
— dissecta Pursh (= diversifolia Lehms.) 192, 193, 292, 557, 564, 573, 583.
— diversifolia Lehms. = dissecta Pursh.
— emarginata Pursh (= nana Willd.) 192.
— (Drymocallis) fissa Nutt. 553.
— flabellifolia Hook. (= gelida C. A. Mey.) 195, 237, 601, 616.
— frigida Vill. 315, 376.
— (Dasiphora) fruticosa L. 195, 244, 249, 292, 322, 359, 371, 394, 500, 545, 555, 557, 558, 561, 567, 568, 573, 580.
— (Dasiphora) fruticosa L. var. tenuifolia 557, 558, 561, 567, 568, 573, 580.
— gelida C. A. Mey. 195. [Willd. 564.
— (Drymocallis) glandulosa Lindl. 545, 567, 601.
— glandulosa Lindl. var. nevadensis Wats.
— gracilis Doug. 557, 608, 618. [254.
— Hippiana Lehms. 561, 562.
— humifusa Nutt. 567.
— minutifolia Rydb. 564.
— multisecta (Wats.) Rydb. 192.
— nana Willd. (= emarginata Pursh) 192.
— nivea L. 189, 192. [360.
— norvegica L. 370.
— (Comarum) palustris Scop. 180, 353, 386, 397, 402, 525, 537.
— pinnatisecta (Wats.) A. Nels. 192.
— procumbens Sibth. 195, 254, 592.
— (Drymocallis) pseudorupesist Rydb.
— Richardii Lehms. 654. [616.
Potentilla rubricaulis Lehm. 562.
— santolinoides Baill. 254.
— supina L. 499.
— Thurberi Gray 583.
— villosa Pall. 350, 592.
— Wheeleri Wats. 195, 254.
Poterium (Sanguisorba) canadensis L. 360.
— sanguisorba L. (= Sanguisorba minor Prenanthes alata Gray 591. [Scop.] 591.
— (Nabalus) alba L. 502, 526.
— (Nabalus) asper Michx. 518, 523, 527.
— (Nabalus) racemosa Michx. 524.
Primula 258, 274.
— angustifolia Torr. 194, 563, 592.
— farinosa L. 194, 334, 394.
— farinosa L. var. magellanica 334.
— Maccalliana Wiegand 530.
— mistassinica Michx. 194, 204, 354, 501.
— Parryi Gray 104, 292, 563, 564, 566, 574.
— sibirica Jacq. 592.
— suffrutescens Gray 196, 254.
Prionitis 609.
Prosartes oregana Wats. (= Disporum majus (Hook.) Britt. 602.
Proserpinaca palustris L. 202, 387, 443, 525, 702, 703.
— pectinata Lam. 387, 426, 437, 443.
Prosopis 200, 335, 644.
— glandulosa Torr. 643.
— pubescens Benth. (= Strombocarpa odorata (Torr.) Gray) 245, 251, 586, 636, 645, 646.
— velutina Wooton 636.
Protococcus viridis Ag. 542.
Protosiphon botryoides Kütz. 395.
Prunella vulgaris L. 469, 487, 652.
P runus 177, 447, 513, 604.
— Andersonii Gray 571.
— angustifolia Marsh. 245, 250, 431.
— Besseyi Bailey 532.
— Capollin Zucc. 649.
— capuli Cav. (= praecl.) 252.
— chicasa Michx. (= angustifolia Mars.)
— cuneata Raf. 390. [532.
— emarginata (Dougl.) Walp. 245, 246, 262, 268, 273, 553, 568, 595, 619.
— emarginata (Dougl.) Walp. var. mollis Brewer (= villosa Sudw.) 596.
— fasciculata Gray 586.
— illicifolia (Nutt.) Walp. 270, 622, 623.
— injucunda Small 487. [629, 630.
— melanocarpa (A. Nels.) Rydb. 545.
— mollis Walp. (= prunifolia (Greene) Shafer) 595.
— pumila L. 220, 399, 400, 475, 499, 532, 536.
— subcordata Benth. 267, 617.
Psathyrones 289. [501, 521, 536, 544.
— annua (Nutt.) Gray 290, 586, 635.
— ramosissima (Torr.) Gray 290.
Pseudophoenix Sargentii H. Wendl. 229, 604, 699.
Pseudotsuga 273, 545, 555, 604, 606.
— macrocarpa (Torr.) Mayr 269, 270, 625, 627, 630, 631.
Psidium costaricense Berg. 671.
— guajava L. 675.
Psisactis 289, 585.
Psilolatum complanatum 679.
Psurarea argophylla Pursh 519, 531, 537.
— californica Wats. 611.
— digitata Nutt. 537.
— esculenta Pursh 519, 527, 528, 531, 537.
— floribunda Nutt. 527.
— lanceolata Pursh 287, 532, 534.
— macrostachya DC. 280.
— pedunculata (Mill.) Vail. (= melilotoides Michx.) 436.
Psoralea subcaulis Torr. & Gray 508.
— tenuiflora Pursh 516, 519, 537.
Psychotria lasiophalma Griseb. 674.
— rufescens H. B. K. 697.
— undata Jacq. 690, 692, 694, 704.
Ptelea 200, 473.
— angustifolia Benth. 252.
— trifoliata L. 394, 399, 458, 499, 502, 508.
Pteridium aquilinum Kuhn confer Pteris. 177.
— (Pteridium) aquilina L. var. caudatum L. (= caudatum Maxon) 693, 699, 702.
— (Pteridium) aquilina L. var. lanuginosa Underw. 549, 595.
— var. pseudocaudata Clute 698.
— cretica L. 699.
— longifolia L. 699, 704.
Pterocarya 177.
Pterospora 243.
— andromedea Nutt. 501, 544, 597, 618.
Pterostegia drymarioides F. & M. 571, 586, 628.
Ptilidium capillare 371.
Ptilimum capillaceum (Michx.) Hollick (= Discopleura capillacea DC.) 226.
Ptilota 351.
— asplenoides (Turn.) Ag. 588.
— elegans Bonnem. 383.
— pectinata (Gunn.) Kjellm. 349.
— plumosa (L.) Ag. 349.
— serrata Kütz. 383.
Puccinellia 271.
— maritima (Huds.) Parl. 369, 382.
Pulsatilla 243.
— hirsutissima Britt. (= Anemone patens L. var. Wolfgangiana (Bess.) Koch) 527, 558.
— occidentalis (Wats.) Freyn 255, 257, 550, 601, 616.
Punctaria tenuissima Grev. 383, 384.
Purshia (= Kunzia) 274, 289, 585.
— glandulosa Curran. 586, 630.
— tridentata DC. 252, 548, 571, 597.
Pylaiella littoralis Kjellm. 588.
Pyrola confer Pirola.
Pyrrhopappus scaposus DC. 533.
Pyrus confer Pirus.
Pyxidanthera barbulata Michx. 424.

Quercophyllum 177.
Quercus 177, 183, 656.
— acuminata (Michx.) Houba (= Muehlenbergii Engelm.) 187, 511, 512, 515.
— agrifolia Née 270, 579, 611, 613, 622, 625, 627, 629, 639.
— aristata Hook. & Arn. 671.
— breviloba (Torr.) Sarg. 453.
— Breweri Engelm. 617.
— bumelioides Liebm. 671.
— calophylla Schlecht. & Cham. (= alamo Bentham.) 661.
— Catesbaei Michx. 435, 438, 450, 451, 452.
— chrysopleis Liebm. var. vaccinifolia (Kellogg) Engelm. 620, 642.
— chrysophylla Humb. & Bonpl. 662.
— cinerea Michx. 435, 438, 450, 452.
— citrifolia Liebm. 670.
— costaricensis Liebm. 670.
— (Pasania) densiflora Hook. & Arn. 267, 504, 603, 605, 606, 611, 617.
— Douglasii Hook. & Arn. 267, 270, 585, 607, 609, 611, 617.
— dumosa Nutt. 267, 607, 611, 617, 622, 625, 639.
— dumosa Nutt. var. revoluta Sarg. 267.
— dumosa Nutt. var. bullata Engelm. 607.
— Engelmanni Greene 625, 629.
— fulva Liebm. 641, 658.
— Galeottii Mart. 661.

Harshberger, Survey N.-America.
Quercus Gambelii Nutt. 557, 578, 580, 581.
- Garryana Doug. 264, 266, 594, 595, 596, 598, 599, 606.
- geminata Small 217, 445.
- germana Schlecht. & Cham. 661.
- Ghesbreghtii Mart. & Gal. 661.
- glabra 662.
- glabrescens Benth. 671.
- Grahamii Benth. 649.
- granulata Liebm. 670.
- grisea Liebm. (= undulata Torr.) 245, 252, 581, 582, 639, 641, 642, 646.
- heterophylla Michx. (= phellos L. × rubra L.) 422.
- hypoleuca Michx. 245, 252, 580, 642.
- insignis Mart. & Gal. 661.
- jalapensis 661.
- Kelloggii Newb. (= californica (Torr.) Coop.) 267.
- lanceolata Humb. & Bonpl. 661, 662.
- lobata Née 267, 270, 607, 609, 622.
- lyrata Walt. 215, 217, 413, 414, 440, 452, 455, 457, 470.
- Margareta Ashe 438.
- Morethus Kellogg (= Wislizensi DC. × Kelloggii Newb.) 267, 269.
- myrtifolia Willd. 444.
- nigra L. = aquatica Walt.
- obtusata Humb. & Bonpl. 661.

Quercus orizabae Liebm. 652.
- pagodaeolia (Elliott) Ashe 451.
- platanoides (Lamb.) Sudw. (= bicolor Willd.) 511, 512, 513.
- polymorpha Schlecht. & Cham. 649, 650, 661.
- prionoides Willd. 219, 378, 390, 421, 422.
- pulchella Humb. & Bonpl. 662.
- pumila Walt. 437. [652, 658, 662.
- Rudkini Britt. (= phellos L. × marylandica Muench.) 422.
- spicata Sm. 662. [511, 512, 514, 582.
- texana Buckl. 451, 453, 454, 458, 509.
- tomentella Engelm. 277, 622, 623.
- undulata var. Gambelii Engelm. 250.
- utahensis (DC.) Rydb. (stellata Wang. var. utahensis DC.) 557.
- vaccinifolia Kellogg (= chrysolepis Liebm. var. vaccinifolia Engelm.) 254.
- velutina Lam. (= tinctoria Bartr.) 186.
- virens Ait. (= virginiana Mill.) 217, 531, 670, 697, 700.
- virginiana Mill. var. maritima 430.
- Wislizeni A.DC. 267, 269, 272, 280, 585, 607, 608, 611, 613, 616, 622, 625, 630, 639.
- Wislizeni A. DC. var. frutescens 270.
Racomitrium 350.
Rafinesquia (= Nemoseris) 274.
Raillardea 258, 271.
— argentea Gray 196, 254, 601.
— Muirii Gray 608.
— nevadensis 621.
Rajania hastata L. 674, 693.
Ralfsia clavata Crouan 588.
— deusta J. Ag. 588.
Ramalina 395, 432, 445.
— Montagnei De Not. 432.
Ramondia pyrenaica Rich. 194.
Randia 637, 687.
— aculeata L. 687.
— Thurberi Wats. 638.
Ranunculus 258, 295, 334, 591.
— abortivus L. 424, 469, 506, 511.
— adoneus Gray 192.
— affinis R. Br. (= pedatifidus J. E. Smith) 391.
— alismaefolius Gey. 618, 620.
— Allenii Rob. 365.
— alpephilus A. Nels. 551.
— Andersonii Gray 620.
— aquatilis L. var. trichophyllus Gray (= Batracium flaccum (Pers.)Rupr.)
— cardiophyllus Hook. 391. [558.
— cincinnatus Sibth. 366 (= Batracium trichophyllum (Chaix) Bossch) 541.
— (Halserpestes)Cymbalaria Pursh (= Oxygraphis cymbalaria (Pursh) Prantl)
192, 354, 369, 379, 540, 651.
— dichotomus Moq. & Sesse 652.
— digitatus Hook. 573.
— (Batracium) divaricatus Schrank 397.
— fascicularisMuHl.424,469,473,510,522.
— ficaria L. (= Ficaria Ficaria Karst.) 469.
— (Batracium) flaccidum Pers. 563.
— flammula L. subsp. reptans. 498.
— geoides H. B. K. 653.
— hydrocharoides Gray 577.
— hyperboreus Rottb. 350.
— macranthus Scheele 608.
— multifidus Pursh (= delphinifoliusTorr.)
— muricatus L. 453. [387, 525, 540, 558.
— Nelsoni Gray 588.
— nivalis R. Br. (= Eschscholtzii Schlecht.)
192, 350, 551, 573.
— occidentalis Nutt. 618.
— orthorhynchus Hook. 591, 618, 651.
— ovalis Raf. (= rhomboideus Goldie)192.
— oxynotus Gray 195, 254, 620. [527.
— parviflorus L. 680.
— pennsylvanicus L. f. 540.
— peruvianus Pers. 654.

Ranunculus pygmœns Wahl. 189, 192, 365.
— reniformis Walt. 653. [551.
— repens L. 506, 680, 703.
— reptans L. 350.
— rhomboideus Goldie (= ovalis Raf.) 192.
— sceleratus L. 448. [523.
— septentritionis Poir. 511.
— stoloniferus Hemsli. 652.
— Suksdorffii Gray 601.
— trachyspermus Engelm. 453.
Rapania guyanensis Aubl. 693, 694, 695.
Raphidium polymorphum Fresn. 542.
Raphidostegium Jamesii Sulliv. 480.
— laxeapatulum 480.
Rauwolfia Alphoniana Muell. Arg. 675.
— canescens L. 682.
— cubana A. DC. 675.
Redfieldia flexuosa (Thurb.)Vasey 239,532.
Renealmia occidentalis Sweet 674, 675.
Reynoldsia 690.
— Northropiana Urb. 329.
— septentritionis Urb. 690, 692, 694, 695.
Rhabdadenia biflora Muell. Arg. 692.
Rhabdodina tenera Ag. 428.
Rhachicallis rupestris DC. 674, 692.
— maritima (Jacq.) Schum. 677, 691, 692.
Rhachido sperma (Jouvea) mexicanum Vas 639.
Rhacomitrium fasciculare Bríd. 375.
Rhamnites 177.
Rhamnus 177, 200, 472, 623.
— californica Esch. 252, 270, 271, 272, 572,
607, 608, 617, 634, 639.
— californica Esch. var. tomentella Brew. & Wats. 270, 631.
— caroliniana Walt. 237, 253, 445, 453.
— crocea Nutt. 626, 630. [509.
— ilicifolia Kellogg 607, 611, 629, 630.
— lanceolata Pursh 237, 478, 513, 522.
— Purshiana DC. 264, 267, 553, 582, 594,
596, 606, 617, 642.
— Purshiana DC. var. tomentella Benth.
— rubra Greene 629, 630. [642.
Rhaphidium 396.
Rheedia aristata Griseb. 677.
Rhexia 295, 436.
— cilosa Michx. 438.
— globella Michx. 437.
— lanceolata Walt. 447.
— mariana L. 227, 436, 447, 450.
— serrulata Nutt. 438.
— stricta Pursh 450.
— virginica L. 202.
Rhinanthus crista-galli L. (= Fistularia
— crista-galli Wettst.) 376, 406.

49*
Rhodiola integrifolia Raf. (= Sedum roseum (L.) Scop. rosea L. = Sedum Rhodiola DC.
Rhododendron 271.
 Califorunicum Hook. 605.
(Catawbiense Michx. 485, 493, 492, 493, 495, 496.
(Maximum L. 223, 449, 470, 476, 479, 480, 482, 483, 484, 485, 486, 487.
(Occidentale Gray 606, 618, 632.
Rhodora Gmel. (canadense (L.) B.S.P.) 207, 221, 353, 355, 365, 368, 386, 475, 482.
(Azalea) viscosum (L.) Torr. 221, 380, 388, 473, 476, 479.
Rhododendron 379.
Rhodomela 351, 588.
(Larix (Turn.) Ag. 593.
(Subfuscus Ag. 383, 384.
Rhodophyllis 351.
(Dichotoma Lepech. 349.
(Pertusa (Post & Rupr.) J. Ag. 349, 587.
Rhopala 671.
Rhus 175, 177, 200, 242, 389, 472, 623.
(Aromaticum Ait. (= canadensis Marsh.) 399, 520, 572.
(Aromaticum var. trilobata (Nutt.) Gray (= trilobata Nutt.) 238, 292, 570.
Blodgetii Kearney 228.
(Canadensis Marsh. (= Aromaticum Ait.) 486, 508, 514, 572.
(Copallina L. 237, 380, 413, 416, 421, 430, 432, 434, 478, 491, 500.
(Cotinoides Nutt. 500, 510, 514.
(Diversiloba Torr. & Gray 280, 607, 611, 613, 629, 630.
(Datisca hirta (L.) Sudw. (= typhina L.) 478.
(Integropila (Nutt.) Bentho. & Hook. 622.
(Laurina Nutt. 622, 625.
(Metopium L. 690, 692, 693, 694, 695.
(Microphylla Engelm. 640.
(Ovata Wats. 268, 269, 630.
(Palmeri Rose 641.
(Rydbergii Small 545.
Toxicodendron L. 240, 432, 512, 513, 627, 704.
(Venenata DC. (= vernix L.) 421, 425, 605.
Rhynchosia 646.
(Dolicholus) texana Torr. & Gray 530.
(Tomentosa Hook. & Arn. 436.
Rhynchospora 436, 671.
(Alba (L.) Vahl 385, 525.
(Comata Link 672.
(Corniculata (Lam.) Gray 436, 437, 440.
(Cymosa Ell. 442, 446. [442, 448.
(Dodocandra Baldwin 438.
(Glomerata (L.) Vahl 442.
(Gracilenta Gray 423.
(Inexpansa (Michx.) Vahl 436, 442.
(Knieskernii Carey 423.
(Macrostachya Torr. 669.
(Microcarpa Baldwin 437.
(Oligantha Gray 423, 450.
(Pallida M. A. Curtis 423.
(Pluniosa Ell. 446, 450.
(Pusilla Chapm. 446, 450.
(Rariflora Ell. 450.
(Torreyana Gray 423.
(Tracyi Britt. 437.
Rhynchostegium serralatum Hedw. 432.
(Adscendens Eastw. 273.
(Amictum Greene 273, 615.
(Aridum Greene 273.
(Aureum Pursh 238, 248, 544, 545, 572, 580.
(Brachyanthum (Gray) Cord. 586.
(Bracteosum Dougl. 589, 591, 597.
(Californicum Hook. & Arn. 273, 611.
Index of Plants.

 — Churchii 621. [629, 633.
 — ciliolatum Howell 597.
 — Congdonii Heller 273.
 — cruentum Greene 273.
 — cynosbati L. 249, 486.
 — divaricatum Doug. 273, 597.
 — divaricatum Doug. var. irriguum Gray
 — echinatum Lindl. 549. [248.
 — erythrocarpum Cov. & Leib. 259.
 — floridum L’Her. 249, 544.
 — glaucescens Eastw. 273.
 — glutinosum Benth. (= sanguineumPursh) var. glutinosum) 273, 275, 628.
 — gracile Michx. 513, 546.
 — hirtellianum Eastw. 273.
 — hirtellum Michx. 379, 392.
 — Hudsonianum Richards 247.
 — hystrix Eastw. 273.
 — indecorum East. 273.
 — inerme Rydb. 570.
 — irriguum Doug. (= divaricatum Doug.
 — lacustre (Pers.) Poir. var. molle Gray
 — laxiflorum Pursh 273, 549, 591, 602.
 — lentum (Jones) Cov. & Rose 273, 620.
 — leptanthum Gray 195, 252, 557, 571.
 — Lobbii Gray 273. [586.
 — malvaceum Smith 273.
 — mariposanum Congdon 273.
 — Marshallii Greene 273.
 — Menziesii Pursh 273.
 — nevadense Kellogg 273.
 — nigrom L. 392.
 — niveum Lindl. (= gracile Michx.) 247.
 — occidentale Hook. & Arn. 273.
 — oligocanthum Eastw. 273.
 — oxyacanthoides L. 196, 249, 356, 392, 544, 566.
 — parvulum (Gray) Rydb. 193, 558.
 — pumilum Nutt. (= cereum Doug.) 545.
 — quercetorum Greene 273. [557.
 — rotundifolium Michx. 247, 408, 486, 493.
 — rubrum L. 356, 392. [496.
 — Rusbyi Greene 292, 583.

Ribes saxugumeum Pursh 252, 268, 273.
 — saxosum Hook. 273. [597, 630.
 — scuphami Eastw. 273.
 — sericeum Eastw. 273.
 — setosum Lindl. 292, 566, 583.
 — speciosum Pursh 273, 275, 628.
 — subvestitum Hook. & Arn. 273, 611.
 — vallicola Greene (= sanguineum Hook.) 545.
 — variegatum Wats. 273.
 — velutinum Greene 273, 617.
 — viburnifolium Gray 273.
 — victoris Greene 273.
 — viridiflorum Abrams 273.
 — viscosissimum Pursh 196, 273, 561, 597.
 — Wilsonianum Greene 273.

Riccia 523.
 — fluitans L. 387, 442, 541.
 — (Riccio-carpus) natans Corda 455, 511.
 — Riddellia (Psilotrophe) tagetinae Nutt. 293, 530, 575, 635.
 — Rinodina Bischoffii (Hepp.) Koerb. 395.
 — sophodes (Ach.) Nyl. 395.

Rivularia 496.
 — hemisphaerica (L.) Aresch. 349.
 — radians Thur. 396.

Robinia 200, 205, 514.
 — hispida L. 485, 487, 490.
 — Romanzoffia 274. [489, 504, 505,507.
 — sitchensis Bong. 592.

Romneya 274.
 — Coulteri Harv. 627.

Rondeletia 671.
 — trifoliata Jacq. 675.

Rosa 177, 322, 513, 544, 622.
 — acicularis Lindl. 356.
 — arkansana Porter 249, 519, 527, 532.
 — blanda Ait. 247, 500, 513, 524, 572.
 — california Cham. & Schlecht. 280, 597, 609, 612, 627.
 — carolina L. 207, 397, 413, 416, 442.
 — Fendleri Crepin 253, 544, 572, 579.
 — gratissima Greene 618.
 — gymnocarpa Nutt. 246, 569, 591, 597, 608.
 — humilis Marsh. 394, 413, 487, 500, 513.
 — lucida Ehrh. 364, 369, 382, 403.
 — nutkana Presl 248, 359, 360, 570, 591.
 — pisco-carpa Gray 247, 570. [594, 597.
 — Sayi Schwein. 250, 557.
 — setigera Michx. 506.
 — Woodsii Lindl. 394, 572.

Rotala ramosior (L.) Koehne 497.

Rottboellia (Manisuris) rugosa Nutt. 437.
 — corrugata Baldw. (= praec.) 446.
Rourea frutescens Aubl. 685.
— glabra H. B. K. 685.
Rubus 295, 334, 389, 594, 602, 661, 671.
— alpinus Macfad. 680.
— arcticus L. var. grandiflorus Ledeb. 551.
— Baileyanus Britt. (= Enslenii Tratt.)
— canadensis L. 373, 412, 413, 513. [536.
— cuneifolius Pursh 219, 413, 421, 422.
— deliciosus James 249, 555. [424, 431.
— domingensis 682.
— jamaicensis L. 680.
— laciococcus Gray 259, 597.
— leucodermis Doug]. 247, 597.
— Millsbaughii Britt. 484.
— nigrobaccus Bailey 399, 463.
— nivalis Doug]. 193.
— nutkanus Moq. (= parviflorus Nutt.)
— 240, 249, 553, 555, 595, 597, 606.
— occidentalis L. 249, 503, 513.
— odoratus L. 403, 408, 470, 479, 485, 489.
— parviflorus Nutt. (= Nutkanus Moq.)
— pedatus Smith 597. [247, 553.
— spectabilis Pursh 188, 591, 597.
— stellatus Smith 350.
— triflorus Richards (= americanus Britt.)
— trifolia 482. [353, 355, 406.
— trivialis Michx. 430, 432.
— ursinus Cham. & Schlecht. 597.
— villosus Ait. 413, 430, 502, 503, 513.
— vitifolius Cham. & Schlecht. (= ursinus Cham. & Schlecht.) 247, 280, 607, 613.
Rudbeckia 274.
— flava Greene 557.
— irta L. 516, 522, 524, 526.
— Mohrii Gray 407.
— subtomentosa Pursh 522.
— triloba L. 453, 496.
— triloba L. var. rupestris Gray 488.
Ruellia ciliosa Pursh 519, 522.
— tuberosa L. (= clandestina L.) 675, 677.
Rumex acetosa L. 392.
— acetosella L. 369, 493, 496.
— altissimus Wood 448.
— britannica L. 387, 403, 530.
— Geyeri (Meisn.) Trel. 255.
— hymenosepalus Torr. 643.
— maritimus Man. ed. 6, not L. (= persicarioiides L.) 316, 559.
— occidentalis Wats. 360.
Rumex paucifolius Nutt. 558.
— persicarioiides L. 608.
— salicifolius Weimn. 591, 632.
— venosus Pursh 535, 538.
— verticillatus L. 429.
Ruppia 447.
— maritima L. 316, 420, 558, 559.
— occidentalis Wats. 539.
Sabal 175, 177, 333, 664.
— Blackburniana Glazebrook 331, 702, 703, 704.
— glabra (Mill.) Sarg. (= Adansonii Guerns) 216, 217.
— megacarpa (Chapm.) Small (= Etonia mexicana Mart. 660. [Swin] 698.
— (Inodes) palmetto (Wal) Roem. & Schult. 431, 433, 438, 690, 691, 693, 700.
Sabulites 177.
Sabbatia 419.
— angularis (L.) Pursh 222.
— calycina (Lam.) Heller 448.
— campanulata (L.) Torr. (= gracilis (Michx.) Salisb.) 437, 690, 691.
— chlorooides Pursh (= dodecandra (L.) B. S. P. 450.
— gentianoides Ell. 437, 446.
— gracilis (Michx.) Salisb. (= campanulata (L.) Torr. 450, 699.
— lanceolata (Walt.) Torr. & Gray 424.
— macrophylla Hook. 450.
— paniculata (Michx.) Pursh 437.
— stellaris Pursh 382, 429.
Sageretia Michauxii Brongn. 431.
Sagina Linnaei Presl (= saginoides (L.) Britt.) 292, 350, 365, 565, 584.
— (Spergula) nodosa (L.) Fenzl 353.
— procumbens L. 316, 355, 370.
— saginoides (L.) Britt. (= Linnaei Presl) 257, 616.
Sagittaria 455, 464, 523, 558.
— Chapmanii (J. G. Smith) Mohr 450.
— cycloptera (J. G. Smith) Mohr 450.
— graminea Michx. 397, 498, 699.
— heterophylla Pursh = rigid Pursh.
— intermedia M. Mich. 674.
— lanceifolia L. 428, 432, 442, 691.
— latifolia Willd. 398, 402, 448, 572.
— montevidensis Cham. & Schlecht. 448.
— platyphylla (Engelm.) J. G. Smith 511.
— rigid Pursh (= heterophylla Pursh) 386, 398.
— sagittifolia L. var. mexicana Mart. & Gal. 651.
Index of Plants.

Sanguinaria—Sapindus 283.
— montagnei 274.
— lanceolata Willd. 530.
— micrantha Vahl 682.
— nana H. B. K. 652.
— urticaefolia L. 473, 510.
Salvinia 177.

Sambucus 200, 463, 477, 622, 641.
— canadensis L. 249, 365, 467, 502, 513.
— melanocarpa Gray 247, 248, 549, 553, 555, 597.
— mexicana Presl 642, 645, 653.
— microbotrys Rydb. 558.
— pubens Michx. 470, 549.
— racemosa L. (= praecc.) 223, 249, 400, 479, 591, 597.
Samolus ebracteatus H. B. K. 638, 639,692.
— floribundus H. B. K. 431.
— valerandi L. var. americanus Gray (= praecc.) 382, 438.

Sanguinaria 202, 470.
— canadensis L. 366, 388, 469, 472, 477, 484, 488, 512, 544.
Sanicula arctopoides Hook. & Arn. 625.
— canadensis L. 433, 447, 473, 512.
— marylandica L. 366, 473, 491, 502, 544.
— Menziesii Hook. & Arn. 594.
— saxatilis Greene 611.
— trifoliata Bicknell 491.

Santalum 177.
Sanvitalia acinifolia DC. (= procmbems Sapindopsis 177. [Lam.) 647.
Sapindus 177, 201, 242, 688.
— acuminatus Raf. = marginatus Willd.
— Drummondii Hook. & Arn. 514, 515, 543.
— marginatus Willd. 245, 253, 642, 650.
Sarcobatus 283, 293.
— Maximiliana Nees 624, 628.
— vermiculatus (Hook.) Torr. 239, 251, 283, 534, 570, 571, 572, 573, 575, 576.
Sarcodes 271, 274.
— sanguinea Torr. 618.
Sargassum 703.
— bacciferum Ag. 701.
— Montagnei Bailey 384, 658.
— vulgare Ag. 384, 428.
Sargentia Greggi Wats. 650.
Sarracenia 2, 368, 386.
— Catesbaci Ell. 490.
— Drummondii Croom. 450.
— flava L. 225, 320, 427, 436, 440.
— Sarracenia psittacina Michx. 441, 450.
— rubra Walt. 450.
— variolaris Michx. (= minor Walt.) 437, 441.
— Aesculapi Heer 175. [513.
— officinalis Nees. & Eberm. (= sassafras Karst. = variifolium (Salisb.) Ktze.) 176, 223, 318, 389, 413, 417, 425, 434, 455, 457, 461, 482, 484, 495, 500, 502, 504, 507.
Saururus cernuus L. 231, 432, 439, 440, 443, 448, 455, 498, 698.
— Saussurea alpina DC. (= subsinuata Lede.) 193, 312, 347, 348.
Saxifraga 334. [193, 312, 347, 348.
— adscendens L. 197, 573.
— aizoon Jacq. 197, 204, 378.
— austromontana Wiegand 564.
— bracteata D. Don. 350.
— bronchialis L. 103, 592.
— bryophora Gray 195, 254, 258.
— caespitosa L. 189, 334, 551, 565, 584.
— Careyana Gray 496.
— cernua L. 193, 551, 563, 564.
— chrysantha Gray 562.
— dawurica Willd. 350.
— debilis Engl. 292, 583, 584.
— decipiens Ehrb. (= hypnoides L.) 292.
— erosa Pursh (= micranthidifolia Haw.) B. S. P.) 488.
— flagellaris Willd. 193, 292, 562, 584.
— hieraciifolia Waldst. & Kit. 312, 347.
— integrifolia Hook. 557, 618.
— leucanthemifolia Michx. (= Michauxii Britt.) 486, 492, 496.
— Lyallii Engelm. 193.
— Mertensiana Bong. 591.
— Michauxii Britt. 493.
— occidentalis Wats. 602.
— oppositifolia L. 180, 193, 204, 378, 564.
— peltata Torr. 618. [565.
— pennsylvanica L. 524, 525.
— rhomboidea Greene 564.
— riviculis L. 193, 315, 375, 376, 551, 565.
— serpyllifolia Pursh 350, 565.
— stellaris L. 591.
Saxifraga stellaris L. var. comosa Poir. 315, 372.
— tricuspidata Retz. 189.
— virginica Michx. 312, 347, 468, 481, 487.
Scaevola Plunieri (L.) Vahl 639, 689, 703.
Scenedesmus 395.
— cordatus Corda 542.
— dimorphus Kg. 542.
— obtusus Meyer 542.
Schedonardus paniculatus (Nutt.) Trelease (= texanus Steud.) 527, 537.
Scheuchzeria palustris L. 180, 205, 221, 353, 373, 402, 482, 500, 600.
Schinus molle L. 657.
Schizaea obtusus 372.
— atrocinctus Fernald 386.
— atrocinctus Fernald var. brachypodus Fernald 366.
— atrovirens Muhl. 368, 540, 541, 546.
— cylindricus (Torr.) Britt. (= Canbyi Gray) 447.
— cyperinus (L.) Kunth var. eriophorum
— debilis Pursh 415. [Michx. 442.
— divaricatus Ell. 440. [540.
— fluviatilis (Torr.) Gray 398, 447, 498.
— lacustris L. var. occidentalis Wats. 279, 558, 586, 613.
— maritimus L. 382, 539, 572, 659.
— nevadensis Wats. 387, 372.
— Olneyi Gray 447, 586, 636.
— pauciflorus Lightf. (= Eleocharis pauciflorus Link) 254, 563.
— pungens Vahl (= americanus Pers.) 382, 419, 429, 499, 539, 540, 541, 586.
Scirpus riparius J. & C. Presl 277, 622, 624.
— robustus Pursh 419.
— Smithii Gray 499.
— sylvaticus L. 357, 415.
— tatora Kunth (= riparius J. & C. Presl)
— tatula 280. [282, 613.
— Torreyi Olney 202, 539.
Scleria 671.
— caroliniana Willd. 490.
— nutans Kunth 672.
— Torreyana Walp. 423.
Sclerolepis uniflora (Walt.) Porter (= verticillata Cass.) 424, 437;
— verticillata Cass. (= praec.) 426, 699.
Scoloporus 274.
Scolopendrium 490.
Scolosanthus bahamensis Britt. 330.
Scoparia dulcis L. 675.
Scotinophaera paradoxa Klebs 396.
Scrophularia nodosa L. 316, 508.
Scutellaria Bolanderi Gray 607.
— Brittonii Porter (= resinoso Gray) 545.
— campestris Britt. 515, 570.
— galericulata L. 368, 379, 402, 403, 526.
— integrifolia L. 473.
— lateriflora L. 439.
— nana Gray 258, 616.
— nervosa Pursh 508.
— parvula Michx. 515, 522, 527, 536.
— pilosa Michx. 473.
— saxatilis Riddell 486.
— serrata Andr. 469.
Scybalium jamaicense Schott & Endl. 676, 680.
Scytosiphon bullosus Saunders (= Colpomenia sinuosa (Roth) Derb. & Sol. forma deformans Setch. & Gard.) 588.
Sebastiana 332.
— bilocularis Wats. 637.
Sechium edule Sw. 308.
Sedum 300, 648.
— alamosanum Wats. 641.
— debile Wats. 573.
— Douglassii Hook. 562, 570.
— obtusatum Gray 618, 626.
— pulchellum Michx. 508, 510.
— roseum (L.) Scop. (= praec.) 255.
— spathulifolium Hook. 618.
— stenopetalum Pursh 535, 558, 563, 564.
— telephioides Michx. 492, 496.
Sedum telephium L. 470.
— ternatum Michx. 486, 490.
Selaginella 177.
— densa Rydb. 537, 558, 562, 565.
— lepidophylla Spring 651.
— rupestris (L.) Spring 536, 567, 590.
Selinum capitellatum (Gray) Benth. & Hook. 618.
— Kingii Wats. 287, 572.
Sematophyllum delicatum 492, 493.
Senecio 244, 260, 571, 621, 653.
— amplexens Gray 193, 561, 574.
— andinus Nutt. 561.
— aureus L. 424, 618.
— aureus L. var. balsamitae (= balsamitae Muhl.) 501.
— canus Hook. 196, 258, 391, 564, 574, 616.
— carthamoides Greene 193, 565.
— cedrosensis Greene 640.
— cirroides Hemsl. (= roseus Sch. Bip.)
— crassulus Gray 557.
— crocatus Rydb. 564.
— Douglasii DC. 582, 617, 630.
— eremophilus Richards 578.
— eurycephalus Torr. & Gray 609.
— Fremontii Torr. & Gray 564, 565.
— frigidus Less. 312, 347.
— Halleri 655.
— integerrimus Nutt. 519.
— lobatus Pers. 609.
— longilobus Benth. 530.
— lugens Richards 196, 550, 559, 563, 573.
— MacDougallii Heller (= eremophilus Richards) 555.
— multidentatus Sch. Bip. 654.
— oblancoelatus Rydb. 537.
— obovatus Muhl. 487.
— occidentalis (Gray) Greene 193, 621.
— Oerstedianus Benth. 671.
— orizabensis Sch. Bip. 654.
— Palmeri Gray 623.
— palustris (L.) Hook. 312, 347.
— platensis Nutt. 519.
— praecox DC. 647, 651.
— procumbens H. B. K. 654, 655.
— pulchellus DC. 312, 347.
— Purshianus Nutt. 193.
— Robbinsii Oakes 386.
— salignus DC. 655.
— spartioides Torr. & Gray 537.
— subnudus DC. 559.
— taraxacoides (Gray) Greene 564. [620].
— triangularis Hook. 193, 551, 558, 561.
— trigonophyllus Greene 196, 258, 615.
— vulgaris L. 355.
Sequoia 177, 200, 242, 603, 618.
— gigantea Lindl. (= Washingtoniana (Winsl.) Sudw. = Wellingtonia Seem.) 175, 176, 199, 266, 267, 618, 619.
— Langsdorffii (Brongn.) Heer 174, 175, 176.
— sempervirens (Lamb.) Endl. 175, 176, 605, 606.
— Sternbergii Goepp. 175, 176.
Serenoa 333, 431, 445.
Sericodes Greggii Gray 339.
Sericocarpus 274.
— asteroides (L.) B. S. P. 494.
— conyzoides Nees (= praec.) 421, 491.
— linifolius (L.) B. S. P. (= solidagineus Nees) 215, 421.
— tortifolius Nees. (= bifoliatus (Walt.) Porter) 493.
Serjania 660, 661.
— diversifolia Radlk. 675, 692.
— lucida Schum. 687.
— subdentata Juss. 695.
Sesbania 289.
— longifolia DC. 646.
— macrocarpa Muhl. 636.
Sesuvium 576.
— pentandrum Ell. 429.
Setaria (Chaetochloa) caudata Roem. & Schult. 530, 576.
— (Chaetochloa) setosa Sw. 675.
Seymeria 503.
— (Afzelia) macrophylla Nutt. 497.
Shepherdia 359.
— (Leparygreae) argentea Nutt. 237, 249, 543, 544, 549, 572.
— (Leparygreae) canadensis Nutt. 204, 240, 249, 356, 358, 364, 401, 555, 566, 567.
Shortia galacifolia Torr. & Gray 178.
Sibbaldia 274.
Sibthorpiaceae pichiinchensis H. B. K. 652.
Sicyos angelatus L. 467, 544.
Sicyosperma 641.
Sida 576.
— acuta Burm. 682.
— anomala A. St. Hil. 339.
— cordifolia L. 673.
Sida diffusa H. B. K. 530.
— hastata St. Hil. = physocalyx Gray.
— hederacea (Doulg.) Torr. 287.
— leprosa 339.
— physocalyx Gray (= hastata St. Hil.) 339, 530.
Sidalcea malvaceflora (Moq. & Sesse) Gray 276, 622.
— oregana (Nutt.) Gray 570.
— reptans Greene 618.
Sideroxylon 687.
— mastichodendron Jacq. 230, 685, 692.
Siegalia purpurea (Walt.) Kuntze (= Tricuspid purpurea Gray) 413, 499.
Sieversia grandiflora 562.
— Rossii R. Br. 347, 562.
— turbinata (Rydby.) Greene 192.
— turbinata (Rydby.) Greene var. nana 564.
Silenastrum 396.
Silene 621.
— antirrhina L. 515, 522, 524.
— bernardina Wats. 254.
— californica Durand 254, 607.
— caroliniana Walt. (= pennsylvaniaica Gray) 258. [Michx.]487.
— Lyallii Wats. (= Macounii Wats.) 550.
— Parishii Wats. 632, 633.
— rotundifolia Nutt. 487, 508.
— stellata (L.) Ait. f. 469, 472, 487, 520.
— Sksdorfi Robinson 258, 616.
— verecunda Wats. 611.
— virginica L. 473, 483, 486, 487, 496.
Silphium asteriscus L. 225, 227.
— brachiatum Gattinger 487.
— compositum Michx. 215, 225, 227, 491.
— integrifolium Michx. 522, 524. [494.
— laciniatum L. 453, 519, 522, 524.
— scaberrimum L. 453.
— terebinthaceum Jacq. 522, 524.
— trifoliatum Gray 453, 507.
Simaruba glauca DC. 675.
Simondsia 274.
— californica Nutt. 268, 282, 625, 630.
— (Odontonychia) corymbosa Small 216.
— erecta Chapm. 445.
Sisymbrium canescens Nutt. 506, 585.
— humile C. A. Mey. 377.
Sisyrinchium angustifolium Mill. 453, 519.
— bermudianum L. 331, 522, 703.
— californicum Ait. f. 605.
— Schaffneri Hemsl. 652.
Sium 398.
— cicutaefolium Gmel. 387, 442, 448, 455.
— heterophyllum Greene 280. [525.
— calycina (Desv.) C. A. Mey. 504, 565.
— ovalis Jones 600, 601. [574.
Smilacina 271, 470.
— (Vagnera) amplexicaulis Nutt. 632.
— (Vagnera) racemosa (L.) Desf. 371, 469, 472, 473, 477, 491, 512, 520, 602.
— (Vagnera) stellata (L.) Desf. 258, 354, 369, 545.
— trifoliola (L.) Desf. 373, 385.
Smilax 177, 353, 442, 447, 459, 467, 506.
— auriculata Walt. 444. [661, 671.
— Beyrichii Kunth 438, 600, 692, 693, 664, 695, 699.
— bona-nox L. 430, 431, 432, 451, 454, 491, 497.
— ccirrhata (Engelm.) Wats. 473, 491, 497.
— glauca Walt. 430. [513.
— havanensis Jacq. 694.
— herbacea L. 458, 469, 485, 502, 513.
— hispida Muhl. 400, 485, 502, 513, 543.
— lanceolata L. 458.
— laurifolia L. 424, 433, 439, 440, 441, 491, 700.
— oblonga Sw. var. viscosifolia (Duham.) Schulz 694.
— pseudo-china L. 454.
— tamnifolia Michx. 424.
— (Pirus) occidentalis (Wats.) Greene 247.
— (Pirus)americana (Cham. & Schlecht.) Roem. 246, 257, 322, 364, 400, 548, 549, 554, 555, 590, 597, 615.
Solanum aculeatissimum Jacq. 682, 687.
— bahamense L. 687, 690.
— callicarpaefolium Kunth & Bouché 675.
— Douglasii Dunal 280.
— dulca-nara L. 397.
— elaeagnifolium Cav. 530.
— igneum L. 687.
— jamaicense Mill. 675.
— nigrum L. 430, 502.
— triquetrum Cav. 660.
— triste Jacq. 674.
— tuberosum L. 579, 652.
— tuberosum L. var. boeale Gray 582, 583.
Solanum verbascifolium L. 675.
— xanti Gray 626.
Solea (Cubelium, Hybanthus, Ionidium) concolor Forst. 468, 486, 492.
Solidago 260, 456, 527, 558, 621.
— alpestris Wald. & Kit. (= virga-aurae (L.) var. alpina Bigel. = Cutleri Fernald) 189, 193, 373.
— amplexicaulis Torr. & Gray 491, 510.
— arguta Ait. 490.
— bicolor L. 421, 469.
— Bigelovii Gray 578.
— brachyphylla Chapm. 473.
— caesia L. 469, 472, 477, 488.
— californica Nutt. 280, 625.
— canadensis L. 413, 506, 512, 527, 528.
— decumbens Greene 365.
— Drummondii Torr. & Gray 515, 516.
— elongata Nutt. 280.
— erecta Pursh 424, 473.
— flexicaulis L. 405, 512.
— Houghtoni Torr. & Gray 501
— juncea Ait. 413.
— macrophylla Pursh 354, 373, 406.
— missouriensis Nutt. 523, 528.
— multiradiata Ait. 292, 564, 583, 620.
— nana Nutt. 193.
— neglecta Torr. & Gray 386, 524.
— nemoralis Ait. 507, 519, 524, 536.
— occidentalis Nutt. 613.
— odorata Ait. 215, 417, 481, 493.
— odorata Ait. var. inodora Gray 490.
— ohioensis Riddell 500, 524.
— paniculata DC. 651.
— petiolaris Ait. 436, 473.
— pilosa Walt. (= fistulosa Mill.) 417, 424, 436.
— pulverulenta Nutt. 436.
— radula Nutt. 515.
— Riddellii Frank. 524.
— rigidia L. 507, 519, 523, 524, 527, 528.
— rigidiuscula (Torr. & Gray) Porter 519, 527, 528, 530.
— rupestris Raf. 497, 519, 527.
— scabrida DC. 647.
— sempervirens L. 379, 381, 382, 409, 411, 412, 413, 415, 416, 703.
— serotina Ait. 506, 512, 513, 528, 570.
— speciosa Nutt. 515, 527.
— thamea M. A. Curtis 495.
— stricta Ait. 424, 446.
— tenuifolia Pursh (= Euthamia caroliniana (L.) Greene 536.

Solidago thyrsoides E. Mey. 315.
— uliginosa Nutt. 386, 500.
— ulmifolia Muhl. 512, 516.
— virga-aurae L. var. alpina Bigel. (= alpestris Wald. & Kit.) 189, 193.
Sophora secundiflora Lagasca 252, 296.
— sericea Nutt. 239, 528, 537.
— tomentosa L. 674.
Soranthera ulvoides Post & Rupr. 588, 593.
Sparganium 177, 511, 523, 558.
— angustifolium Michx. 558, 563.
— eurycarpum Engelm. 357, 386, 398, 540,
— minimum Fries 498.

— simplex Huds. 357, 367, 386, 498, 572.
— simplex Huds. var. angustifolium (Michx.) Engelm. (= angustifolium

— cynosurooides (L.) Willd. 368, 446, 447, 522, 524, 539, 540, 541.
— glabra Muhl. 282, 624.
— gracilis Trin. 559, 572.
— juncea Willd. = patens Muhl.
— juncoformis Engelm. & Gray 446, 576.
— polystachya (Michx.) Ell. 382, 419, 428, 430, 444, 446, 447.
— stricta (Ait.) Roth 216, 409, 446.
— stricta(Ait.)Roth var. alterniflora (Lois.) Gray 382.
— stricta (Ait.) Roth var. glabra Gray (= glabra Muhl.) 368, 382.
— stricta (Ait.) Roth var. maritima (Walt.) Scribn. (= praec.) 419.
Spergularia (Buda, Tissa) borealis Robinson (= canadensis (Pers.) Don) 369.
— platensis Fenzl 339.
— (Tissa) marina (L.) Griseb. 369, 381, 382, 409, 429.
— rubra (L.) J. & C. Presl 409.
Spermacoce laevis Lam. 682.
Sphacelaria cirrhosa (Roth) Ag. 384.
Sphacelaria alpina Oerst. 671.
Sphaenosciadium (= Selinium) 271.
Sphaeralcea 280, 576, 645.
— abutiloides Endl. 329.
— angustifolia Don. 529.
— cuspidata (Gray) Britt. 529.
— Emoryi Torr. 287.
— fulva Greene 640.
— hastulata Gray 530.
— Palmeri Rose 623.
— sulphurea Wats. 623.
Sphaerocephorus coralloides Fries 348.
Index of Plants.

Sphaerostigma tortuosa A. Nels. 571.
Sphaerozosma filiforme Rabh. 396.
Sphaerozgya 396.
Sphagnum 350, 397, 436, 702.
— acutifolium Ehrh. 392, 549.
— compactum Brid. 446.
— cuspidatum Ehrh. 367, 392.
— cymbifolium (Ehrh.) Hedw. 392, 402, 403, 605.
— cymbifolium (Ehrh.) Hedw. var. glau- fuscum Klinggr. 367. [cESCens 441.
— Girgensohnii Russ. 367.
— imbricatum Hornsch. 367, 446.
— imbricatum Hornsch. var. cristatum 450.
— Lindbergii Schimp. 367.
— macrophyllum Bernh. 443, 450.
— medium Limpr. 367.
— mendocinum Sulliv. & Lesq. 605.
— recurvum (Palis.) Beav. 402, 450.
— recurvum (Palis.) Beav. var. mucronatum Russ. 367.
— recurvum (Palis.) Beav. var. parviflorum Sendt. 367.
— Russowii Warnst. 549.
— squarrosum Pers. 392.
— subsecundum Nees 402.
— subsecundum Nees var. longifolium 605.
— tenellum Klinggr. 367.
— tenellum Klinggr. var. rubellum Wils. forma dasyclada Wils. 367.
Sphenopteris 177.
Spigelia anthelmia L. 691.
— marylandica L. 224, 225, 227.
Spilanthes bicolor Benth. & Hook. 647.
Spiraea 178, 334.
— arbuscula Greene 195, 247, 259.
— Aruncus L. = Aruncus silvester Kostel. 483.
— betulifolia Pall. (= lucida Doug.) 249.
— caespitosa Nutt. 582. [555, 589.
— (Holodiscus) discolor Pursh 595, 597.
— (Holodiscus) discolor Pursh var. dumosa Nutt. 195, 292, 633, 641.
— Douglassii Hook. 595, 597.
— lucida Doug. (= betulifolia Pall.) 240.
— millefolium Torr. 292, 580, 582. [246.
— (Lutkea) pectinata Torr. & Gray 258.
— pyramidata Greene 246.
— salicifolia L. var. latifolia Ait. 373.
— tomentosa L. 392, 436.
Spiranthes (= Gyrostachys) 591.
— brevilabris Lindl. 703.
— decipiens Hook. 591.
— gracilis (Bigel.) Beck. 480.
— latifolia Torr. 486.
Spiranthes plantaginea Raf. 513.
— praecox (Walt.) Wats. & Coult. 437.
— Romanzoffiana Cham. 561, 620.
— simplex Gray (= Beckii Lindl.) 219, 421, 422, 423, 494.
— tortilis Rich. 692.
Spirodela 447.
— polyrhiza (L.) Schlcid. 387, 396, 463.
Spirogyra 396, 463, 563. [500, 511, 541.
Spirostachys 274, 586.
— (Halostachys = Allenrollea) occidentalis Wats. 287, 570, 572, 573, 575, 576.
Spirulina 560. [586, 639, 645.
Spondias lutea L. 675, 676.
— purpurea L. 675.
Spongomorpha arcta Dillw.
Sporobolus 390, 446, 575, 671.
— airoides Torr. 239, 531, 570, 576, 586, 645.
— asper (Michx.) Kunth 225, 226, 432, 494, 516, 519, 523, 527.
— (Vilha) asperifolius (Nees & Mey.) Thurb. 527, 561.
— brevifolius (Nutt.) Scribn. 536.
— cryptandrus (Torr.) Gray 499, 524, 530, 532, 577, 635, 645.
— cuspidatus (Torr.) Wood 532.
— (Vilha) depauperatus (Torr.) Scribn. 572.
— gracillimus (Thurb.) Vasey 632.
— heterolepis Gray 519, 523, 540.
— indicus (L.) R. Br. 433.
— Jacquemontii Kunth 675.
— serotinus (Torr.) Gray 219, 421, 422, 424.
— texanus Vasey 539. [423, 424.
— Torreyanus Nash 432.
— (Blepharoneuron) tricholepis Coult. 597.
— vaginaeflorus (Torr.) Wood (= minor Vasey) 527.
— virginicus (L.) Kunth. 430, 689.
— Wolfii Vasey 654.
— Wrightii Scribn. 576, 645.
Spraguea 270, 600.
Stachys ajugoides Benth. 280.
— albens Gray 280, 281, 613, 618.
— aspera Michx. 567.
— cocinea Jacq. 652.
— palustris L. 463, 506, 525.
— repens Mart. & Gal. 652.
Stachytarpha cajanensis Vahl 308.
— jamaicensis Vahl (= indica Vahl) 308.
— mutabilis Vahl 308.
Stanfordia 274.
Stanhopea saUcifolia Batem. 662.
— tigrina Batem. 662.
Stanleya 274, 289, 585.
Staphylea 178, 200, 274.
- mexicana 649.
Staticcaroliniana Walt. (= Limonium carolinianum (Walt.) Britt.) 428.
Lefroyi Hems1. 331, 702.
- (Limonium) limbatum Small 576. [624.
- Limonium L. var. californica Gray 282.
- Limonium L. var. carolinianum Gray (= Limonium carolinianum (Walt.) Britt.) 360, 379, 381, 382, 702.
- sibirica Ledeb. 365.
Staurastrum 396.
- gracile Ralfs 542.
- polymorphum Bręb. 542.
Staurogenia 395.
Stegnosperma 637.
- halimifolia Bent1. 639.
Steironema ciliata (L.) Raf. 509.
- lanceolatum (Walt.) Gray 509, 524.
Stelis 676.
- crassifolia Ehrh. 312, 347, 559.
- crispa Cham. & Schlecht. 195, 258, 616, 632.
- humifusa Rottb. 350, 379.
- (Alsine) longifolia Muhl. 525.
- longipes Goldie 195, 557, 559.
- pubera Michx. 490.
- umbellata Turcz. (= Alsine baicalensis Cov.) 292, 557, 573, 584.
Stenanthium frigidum Kunth 653, 654.
Stenophyllum capillaris (L.) Britt. 487.
Stenostomum (Antirrhoea) myrtifolium Griseb. 350.
Stenotaphrum americanum Schrank (= secundatum (Walt.) Kuntze) 433, 686, 687, 703, 704.
- secundatum (Walt.) Kuntze 444.
Stenotus (Apolpappus) acaulis Nutt. (= S. acaulis var. glabratus Eat.) 193.
Stephanodiscus Niagareae Ehrh. 396.
Stephanomeria 571.
- (Ptiloria) minor Nutt. (= tenuifolia Sterculia 178.
[Thorr] 287, 534.
Stereoaulon 395, 653.
- coralloides Fries 492.
- paschale (L.) Ach. 395.
Stevia 638, 641, 653.
- arbutifolia Willd. 653, 654.
- Berlandieri Gray 647.
- elatior H. B. K. 647.
- Plummerae Gray 643.
- purpurea Pers. 653.
- ranunculoides Hems1. 647.
- serrata Cav. 643.
- stenophylla Gray 647.
Stevia uniaristata DC. 647.
Stichococcus bacillaris Näg. 396.
Stigeoclonium tenue (Ag.) Kütz. 395.
Stigmatophyllum sagraeanum Juss. 690.
Stillingia 274, 332.
- anima Muell. 636.
- aquatica Chapm. 437.
- sylvatica L. 531.
Stipa 426, 537.
- avenacea L. 219, 421, 422, 473.
- comata Trin. & Rupr. 239, 528, 532, 534, 536, 561, 571, 582.
- Macounii Scribn. 407.
- mucronata H. B. K. 654.
- neo-mexicana (Thurb.) Scribn. 582.
- occidentalis Thurb. 620. [577.
- pennata L. var. neo-mexicana Thurb.
- partea Trin. 519, 523, 524, 527, 532.
- Thurberiana 569.
- viridula Trin. 561, 569.
Streptanthus campestris Wats. 631.
- cordatus Nutt. 571.
- hispidus Gray 611.
- orbiculatus Greene 195, 258, 616.
- tortuosus Kellogg 195, 254.
Streptopus 258, 591.
- amplexifolius (L.) DC. 360, 404, 405, 406, 477, 595, 602.
Strophostyles helvola (L.) Britt. 398, 411, 412, 413, 417, 429, 499, 507.
Strumpfia maritima Jacq. 689.
Stuartia 200, 489.
- major Lodd. 320.
- pentagyna L ‘Her. 486, 490.
- virginica Cav. (= malachodendron L.) 320, 494.
Styloclyne micropoides Gray 571.
Stylophorum diphyllum (Michx.) Nutt.508.
Styllosanthes biflora (L.) B. S. P. 436.
- elatior Sw. (= praecl.) 507, 516.
- riparia Kearney 225, 226.
Styrax 178, 200, 274.
- americana L. 473.
- californica Torr. 269.
- decidua 448.
- grandifolia Ait. 434, 451.
- obtusifolium Griseb. 677.
Sueda 283, 379, 575, 636.
- (Dondia) depressa (Pursh) Wats. 576, 645.
- (Dondia) depressa (Pursh) Wats. var. erecta (Wats.) Heller 570, 573.
- (Dondia) depressa (Pursh) Wats. var. fruticosa 572.
- (Dondia) diffusa Wats. 539, 570, 576.
Suaeda (Dondia) linearis (Ell.) Moq. 369, 379, 382, 444.
— (Dondia) linearis (Ell.) Moq. var. ramosa 382, 420.
— (Dondia) suffrutescens Wats. 576, 586, Torreyana Wats. 628. [645].
Subularia aquatica L. 558.
Sullivania 394.
— procumbens 522.
Suriana maritima L. 673, 689, 690, 692, Surirella 396. [696, 703].
Swertia 274.
— perennis L. (= Pleurogyne fontana A. Nels.) 194, 254, 574.
Syndesmon (= Anemonella) 202.
Syneccococcus aeruginosus Näg. 561.
Synedra 396.
— acus (Kütz.) Grun. var. delicatissima 396.
— pulchella Kütz. 396.
— ulna (Nitsch.) Ehrenb. 542.
Syngonium 679.
Syntheris 390, 544, 698.
— filiformis (L.) Nash 216.
— fimbriatum (Link) Nash 216.
Synthrys 274.
— (Besseya) alpina Gray 194.
— plantaginea Bentz. 194, 563.
— plantaginea var. coryphocolus 565.
— (Wulfenia) rubra (Dougl.) Bentz. 567.
Syntrichopappus 289, 585.
— Fremontii Gray 571.
Symphonia globulifera L. 679.
Symphocarphophyllum 178.
Symphoricarpus 200, 513, 514, 622.
— mollis Nutt. 271.
— montanus 285.
— occidentalis Hook. 249, 356, 528, 544.
— oreophilus Gray 253, 568. [545].
— Parishii Rydb. 631.
— pauciflorus (Robbins) Britt. 535, 544.
— racemosus Michx. 249, 356, 570, 572, 597.
— racemosus Michx. var. pauciflorus Rob.
— Symphyogyne 679. [bins 240].
Symphococcos 662. [473].
— tinctoria (L.) L’Her. 224, 319, 432, 434.
Tabellaria 396.
Tabernaemontana citrifolia L. 675.
Taeniopoteris 178.
Tagetes 638, 641.
— Parryi Gray 647.
Talauma 685.
Talinum aurantiacum Engelm. 530, 651.
— patens Willd. 651. [527].
— teretifolium Pursh 394, 487, 490, 508.
Tanacetum camphoratum Less. 604.
— (Sphaeromeria) canum Eat. 254.
— huronense Nutt. 366, 399.
— Nuttallii Torr. & Gray 193.
Taraxacum 271.
— lividum (Wald. & Kit) Heller 351.
— officinale Weber 369.
— officinale Weber var. scopulorum Gray
— rupestre Greene 551. [565].
— scopulorum Gray 551.
Tauschia Coulteri Gray & Harv. 655.
Taxites 178.
Taxodium 178.
— mucronatum Tenore 214, 658, 667.
Taxus 178.
— brevifolia Nutt. 244, 247, 262, 263, 264, 266, 267, 549, 553, 555, 591, 594, 595, 596, 598, 599, 602, 606, 617, 618.
Tecoma bahamensis Northrop 330, 690, 693, 694, 695.
— leucoloxon Mart. 687, 688.
— mollis H. B. K. 651.
— (Campsis) radicans (L.) Juss. 399, 430, 431, 432, 458, 506, 513.
— stans Juss. 688.
Tellima grandiflora (Pursh) Dougl. 592.
— tenella Nutt. 255.
Tephrosia (Cracca) 638, 646.
— cinerea (L.) Morong 673.
— purpurea L. 682.
— spicata (Walt.) Torr. & Gray 493.
Terminalia catappa L. 686.
— spinosa Northrop 327, 692.
Ternstroemia luquillensis 685.
Tessaria borealis Gray subsp. avay 293, 636.
Tetraclea 645.
— Coulteri Gray 520.
Tetradydia 293, 571.
— canescens DC. 253, 569, 571, 573, 575.
— comosa Gray 585. [635].
— glabrata Gray 248, 586.
— inermis Nutt. 193.
— Nuttallii Torr. & Gray 250.
— spinosa Hook. & Arn. 253, 287, 573, 586.
Tetragonotheca helianthoides L. 227.
Tetrapsora natans Kg. 295.
Tetrazygia 688, 690.
— bicolor (Mill.) Cogn. 693, 695.
Teucrium canadense L. 526.
— Nashii Kearney 430.
Thalassia testudinum Kon. 702.
Thalassiothrix clathrus (Gmel.) Post & Thalia geniculata L. 659. [Rupr. 351.
Thalictrum 258, 295, 641.
— alpinum L. 197, 391, 555, 557, 573.
— clavatum DC. 486, 488, 493.
— dioicum L. 366, 468, 522, 526, 590.
— occidentalis Gray 567.
— polygonum Muhl. 368, 424, 463, 464.
— purpurascens L. 512, 524, 525.
— tomentellum Rob. & Seat. 652.
— venulosum Trel. 567.
— Wrightii Gray 583.
Thamnolia vermicularis (Sw.) Ach. 407.
Thamnosma 289.
Thaspium aureum Nutt. 512.
— barbinode (Michx.) Nutt. 485, 490.
— pinnatifidum (Buckl.) Gray 490.
— trifoliatum (L.) Britt. var. aureum (Nutt.) Britt. 469.
Thelephora intyбаеa 403.
— terrestris Ehrh. 414.
Thelesperma gracile (Torr.) Gray 530.
— intermedia Rydb. 537.
— trifidum (Poir.) Britt. (= filfolium Gray) 239, 537.
Thelia Lescurii Sulliv. 394.
Thelypodium Nuttallii Wats. (= torulosum Heller) 286.
— sagittatum (Nutt.) Heller 286.
Theobroma cacao L. 664.
Thermopsis arenosa A. Nels. 558.
— rhombifolia (Nutt.) Richards. 239, 555.
Thespisia populnea (L.) Soland. 686.
Thlaspi alpestre L. 292, 565, 574, 584.
— glaucum Nelson 557.
— montanum L. 391.
Thouinia discolor Griseb. 329, 695.
Thrinax 604, 677, 861, 686.
— argentea Lodd. (= Coccothrinax argentea (Lodd.) Sarg. & C. jucunda Sarg.) 229.
— bahamensis C. 329, 690, 691, 695.
— fasciculata Sw. 229.
— floridana Sarg. 292.
— keyensis Sarg. (= microcarpa Sarg.) 692.
— ponceana O. F. Cook (praecl.) 684.
— recurvata L. 229.
— tessellata 680.
— utriculata L. 229.
Thysanopteris 178.
Thuidium recognitum Lindb. 403.
Thuija 176.
— gigantea Nutt. (= plicata D. Don.) 247, 252, 589, 591, 594, 595, 596, 602, 606.
— plicata D. Don. 247, 262, 263, 547, 549, 553, 555, 556, 558.
Thurberia (Limnadia) arkansana (Nutt.) Benth. 445.
Thysanocarpus curvipes Hook. 571.
— elegans F. & M. 287.
Tiarella 274, 555.
— cordifolia L. 377, 404, 469, 477, 488, 490.
— trifoliata L. 591, 595.
Tiedemannia (Oxyphilus) rigida L. 419.
— teretifolia DC. 427, 447.
— heterophylla Vent. 223, 451, 457, 484, 489, 492, 504, 500.
— Malmgreni Heer 175.
— mexicana Benth. 649, 652.
— pubescens Ait. 473.
Tillaea angustifolia Nutt. 558, 572.
— simplex Nutt. (= aquatica L.) 464.
Tillandsia 662, 679, 684.
— aloifolia Hook. (= flexuosa Sw.) 229.
— Baileyi Rose 660.
— Balbisiana Schult. 229.
— fasciculata Sw. 675.
— juncea Le Conte 438.
— punctulata Schlcht. & Cham. 653.
— recurvata L. 641, 644, 648, 687.
— (Dendropogon) usnoides L. 217, 332, 432, 439, 440, 441, 448, 453, 454, 531, 682, 688, 694.
— utriculata L. 438, 687.
Tipularia unifolia (Muhl.) B. S. P. 439.
Tmesipteris 178.
Tofieldia 426.
— borealis Wahlenb. (= palustris Huds.) 550, 591.
— glutinosa (Michx.) Pers. 204, 501, 550.
— occidentalis Wats. 258, 600, 615.
— racemosa (Walt.) B. S. P. 424, 437.
Tolmiea (= Leptaxis) 274.
— Menziesii Pursh 602.
Torraya (= Tumion) 178, 202.
— (Tumion) californica Torr. 267, 606, 617.
Torrubia 690.
— Cokeri Britt. 329.
Torrubia longifolia (Heimerl) Britt. 692, 693, 694, 695.
— obtusata (Jaq.) Britt. 694.
Tortula bermediana 331.
— ruralis Ehel. 654.
Tournefortia 689.
— bicolor Sw. 675.
— gnaphalodes R. Br. 674, 689, 690, 692.
— volubilis L. 687, 694. [703.
Townsendia excapa (Richards) Porter (= sericea Hook.) 535.
— grandiflora Nutt. 239, 534, 545.
— scapigera DC. Eat. 563.
— sericea Hook. (= excapa (Richards.) Porter) 535, 537.
— spathulata Hook. 563.
— strigosa Nutt. 287.
Toxylon (= Maclura) 178.
— pomiferum Raf. (= Maclura aurantiaca Nutt.) 217.
Trachelospermum difforme Gray 436, 456.
Trachypogon 671.
Tradescentia montana Shuttlw. 472.
— navicularis Ort. 648.
— virginica L. 468, 486, 522, 530, 532, 537.
Tragia urens L. 432.
— volubilis L. 687.
Tragoceros microglossum DC. 647.
Trapa 178.
Trautvetteria palmata Fisch. Mey. (= carolinesis (Walt.) Vail.) 479, 485, 486.
Trema Lamarckiana Blume 704.
Trentepohlia virgatula Harv. 428.
Trepocarpus arethusaef Nutt. 456.
Triadenium (Hypericum) virginicum (L.) Trianthema 576. [Raf. 442.
Tribulus 289, 645.
— (Kallstroemia) brachystylis Vail. 339.
— (Kallstroemia) californicus Wats. 339.
— (Kallstroemia) grandiflorus Bent. & (Kallstroemia) maximus L. 339.
Tricardia 289.
— Watsoni Torr. 571.
Trichilia 688.
Trichomanes 490, 680.
— muscoides 679.
— Petersii Gray 487.
— pyxidiferum L. 679.
— radicans Sw. 487.
Trichoptyllium 289.
Trichostema 390.
— dichotomum L. 413.
— lanatum Benth. 627.
— lanceolatum Benth. 628.
— laxa Gray 609.
— Trichostomum 653.
— (Leptotrichium) glaucescens Hedw. 392.
— Tricuspis (Triodia, Triplasis) purpurea Walt. 444.
— (Sieglingia) sesleroides (Michx.) Torr. Tridax candidissima Gray 647. [513.
— artcica Fisch. 530, 360.
— europea L. var. arctica Lede. 594.
— latifolia Torr. 605.
— arvense L. 380.
— dasyphllum Torr. & Gray 192, 564.
— heterodon Torr. & Gray 593.
— involucratum Orteg. 652.
— longipes Nutt. 255, 558, 559, 564.
— microcephalum Pursh 618.
— monanthum Gray 195, 620.
— nanum Torr. 192, 562, 564, 565.
— Palmeri Wats. 623.
— Parryi Gray 192, 564, 565.
— pinetorum Greene 577.
— plumosum Dougl. 599.
— repens L. 370, 487, 492, 496.
— spinulosum Dougl. 572.
— Triglochin maritimum L. 368, 369, 379, 382, 500, 525, 559.
— palustre L. 500, 525.
— Trigonia 303.
— Trilisa 436.
— odoratissima (L.) Kuntze 446.
— Trillium cernuum L. 366, 388, 389.
— erectum L. 477, 492.
— erythrocarpum Michx. (= undulatum Willd.) 377, 404, 477, 490.
— grandiflorum (Michx.) Salisb. 486.
— nivele Riddell 522, 526.
— ovatum Pursh 602, 606.
— recurvatum Beck. 354.
— sessile L. 512.
— stylorum Nutt. 473, 490, 491.
— Triodia (Triplasis, Tricuspis) 289, 382.
— Chapmani Small. 494.
— cuprea Jacq. (= Tricuspis sesleroides Michx.) 225, 226, 520, 524.
— (Sieglingia) decumbens L. 355.
— (Tricuspis) mutica Torr. 635. [635.
— (Tricuspis) pulchella (H. B. K.) 350, 577.
— (Triplasis) purpurea Walt. 381, 398, 430.
— Triopteris rigida Sw. 694. [499.
— Triosteum perfoliatum L. 468, 487, 512.
— Trisetum 271.
— canescens Buckl. 600.
— elongatum (H. B. K.) Kunth 653.
— Rosei Scribn. & Merr. var. tenerum (Scribn. & Merr.) 654.

Harshberger, Survey N.-America.
— subspicatum (L.) Beauv. var. molle (Michx.) Gray 496.
— toluccense (H. B. K.) Kunth 654, 655.
Triticum 260. [682.
— violaceum Hornem. (= Agropyron violaceum Vasey) 315.
Triumfetta 295, 662.
Trixis 289.
— angustifolia DC. 640.
— conferta Benth. 647.
Trollius albiflorus (Gray) Rydb. 558.
Troximon 571.
— (Agoseris) aurantiacum (Hook.) Greene (= Macrorrhynchus troximoides Torr. & Gray) 193.
— (Nothocalais) cuspidatum Pursh 522.
— glaucum Nutt. 196. [527.
— grandiflorum Gray 276, 622.
Trypetelium cruentum 432.
Tsuga 176, 178, 183, 393, 404, 492.
— caroliniana Engelm. 483.
— heterophylla (Rafl.) Sarg. (= Mertensiana Engelm.).
— Mertensiana (Bong.) Carr. (= Patoni-
— Mertensiana Engelm. (= heterophylla
— Patoni-
— Patoni-
— Patoni-
Tumion (= Torreya) 178.
Turnera pumilea L. 675.
— ulmifolia L. 693.
Typha 178, 397, 442, 511, 523, 691.
— angustifolia L. 294, 316, 382, 586, 636.
— domingensis Pers. 691. [659, 702.
— latifolia L. var. elongata 498.
Udoeta flabellata Lamou 687.
Ulmophyllum 178.
Ulmus 178, 201, 205, 303, 393, 433, 459, 477, 508, 511, 514.
Ulmus alata Michx. 224, 457, 459, 514.
— crassifolia Nutt. 456, 640.
— fulva Michx. (= pubescens Walt.) 237, 238, 391, 393, 401, 408, 457, 484, 501, 502, 504, 505, 512, 513, 514, 522, 543.
— racemosa Thomas (= Thomasi Sarg.) 187, 237, 391, 393, 470, 508, 522.
Ulotra crispa Brid. 493.
Ulothrix flaccia (Dillw.) Thuret 588.
Ulva 701.
— lactuca L. 427, 593, 701.
— latisyma L. (= lactuca Linn. var. latis-
— Umbellularia californica (Hook. & Arn.) Nutt. 267, 270, 606, 611.
Umbilicaria 479, 481.
— cylindrica (L.) Delis. 653.
— hyperborea Hoffm. 364.
— proboscidea (L.) Stenh. 653.
— pustulata (L.) Hoffm. 653.
— vellea (L.) Nyl. 653.
Uncinia 340.
Ungnadia speciosa Endl. 252, 643.
Uniola 426, 445, 689, 690.
— gracilis Michx. (= laxa (L.) B. S. P.)
— latifolia Michx. 473. [431, 432.
— longifolia Scribn. 226, 432, 494.
— Palmeri Vasey 636.
— racemiflora Trin. 690.
Urceolaria scrobula L. 536.
Urechites suberecta Muell. Arg. 694.
Urena sinuata L. 675.
Uromyces scutellatus 537.
Urospora penicilliformis (Roth) Aresch.
Urtica Brewer Wats. 652. [349.
— chamaedroides Pursh 492.
— holosericea Nutt. 280, 570.
— Lyall Wats. 570.
Usnea 395, 671.
— barbata (L.) Fr. 367, 425, 432.
— barbata (L.) Fr. var. hirta Fr. 549.
Utricularia 205, 388, 401, 426, 447, 498, 691.
— clandestina Nutt. 424, 426.
— fibrosa Walt. 441.
— gibba L. 500.
— inlata Wats. 387, 442.
— intermedia Hayne 500.
— juncea Vahl 437, 450.
Utricularia minor L. 500, 541.
— resupinata B. D. Greene 500.
— spirandrea Wright. 674.
— subulata L. 216, 219, 421, 422, 450.
— vulgaris L. 387, 396, 498, 500, 541, 558, 593.

Uvularia grandiflora Smith 409, 490, 512.
— perfoliata L. 409, 472, 473, 486, 490, 491.
— (Oakesia) tuberula Michx. 472, 495.
— (Oakesia) sessilifolia L. 388, 473, 477, 486, 491.

Vacciniophyllum 178.

— angustifolium Bentham. 595.
— (Batodendron) arboreum Marsh. 224, 225, 434, 447, 473, 495.
— atrococcum (Gray) Heller 412, 424.
— caespitosum Michx. 193, 249, 258, 315, 353, 366, 368, 373, 376, 406, 574, 592, 595, 600, 615, 621.
— caespitosum, var. arbuscula Gray 589.
— canadense Richards 358, 364, 368, 371, 405, 406, 407, 481.
— corymbosum L. var. pallidum Gray 485.
— densiflorum Bentham. 671.
— erythrocarpum Michx. 492, 495.
— geminiflorum H. B. K. 656.
— (Oxyccoccus) macrocarpon Ait. 353, 366, 385, 386, 402, 403, 415, 426, 482, 500.
— macrophyllum Domb. 569.
— membranaceum Doug. (= myrtillloides Hook.) 246, 549, 550, 599.
— meridionale Sw. 680.
— microphyllum (Hook.) Rydb. (= erythroccum Rydb.) 196, 259, 549, 550.
— myrsinites Lam. 450.
— myrtillloides Hook. 363, 597.
— Myrtillus L. 249, 593.
— Myrtillus L. var. microphyllum Hook. 240, 597.
— nigrum (Wood) Britt. 481, 482.
— nitidum Andr. 438.
— occidentale Gray 196, 247, 554, 615.
— oorephillum Rydb. 558.
— ovatum Pursh 605, 607.
— pallidum Ait. 495.

Vaccinium parvifolium J. E. Smith (= myrtilloides Gray var. membranaceum Doug.) 597, 607.
— scoparium Leiberg. 247, 599.
— (Polycodium) stamineum L. 434, 450, 451, 467, 472, 481, 493, 494, 495.
— tenellum Ait. 494, 699.
— vacillans Kalm 221, 380, 389, 424, 434, 467, 475, 481, 491, 494, 495, 500, 515.
— virgatum Ait. 492.
— virgatum, var. tenellum (Ait.) Gray 434.

Valeriana 274, 638.
— capitata Pall. 193, 312, 347, 351.
— ceratophylla H. B. K. 570.
— edulis Nutt. 525, 555, 557, 559, 572.
— plantaginea H. B. K. 653.
— septenttrionalis Rydb. (= sylvatica Banks) 557.
— sitchensis Bong. 259, 550, 592, 602.
— subincisa Bentham. 656.
— sylvatica Banks (= septentrionalis Rydb.) 255, 386, 557.

Valerianella chenopodifolia (Pursh) DC.

Valliseria 178.

Valonia utricularis (Roth) Ag. 702.

Vanouveria 274.

Vanilla 693.
— articulata Northrop. 694.
— phaeantha Reichb. 675.
— planifolia Andr. 661.

Vauquelinia californica (Torr.) Sarg. (= Torreyi Wats.) 642.

Velaea vestita (Wats.) Cov. & Rose 254.

Venegasia 274.

Veratrum 270, 295.
— album L. 260.
— californicum Durand 258, 555, 608, 618.
— fimbriatum Gray 605. [620].

Verbascum thapsus L. 394, 515.
— virgatum With. 609.

Verbena 527.
— bipinnatifida Nutt. 528, 530.
— ciliata Bentham. 635.
Verbena hastata L. 280, 281, 527, 613.
— prostrata R. Br. 607.
— stricta Vent. 519, 527, 528.
Verbesina 576, 638.
— encelioides (Cav.) Gray 557, 673.
— hypoleuca Gray 647.
— longifolia Gray 583.
Vernonia altissima Nutt. 508.
— bahamensis Griseb. 330, 693.
— fasciculata Michx. 519, 522.
— gigantea (Walt.) Britt. (= altissima Nutt.) 448, 519, 527.
— liatroides DC. 647.
— maxima Small 513.
— menthaefolia Less. 675.
— noveboracensis Willd. 424, 465.
Veronica 334, 653.
— americana Schwein. 463, 541.
— anagallis L. 525, 541.
— Cusickii Gray 194, 197, 258, 616.
— officinalis L. 496.
— saxatilis Scop. (= fruticulosa L.) 197.
— scutellata L. 387.
— serpillifolia L. 654.
— Stelleri Pall. 350.
— Wormskjoldii Roem. & Schult. (= alpina L.) 194.
Verrucaria muralis Ach. 395.
— nigrescens Pers. 395.
Vescaria alpina Nutt. (= Lesquerella alpina (Pyna) Wats.) 192.
— acerifolium L. 354, 451, 466, 467, 470, 484, 485, 500.
— cassinoideas L. 365, 386.
— dentatum L. 380, 421, 425, 466, 467.
— ellipticum Hook. 595.
— molle Michx. 389, 451.
— nudum L. 365, 424, 440, 451, 467, 475.
— opulus L. 356, 365. [482.
— prunifolium L. 457, 458, 466, 504, 509.
— pubescens (Ait.) Pursh 484, 522.
— rufotomentosum Small (= rufidulium Raf.) 515.
— stellato-tomentosum Hemsl. 671.
Vicia 337, 641.
— americana Muhl. 524, 583.
— americana Muhl. var. truncata (Nutt.) 369. [Brew. 625.
— gigantea Hook. 594.
— linearis (Nutt.) Greene 625.
— micrantha Nutt. 438.
Vigna 216.
— glabra Savi 216, 444.
— strobilophora Rob. 658.
Viguiera 274, 576, 638.
— canescens DC. 647.
— cordifolia Gray 583.
— lacinata Gray 282, 625.
— lanata Gray 640.
— subincisa Benth. 640.
Villarsia Humboldtiana H. B. K. (= Limnanthemum Humboldtianum Griseb.) 576.
Vinca rosea L. 682. [659.
— Vincetoxicum 431.
— scoparium Gray 697.
Viola 302, 608, 641, 671.
— adunca Smith 369.
— arenaria DC. 390.
— Beuckwitti Torr. & Gray 195.
— canadensis L. 484, 486, 493.
— canadensis L. var. scouleriiborum Gray 292.
— canina L. 477. [583.
— canina L. var. puberula Wats. (= arenaria DC.) 372.
— canina L. var. aduna Gray (= adunca Smith) 551, 567.
— canina L. var. Muhlenbergii (= labradorica Schrank) 525.
— cucullata Ait. 389, 424, 486, 513.
— delphinifolia Nutt. 522.
— flagelliformis Hemsl. 652.
— glabella Nutt. 360, 600, 602.
— Grahami Benth. 652.
— hastata Michx. 472.
— labradorica Schrank (= canina L. var. Muhlenbergii) 469, 549.
— Langsdorffii Fisch. 350, 351.
— Nuttallii Pursh 535, 573.
— palmata L. 469, 472, 477, 524.
— pedata L. 215, 421, 424, 469, 473, 524.
— pedata L. var. bicolor Pursh 508.
— pedatifida Don 497, 523, 524, 527.
— pedunculata Torr. & Gray 625.
— primulaefolia L. 366.
— pubescens Ait. 388, 469, 477, 486, 493, 512, 521, 526.
— purpurea Kellogg (= aurea Kellogg var. venosa Wats.) 194, 257, 616.
— rostrata Pursh 486.
Index of Plants.

789

Viola rotundifolia Michx. 377, 404, 405, 409, 479, 480, 486.
— sagittata Ait. 424, 486.
— sagittata Ait. var. ovata 380.
— sarmentosaDougll. (= sempervirens Grccne) 501, 605, 606.
— scabriuscula (Torr. & Gray) Schwein. 484, 544, 567.
— Selkirkii Pursh 366, 371, 394.
— Sheltoni Torr. 195.
— striata Ait. 486, 508.
— tricolor L. var. arvensis 532.
— villosa Walt. 469, 473.
Viscainoa gemmulata Lower 339.
Viscum 671.
Vitex ilicifolia A. Rich. 675.
— pyramidata Rob. & Pringle 658.
Vitiphyllum 178.
— aestivalis Michx. 430, 453, 456, 467, 502.
— arizonica Engelm. 634, 641, 643.
— bicolor Le Conte 487.
— californica Benth. 280, 609, 612, 627
— candicans Engelm. 649.
— cinerea Engelm. 453, 506.
— cordifolia Michx. 394, 400, 458, 467, 500, 502, 506.
— Labrusca L. 414, 417, 439, 467, 504.
— riparia Michx. (= vulpina L.) 249, 467, 502, 506, 512, 513.
— (Muscadinia) rotundifolia Michx. 224, 225, 228, 430, 431, 432, 447, 453, 456.
— vulpina L. (= riparia Michx.) 322, 399, 513, 525, 544, 567.
Vittaria lineata (L.) Sw. 438, 679, 683.
Vochysia 303.
Volvox 463, 563.
— globator L. 395.

Waldsteinia fragarioides (Michx.) Tratt. Wallenia laurifolia Sw. 674. [485.
Waltheria 687.
— bahamensis Britt. 329.
Washingtonia (= Neowashingtonia) 289.
— sonorae S. Wats. 639.
Wedelia 289, 687.
— buphthalmoides Griseb. 687.
— carnosapers. (= Sereneum trilobatum (L.) Kuntze) 677.
Weinmannia 178, 670.
Weldenia candida Schult. 652.
Whipplea 274.
— modesta Torr. 200.
Whitneya 274.

Widdringtonia 178.
Wistaria frutescens (L.) Poir. 440, 447, 458.
Wissadula periplocifolia Griseb. (= micro-
nulata Gray) 675.
Wollfia brasiliensis Wedd. (= punctata
Griseb.) 463.
— columbiana Karst. 396, 463, 498.
— punctata Griseb. 511.
Woodsia 271.
— alpina (Bolton) S. F. Gray 204.
— glabella R. Br. 204, 365, 366, 378.
— hyperborea R. Br. (= alpina (Bolton)
— mexicana Fee 557, 579.
— obtusa (Sprang.) Torr. 394, 515, 516.
— oregana D. C. Eat. 239, 567. [526.
— scopulina Eat. 567, 590.
Woodwardia 178, 442, 447, 448.
— angustifolia Sm. (= areolata (L.)Moore)
— ciliata (= Cheilanthes marginata H. B.
K.) 653.
— virginica (L.) Sm. 202, 426, 441, 447.
Wyethia 621. [501.
— amplexicaulis Nutt. 569, 570, 572.
— helianthoides Nutt. 559.
Xanthium 382.
— canadense Mill. var. echinatum Gray
— canadense Mill. 398, 420. [381.
— echinatum Murr. 411.
— strumarium L. 540.
— texana 529.
Xanthocephalum Benthamianum Hems1.
— sericocarpum Gray 647. [647.
Xerophyllum 258. [495.
— ashphodelioides (L.) Nutt. 203, 424, 426.
— tenax Nutt. (= setifolium Michx.) 554.
— texana 529.
Ximenia americana L. 438, 673.
Xylosma buxifolia Gray 694.
— ilicifolia Northrop 330.
Xylothermia (Pickeringia) montana (Nutt.)
Xyris 388, 426. [Greene 272.
— ambiguabeyr. 442. [423, 442.
— caroliniana Walt. 219, 382, 421, 422,
— communis Kunth. (= macrocephala
Vahl) 225, 226.
— filibracta Ell. 424.
— flexuosa Muhl. 219, 421, 422, 423.
— serotina Chapm. 217.
Yeatesia (Justicia) laete-virens (Buckl.)
Small (= viridiflora (Nees) Small) 227, 427.
Iudex = Cleistoyucca

— angustifolia Pursh (= glauca Nutt.) 292, 527, 528, 530, 531, 532, 534, 537, 538, 575, 580, 635, 645.

— angustissima Engelm. 285.

— arborescens Trel. (= brevifolia Engelm. = Cleistoyucca arborescens (Torr.) Trel.) 269, 585, 586, 630, 631.

— arakensana Trel. 215.

— australis (Engelm.) Trel. 646.

— brevifolia 245, 270, 286, 584, 586, 635.

— elata Engelm. (= radiosa (Engelm.) Trel.) 252, 642, 643.

— elephantipes Regel 215.

— filamentososa L. 226, 432, 433, 452, 473.

— filamentososa L. var. bracteata Engelm. 215.

— filamentososa L. var. concava (Haworth) Bak. 215.

— filamentososa L. var. patens Carr. 215.

— gloriosa L. 215, 430, 431, 444.

— lousianensis Trel. 215.

— macrocarpa 286, 585, 642, 643, 644, 646.

— mohavensis Sarg. 286, 636.

— radiosa (Engelm.) Trel. (= elata Engelm.) 286, 575, 645, 646.

— recurvifolia Salisb. 215.

— rigida (Engelm.) Trel. 646.

— rostrata Engelm. 646.

— rupicola Scheele 529, 531.

— valida Brandegee 646.

— Whipplei Torr. 625, 629.

Zaluzania mollissima Gray 647.

Zamia 178, 662, 677.

— floridana DC. (= integrifolia Chapm.) 231, 698, 700.

Zamiopsis 178.

Zannichellia palustris L. 316, 541, 542, 558.

Zanthorrhiza apiifolia L’Her. 472, 486, 490.

Zanthoxylum 178, 200, 430, 431, 432, 447, 660.

— americanum Mill. 394, 458, 500, 504.

— caribaeum Lam. 695. [543, 544.

— clava-herculis L. 433, 688, 700.

— coriaceum Walp. 695.

— flavum Vahl 682, 703.

— Pringlei Wats. 661.

— pterota H. B. K. 692, 694.

— spinifex DC. 686.

Zauschneria 621.

— californica Presl 275, 627, 628.

— californica Presl var. microphylla Gray 275, 628.

Zephyranthes Atamasco (L.) Herb. 447

— texana (Herb.) Greene 531.

Zexmenia 641.

— gnaphalioides Gray 647.

Zinnia grandiflora Nutt. 293, 575, 635.

— juniperifolia Gray 647.

— linearis Benth. 647.

Zizia 448, 511, 523.

— aquatica L. 387, 398, 428, 442, 447, 463.

— Bebbii (Coult. & Rose) Britt. 485.

— serrata 490.

Zizyphus 178, 242.

— lycioides Gray 635.

— obtusifolius Gray 530, 644, 645.

— Parryi Torr. 200.

— marina L. 187, 420, 427, 429, 593.

— Zygodenus elegans Pursh (= cloranthus Richards.) 292, 545, 555, 558, 559, 564.

— Fremontii Torr. 272, 608, 625. [583.

— glaberrimus Michx. 446.

— leimanthoides Gray 203, 495.

— Nuttallii Gray 572.

— paniculatus Wats. 606.

Zygemia 563.

— cruciatum (Vauch.) Agardh. 542.
Harshberger, John W. 1869-1929.
Phytogeographic survey of North America.